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Abstract; This paper considers the modeling of torque-ripple in hybrid
step motors and its cancellation using adaptive linearization control.
Although the nonlinear adaptive control of our problem can fit into a
general framework we use a different representation of the torque-ripple
which reduces the number of adapted parameters per torque-ripple har-
monic by half. By doing so, we are able to prove conditions on exo-
genous signals to guarantee the persistency of excitation of the regressor,
and hence the exponential stability of the unperturbed system. We also
show that the adaptive system is robust to a class of state and parameter
dependent modeling errors and disturbances even when the adaptation
gain and convergence rate of the unperturbed system become small.
Finally, the adapted parameter errors are proved to converge to a neigh-
borhood of zero whose radius can be made small by slow adaptation.
Our control scheme is verified in an experiment in which we observe a
32db reduction in torque-ripple component at the rotor pole frequency.

1. Introduction

The control of electric motors is a traditional control problem
which has attracted new interest in the control theory community. The
reasons for this are the development of theories of nonlinear geometric
control and adaptive control, the low cost of high-performance digital
control hardware, and the increase of demanding applications for electric
motors. One such application is the actuation of direct-drive robots
where high-torque and low torque-ripple (high linearity) are required.
The application which motivated this work is the actuation of a cylindri-
cal coordinate robot for silicon wafer transfer in a vacuum environment.
In this case, torque-ripple must be eliminated to prevent excitation of
structural vibrations and to reduce the risk of damage to wafers.

Torque-ripple in electric motors can be reduced either by design or
by control. The desirable detent torque of step motors (which provides
passive braking in the absence of power) is also reduced when a step
motor is designed for small torque-ripple. Hence the reduction of
torque-ripple through control when a step motor is actively powered is
an attractive option leading to better overall performance. Interest in
torque-ripple reduction in the control community is fairly recent. Le-Huy
and Perrct [1] make torque-ripple comparisons for brushless DC motor
drives for two and three stator phases and several commutation
waveforms. In Nagase et al [2] velocity-ripple is filtered through a
band-pass filter and fed back to the current amplitude control loop to
avoid structural resonances. To also address torque-ripple due to
geometric imperfection, Murai et al (3] considered two types of non-
sinusoidal flux distributions and proposed two heuristic switching stra-
tegy for torque-ripple reduction. In this paper, we initialize the adaptive
controller with a sinusoidal commutation waveform and then proceed
with the adaptation. This is the first systematic approach to torque-ripple
reduction via adaptive control.

Globally linearizing control is another very promising approach to
torque-ripple reduction and was first applied to variable reluctance
motors by Taylor er al [4]. This methodology has the potential (in

theory) to completely eliminate torque-ripple by introducing static

nonlinear compensation in the commutation waveforms. This compensa-
tion depends on shaft angle and winding current. The results of Taylor’s
work prove the value of the linearization approach and encourages
further research. Other work in this area is by Hemati and Leu [5] who
study nonadaptive linearization of DC brushless motors and take satura-
tion into account. However, the adaptive nonlinear motor control is new
and includes this work and that of Marino et al [6) to appear, where
adaptive partial linearization of the nonlinear current-flux interaction in
induction motors is studied.

In addition to the previous work on motor control, recent nonlinear
adaptive control theory is background for this paper. Sastry and Isidori
[7] present a general adaptive control scheme for linearizable of systems
with Lipschitz nonlinearities. This approach achieves convergence of
tracking error. By introducing a matching condition Marino et al (8]
succeed in eliminating the Lipschitz condition on the nonlinearity. With
the same matching condition, or extended matching condition respec-
tively, Taylor er al [9] and Kanellakopoulos et al {10] consider adaptive
regulation of nonlinear systems and establish robustness to unmodeled
stable dynamics. Pomet and Praley [11] work outside the framework of
linearizable systems and have nonlinear adaptive control resulis for a
class of stabilizable nonlinear systems.

The contributions of this paper to nonlinear adaptive control theory
are the following. (1) Conditions on exogenous signals for persistency of
excitation (PE) are established in the step motor control problem. @)
General techniques are devised for showing robustness of nonlinear
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adaptive systems to state and parameter dependent modeling error. (3)
Parameter convergence in this nonlinear adaptive control scheme is
analyzed using generalized harmonic analysis. Looking toward future
applications, the adaptive controller presented here is relatively simple
with only two adaptation parameters for each harmonic of the torque-
ripple frequency to be cancelled.

. The remainder of this paper is organized as follows. Section 2
gives a brief mathematical model of the motor dynamics which shows
the source and structure of torque-ripple. In section 3, we first derive an
adaptive control law for torque-ripple cancellation, then we establish a
condition on exogenous signals to guarantee persistency of excitation of
the regressor, and hence the exponential stability of the ideal system.
Section 4 treats the actual system as a perturbed system by a disturbance
term which is both state and parameter dependent, and establishes robust
stability. Section 5 establishes the convergence of parameter error to a
small neighborhood of zero at sufficiently slow adaptation. In the last
section, some experimental results are presented which demonstrate a
32db reduction of torque-ripple at the pole frequency.

2. Modeling of Permanent Magnet Step Motor

A full model of a motor would consist of the electrical dynamics
of the stator coils together with the shaft mechanical dynamics. How-
ever, the electric response is much faster than the mechanical response
which allows us to consider the mechanical dynamics only. This approx-
imation is further justified by the use of current amplifiers and the
interest in low speed direct-drive applications. Additional assumptions
u;ed here include linear magnetic circuit and symmetry between the two
phases.

With these assumptions, we can describe the mechanical com-
ponent of the motor dynamics by the following equation

do

J == +T=T,, X
— tT1=Tn @.1)

where J is moment of inertia, ® = § is angular velocity, 7; load torque
and friction and T,, is the induced magnetic torque. With linear mag-
netic materials, the coenergy, W', and energy, W, in the magnetic field
are equal and can be written as:

W= L, @2
where i = (i,, i, if)'. Here i, and i, are the winding currents in phase
a and phase b respectively, and i, = i is a fictitious rotor current pro-

vided by the permanent magnet. The inductance L in equation (2.2) is of
the following form
Laa Lab Laf
L= |Ly Ly Ly
Ly Ly Ly
Then the induced magnetic torque T, is the derivative of the co-energy
W’ with respect to rotor position:
oW’ 1. oL .
T,=-==i" 2
"~ 2" %'
All the entries of the inductance matrix are periodic functions of rotor
position 6. The basic frequencies of each element can be easily deduced
from the symmetries of the motor and verified experimentally. Denoting
the pole frequency by p, we can express the inductances as
L,, = Lo+ Licos(2p6);

Ly, = Lo — Lycos(2p6);

@3)

4)

Ly = —% + L,sin(2p B); (2.5)
Lgs =Lyo+ jglL,,,, cos(jp 6);
Ly =Lpo+ jzi:lL,,,jsinUp 6);
Lgs =Lgo+ jz::4Lflcos(1‘1; 0);

where the upper limit, n, of the summation depends on the number of
frequency components of the torque-ripple we wish to model and cancel.
Following a standard approach, we first use the so-called d-q transforma-
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tion which transforms from the natural stator frame to a decoupled qua-
drature frame fixed to the rotor. The transformed decoupled and quadra-
ture currents iy and i, are defined by:

| _ [cospe —sinp & ] iy

i, | Lsinp6 cosp® iq
The "decoupled” current iy is so named since it is not related to torque
production. Substituting equation (2.6) and (2.5) into (2.4) yields

(2.6)

n
Tn=—Kig+ K jigig+ iy 3 Koy;8injp 0+K 45c08jp 0
j=l

n n
+i gx,qjsinjp 0+K,;cosp O + ilezdxfjsinjpe @7
= J=

where all the K’s are constant parameters defined in terms of constants
in (2.5). Since i; does dot affect torque production, we set it to zero for
maximum power efficiency. Then, the d—¢ transformation will result in
a dynamic equation with only one input, i, which is to be determined in
the next section. Also, the transformation in equation (2.6) determines i,
and i, resulting in sinusoidal commutation. Substituting equation (2.7)
into (2.1) yields the final dynamics equation for the motor:

. n n
0 = koiy+ iy 3 ks;sinjp6+k ;cosjp© — -3 ¢;sinjp 0 2.8)
j=1 j=4

where kg is the nominal torque constant, and all other k’s and ¢'s are
combinations of the previous coefficients in an obvious way. All those
terms with sines and cosines are present due to geometric imperfection.
Neglecting these and friction yields the ideal motor model. Equation
(2.8) is the model used in deriving our adaptive controller for step
motor. We make the reasonable assumptions that those non-ideal terms
are bounded and that the x;ominal torque constant dominates the torque

constant variations, i.e., | Y, k;sinjp + k ;cosjp61 < kg .
j=1

3. Adaptive Control Laws and Basic Exponential Stability

In this section, we first derive an adaptive control scheme for
torque-ripple cancellation using a Lyapunov approach. The ideal motor
model is then used to establish a basic exponential stability result which
is augmented in section 4. This result is obtained by taking advantage of
the special regressor structure yielding conditions on exogenous signals
to guarantee persistency of excitation.

Although the motor equation of (2.8) can be written in the form
0 =f(8) + g(©)i,,

with g(0) and £ (6) bounded and periodic in 8, we do not parametrize f
and g separately as is common in the nonlinear adaptive control litera-
ture. Instead, we isolate the "ideal motor part” in (2.8) and denote those
non-ideal torque-ripple terms by ¢(6). Hence, we rewrite (2.8) as

8= ki, +q(), G.D

where, in terms of f and g, ¢(0) = (g(0) — ko)ig+ f(6) and k, is the
d.c. component of g.

Our goal is to achieve smooth motion by cancelling the term ¢ ().
The idea behind our control law is extremely simple. In order to cancel
q(6), we intentionally add some ripple to the input current to cancel the
torque-ripple. Since the actual torque-ripple is taken as unknown, we
choose a set of shape functions (which will become the regressor vector)
and adaptively tune the coefficients. Then we need to solve two prob-
lems: design an parameter update law to ensure the asymptotic cancella-
tion of ¢(6), and design a tracking controller which will ensure good
performance during and after adaptation.

To implement this idea, we first define a regressor vector

w' = (1, sinp 0, cosp®, sin2p®, - - - , cosnp®), 32)
a parameter vector, which is to be tuned adaptively,
P'= (/?, E,]: Eh k—.rZY T I—‘;n)'
and let
. 1 t5
i, =— (v —-w'P), 3.3)
q kO

where ~w'P is the ripple added to the current, and v is the new control
input. Substituting equation (3.3), equation (3.1) becomes

B=v +q®) - w'P. (3.4)
Next, we need to design a tracking controller to ensure good per-

formance during and after adaptation. Let 6,, 8, and 6, be a bounded
desired trajectory. We can choose a PD control

v =0, +ky(By — 8) + k,(6, — 0) 335)

with k, k; >0 to ensure exponential tracking in the ideal case where
8 = v. Substituting (3.5) into (3.4) yields the error dynamics

€ +kyé +hke +q@® -wP=0, (3.6)
where ¢ = 0, — 6 is the output error. Observe that in the absence of

q(0) —w'P, e - 0 exponentially. Setting g(6) =0 gives the error

dynamics of the ideal motor with parameter adaptation

€ +hkyé + ke +w'P =0 X))

Finally, we design the parameter update law using a Lyapunov
approach assuming ¢(8) = 0. Choose a Lyapunov function candidate

V = (¢ +koe) + kge? + P'T'P, (3.8

where T" is a symmetric positive definite adaptation gain matrix ( typi-

cally diagonal or simply y /; ¥ > 0), and k,, and kg to be specified later.

The derivative of V along solutions of equation (3.91) is

V = -2ky ~ ko) 6% = 2kgkye? + 2kp + k3 — kokg — k) eé
+2P' (TP + (¢ + kye)w).

Choosing
kg =k, + koky — k2 (3.9
and the adaptation law
P =~ + kge)Tw (3.10)
leads to
V =20k ~ ko) € ~ 2k, e (3.11)
which will be negative semi-definite if k,, satisfies
ky >ky>0. (3.12)

) Remark 1: We will call equation (3.7) together with (3.10) the
ideal system, and equation (3.6) together with (3.10) the perturbed sys-
tem.

Remark 2; If ¢(0) is in the range of w’ (a sufficient condition for
this is that i, is constant and f and g have finite number of spectral
lines), Jthen 33.6),k will also be of the form (3.7) with P replaced by
P — P where P" contains the Fourier coefficients of q(9).

Remark 3: The way we proceed from here is as follows. We first
establish the exponential stability of the ideal system. Next we use a
robustness analysis to establish the boundedness of all the internal sig-
nals in the perturbed system in section 4. Once we have the bounded-
ness, we can define the desired parameter and study the parameter con-
vergence of the perturbed system in section 5.

Lemma 3.1: In the ideal system described by (3.7) and (3.10)

i) the zero solution is globally stable in the sense of Lyapunov,

ii) w'P is bounded,

iij)e andé » O ast — oo.

Proof: Choose positive definite V as defined by equations (3.9), (3.8)
and (3.12). By (3.11), its derivative along the solution of (3.7) and
(3.10) satisfies

d
—V <0 .
& (3.13)

This implies i).
Due to the positivity of V, (3.13) immediately yields
ViOyzv@)=o.
Therefore, (3.8) => ¢,¢,P e L™,
Since [lw ()l < II(1, 1, ..., ll, w'P e L™. Thus, ii) holds.
With these, (3.7) => ¢ e L. Thus,
%e, }d?é € L™ and e, é are uniformly continuous. (3.14)

On the other hand, from equation (3.11), we have
T T

2k~ km)t[ézdz + 2k ok, Jezdt =V(©) - V(@) < V).

Hence, ¢, é € L% This and (3.14) => iii). []

Our next goal is to establish exponential stability of the ideal sys-
tem (3.7) and (3.10). To do this, we first set up a condition on the exo-
genous signals to guarantee that the motor will have a minimum speed
which, in turn, ensures the PE condition of the regressor.

Lemma 3.2: Given ®, >0, there exist T >0, 00y, Oz, @y, with
Oy 2 Wy >0 and Wy 20, >0 such that
Oupr 20, 2 0y, YVt => @y 262 0, Wt 2T if w'P is bounded.
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Proof: In equation (3.7), consider w'P as the input and ¢ as the output.
Then, the corresponding transfer function is given by

5
H(s)= .
© 524 kys + ky

Since H is exponentially stable, for given g >0, there exists T > 0
such that the contribution of initial conditions t0 e will be less than ;
after T. Let g, be the bound on Iw'P |, then ¢ 2T

16-0,1 = le ) < |H|log +&- (3.15)
For given o,, > 0, choose
Wy = H € + & + Oy >0 (3.16)
any Qgy 2 ®y, and
Oy = 1H |l + & + Ogpr- 3.17)

Then, from equation (3.15)

g 2020y, Yt =>ay2020, Vi2T O
Lemma 3.3: If @y 2620, >0forz 2T thenw isPE ¢ 2 T.
Proof: We must establish the existence of o, § > 0 and T such that

t+Tg

al< | wwidt<Bl
t

. Since 8 > ®,,, fort 2 T we have

Choose Tg = 2z
P Op
1+Tg

o +TY-0()= [ 6dr 20, T0=%_
1

t+ Ty 8@ + Ty
J ww' dt = ! ww! L~ 40
! ) 6
Since 8 < m,,, we have
9(1)+-2—n
?
j ww'dd  (3.18)
a(t)

+Tg 8(t+Tp)

J'ww‘dtz—l— ww‘dGZ—l—
i Oy t) Oy

where the last inequality follows from the fact that ww’ 20 and that
0 +Tg) 2 (1) + ==, In substituting w from equation (3.2) into
(3.18), we obtain

my sinp® .. cosnp 6
7o 1 ° | sinp 0 sir?[;) 8 .. sinpBcosnp O
f ww!dt>2—— ‘[ cosp® sinp OcospO .. . de
[ Wy . . “ .
cosnp © cos?np ©
oy 0
p
o L 0
=L P 2 Iopaa-
oy |~ - - P®
0 0 z
14

Similarly we can show that
t+T,

2n O
tgr< =2 [—11 541
‘!.WW pwmrwm] 2n+1

wis PE on [T, e0). []

We are now ready to present the main result of this section.
Theorem 3.1: Consider the system described by (3.7) and (3.}0)L there
exist gy = Wgn > O such that @uy = 8y 2 @y, Mt => ¢,¢,P 50
exponentially with convergence rate vk + O (Y’) with some &k >0 as
t o 0.

Proof: Let € = ¢ + kqe, and for simplicity, I' = y /5, then our parameter
update law becomes

P =—ywe.
Considering w' P as an input in (3.7) and solving for €, we can obtain
e=H,w'P),
where
S +kqy
H,(s)= (3.20)

s2+hds +k;.'

For k,, satisfying (3.13), we have

Kok, + (ky—k )0
ky — 0 + O%F
and so H, is strictly positive real (SPR) by [12]. Using standard results

[13] on exponential stability of adaptive systems, theorem 3.1 will be
proved if w is PE.

~ To show this, fix a minimum speed ®,, >0 . Then, we can choose
84, according to equation (3.16) and Wy > 04,. By Lemma 3.2, there
exist T and @y as in (3.17) such that @y 2 8 = W4y >0 Y=
Wy 2620, 2T. This, by Lemma 3.3, implies that w is PE
Yt > T and the proof is completed. []

Re(H, (j o)) = >0 YoeR  (321)

4. Robustness to Modeling errors and Disturbances

In last section, we established the exponential stability of the ideal
system described by (3.7) with parameter update law (3.10). Now the
stability of the perturbed system (3.6) with the same update law can be
considered as a robustness problem. By a result by Vidyasagar and
Vannelli [14], an exponentially stable system has a finite input-output
gain which is, roughly speaking, inversely proportional to the conver-
gence rate. We can consider the perturbation as a block connected in
parallel to the ideal system as in the small gain theorem [15]. If the
product of the gain of the disturbance and that of the ideal system is less
than one, stability of the perturbed system is guaranteed.

Unfortunately an extra complication arises in slow adaptation.
Since, by theorem 3.1, the convergence rate of our ideal system is
Yk + O (), the input-output gain of our ideal system is almost inversely
proportional to y. Hence, if y becomes small, the system gain becomes
large, eventually causing the violation of the small gain theorem condi-
tion for a fixed form of disturbance term.

However, after a close examination of the structure of the adaptive
system, we find out that this may not be always the case. This is due to
the fact that we actually have two subsystems in the adaptive system: the
fast error system and the slow parameter system. If the disturbances
enter only the error system, the amount of disturbance that can be
tolerated is roughly independent of the adaptation gain in slow adapta-
tion. This will be made more precise by the following result.

Theorem 4.1: Consider the following linear adaptive system with non-
linear regressor and disturbance

i=Ar +b +w'P) @.1)
P =—pc'x @2
wu=H,x,P)+r “4.3)

where A, b, ¢ are constant matrices and H, is a nonlinear operator.
Suppose that:

i) H,(s)=c'(sl —A)"'b is SPR;

i) w is PE;

jii) H, has bounded gain, that is, =] K,, K, such that

1, G, POIL S K lixll + kg 1PY. 4.4

Under these conditions, if

m. m

_ me
i IIWI||ICW‘I||IH¢II)K,+—"-IIWIlllHeHKp<1 4.5
PF PF

=(llefl+
Px

where p,, pp, M, and mp are defined in the proof, then r bounded =>
x,u and P are bounded.

Proof: Since H, is SPR, A, b, ¢ satisfy the positive real lemma [131.
Choose V = x'Px where P >0 is as in the positive real lemma. Then
its derivative along the soltution of (4.1) is

%v = x'(A'P + PA)X + 2x'PbW'P + u)
=x!(=2p,] — QQ")x +2x'c(W'P +u)

< -2p, Ikl + 2 x|l e W' P + w)l
<Py, 2
sP)  ohp)

where p, is strictly positive, and 5(P) and o(P) are the maximum and
minimum singular values of P respectively.

Let v = V2 Then, we immediately have
_4_ < - _.p_". + T 1
a*(P)

VEcw' P +ull,

v< llew' P + ull,

dt 3(P)

which yields
WOl < vO) + i—qyﬁ’l o' P + wldr.

Px o”(P)
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Since [lx|| < ,h‘ Iv1l, we have
g’(P)
lIxlf < 2 lle il Neel + i3 llewll Pl + By (4.6)
3 Px
where
5P 1
m, =22 B =y @
Now using (4.1), (4.2) can be rewritten as
P = —ywH, (w'P) - ywH, (u). @7
Since H, is SPR, and w is PE,
P = —ywH,w'P) “.38)

is exponentially stable with convergence rate vk + O (y). By the con-
verse Lyapunov theorem, there exists a Lyapunov function V (¢, P) such
that

IPIE2 V@, Py 2 ey IPI, @9)
-%V(t, P) | gy < —0p P12
9 _ —
—=V (@, Pl < a3 1P|,
Il 7 o3
for some positive oy, i = 1, 2, 3. Since the choice of Lyapunov func-

tion is not unique, we assume that with the above choice, o, will reflect
the convergence rate of (4.8). That is, o,=yk + 0(*{2). Therefore, we
can choose pp = (k — €) for some small € such that

Wp Sk +0WP) =0y
for small y. Differentiating V' along the solutions of (4.7) leads to

d,. 5 do. & E] 5
SV@. Py lamy = ZVe P e - 357 & PYmH. (),

< -0, PP + og 1P IywH, )l
<2105 IPI? + o Pl IlywH, ()]

— Q
<25V, P+ —-vE Iy, @)l

0y
setting v £ v yields
Ly < ppv + Y il I, I el
dt L4 20t ¢
1

and hence

o
0V <v(0) + === ol I, I Jull
Pr 20.*

Using (4.9) and the definition of v, we obtain

- mg
Pl < — lwll IH N llull + B 4.10)
Pr
. A O a1 I - .
with mp = o and Bp = —l;v(O). Substituting this into (4.6) gives
1

0y
m mp m

Ikl S ==l tell + —=llcw | [wll I1H D! 1ull + —ZBp + By (411)
Px P Px

Furthermore, from (4.3) and (4.4), we have
lhell < lirll + WH, e, PO < Nirll + K k]l + K5 PNl (4.12)

Call the right hand side of (4.5) ¥;. Substituting (4.10) and (4.11) into
(4.12) results in

m.
llt < vy el + liFll + KpBp + Ky By + p_szBP
x

Since v; <1, 1—9;>0. Hence from the above inequality, if r is
bounded, we immediately have # bounded and the bound is

Mell S (=) (Wl + KpBp + KB, + %K, Br). (413)

Denoting the right hand side of (4.13) by v, and substituting (4.13) into
(4.10) and (4.11) yields

m. mg m
flell < —=Cllell + —f w11 lew! I WA DY + == llewl| By + By
Px Pp Px

— mF

IPI < — Iwl IH )l v2 + Bp-

Pp

This completes the proof. []

Theorem 4.2: Consider the error dynamics (3.6) with parameter update

law (3.10), If @y 26> ,, then there exists € >0 such that

llg ®) = koll

—_ <t
ko

system.

Proof: Equation (3.6) can be rewritten in the form of (4.1) with

x=( ¢) A= [_21, —llcd ]’ =0 1, =@,

=% boundedness of internal signals in the perturbed

and
u=q®=(g@®; +0)
= %(éd +kié +kye +w'P)+ £(0)
0

09—k 0)— ko
g(©) °(kp k")x+g(3¢ 0P
0

8@ —ko..

= —, 9) +
%o 4 + f(0) o
Hence, u is of the form of equation (4.3) with

F4 80 -k _k"'e'd +£(8).
ko

By the assumptions on f, g, and 8, r is bounded, and so are K, and
K defined as follows

llg 8 — ol
=l kI
0
_ Mg (®) = koll
ko
Hence, u satisfies condition iii) in Theorem 4.1. The SPR condition is
met is due to (3.21) in last section. Also, Lemma 3.3 and the condition

on @ in this theorem ensures that the PE conditions will be satisfied.
Thus, Theorem 4.1 applies.
lig (8) — kyll

Note that both X, and K have the common factor

K;

Ky fwil.

. Substi-

0
tuting them into (4.5) and taking out the common factor yield

0) -k F
be® -kl el + = Il el 1) 1G5, Ko
x P

ko
ms
+ =l Wl ) < 1.
P
Defining
* X m‘
€2 L ZE el + =2 Wil lew Il IE0) Ik, k)l
Px Pr

e
A AN
P

leads to

6) -k
llg ( i ol <& = (4.5) = stability. 0

0
Note that in the above theorem we assumed the condition on 8 in
lemma 3.3 directly, whereas in theorem 3.1 a condition on exogenous
signals is assumed. The reason is that lemma 3.2 cannot be used directly
due to the presence of the term ¢. But with the theorem in the above,
we can restate lemma 3.2 although the bounds @, and 0y are now
different. This implies that the PE condition can still be established with
conditions on exogenous signals.

There are two basic ideas in the proof. First, in a small initial
interval everything is bounded and we can choose the reference signal to
accelerate the motor to a minimum speed. Second, once the motor is
spinning, the regressor is PE, the parameter vector will be bounded and
we can still choose the reference to maintain the minimum speed.
Therefore, the proof parallels that of lemma 3.2 except that now _we
should have € =max { &, €, )}, where g, is the bound on w'P -
q(6) during an initial interval, and ¢, that by assuming theorem 4.2.

5. Parameter Convergence in Slow Adaptation

In our experiment we observed that the residual torque ripple is
very small with slow adaptation. This indicates the convergence of
parameter errors to a small neighborhood of zero. Motivated by this
observation, we provide a mathematical treatment of parameter conver-
gence in slow adaptation.
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Lemma 5.1: Let
t+T

1
0@, )= { w(t) Hw')(® dT,

where w: R, = R", and H(s) is proper rational. If H is SPR, w is

PE, stationary and bounded, then there exists 7~ such that for T > T,
the solution of

x(t) = -0, Tx();

converges 1o zero exponentially Yxge R".

The proof uses generalized harmonic analysis and is omitted here
due to space limitation. The proof of this and the following corollary can
be found in [16].

Corollary 5.1: There exists T* such,  that YT >T,
o, T)+ Q'(t, T) is positive definite. In fact, T~ can be chosen such
that

x(0) =xp

0, T)+0'(¢. T)2 221 >0. G.1)
2T,

Now if we re-examine the proof of Theorem 4.1, we notice that
the bound on P is actually dependent on the correlation between the
regressor and the disturbance term. Inwitively, the updating of the
parameters acts to reduce the correlation until the filtered residual error
is uncorrelated to the regressor. This motivates the following definition
of the desired parameter.

Suppose the following two limits exist

T
r2 lim < !wHe @®@)) dr, (52)
T —o0 T
A 1 B
A 5. 1 i
e TIT:O - le,(w ) dr. (5.3)

By corollary 5.1, Q(¢t, T) + Q(t, T)' is positive definite when w is PE.
Since Q is the limit of Q(z, T), its symmetric part is also positive.
Hence, Q is non-singular. Then, we define the desired parameter as

P e 0 (5.4)
Since H, is linear and P" is constant, we immediately have
T
tim % :[ wH,(q(®) + w'P") dt =0. (5.5)
T =00

Note that ¢ (8) — w!'P" is the ideal (or desired) residual torque with the
property that when filtered by H, it is uncorrelated with w. In words,
the above equation says that the desired parameter is such that the corre-
lation between the regressor and the filtered residual torque-ripple is
asymptotically eliminated. Hence, if we can show that P converges to a
neighborhood of P”, we will have good torque-ripple cancellation.

Theorem 5.1: Let P* be defined as in equation (5.4). Suppose the con-
ditions in Theorem 4.2 and Lemma 5.1 are satisfied. If the adaptation is
slow enough (y sufficiently small), P in the perturbed system of (3.7)
and (3.10) will converge to a neighborhood of P°. The radius of the
neighborhood tends to zero as Y — 0.

Proof: Let us denote the parameter error by ¢, that is,
¢=P-P *.
Since P* is constant, ¢ = P From (4.11), we have
6 =—w(é +oe) = =wH, W'P — q(8))
= —ywH,(w'¢ + w'P" - q(8)

= —pwH, ') + YwH, (¢ (6) - w'P").
We first define an average value of ¢ and show that it converges to a
small neighborhood of zero.
By equation (5.5), given & > O, there exists 7" such that T > =

to+T

IlT j w H,(q®) —w'P") dt |S€ Y. (5.6)
fo

Choosing T such that both (5.6) and the condition in corollary 5.1 are
satisfied, we consider the averaged value on an interval of ¢ given by
1+T

u® =7 [ o d.

Then
t+T

ba(8) = 1O +T) = 66 = 7 j d@dt

1+T t+T

=L (_ : 1 —wip*
7] YWH, (W' §)dT + Ty!wH,(q wPYdr.  (5.7)
Using the Swapping Lemma [17]
wH, (w'9) = wH, (") — a () .8

where a(¢) & H, (H,(w")d), H, and H, as in the Swapping Lemma.
1a @1 < IHIl IH ] wil 1ol
< YU 1H Il I P N + cell 2 ya
where ¢ + oe is bounded by theorem 4.2, thus g finite.

Substituting equation (5.8) into equation (5.7) yields
t+T

b= [ 1o w0
t+T t+T

1 ; »
g [@drs Ty [WHGO -wPhit 69)

Fort e [t, t + T], we can define b (1) by
O(0) = ¢g, (1) + b (D).
t+7T

Then b(1) = —yw (e + oe) and I b(t)dt = 0. Hence,
1

(5.10)

(b <iwll fié + cellT & yTb,
for finite . Since ¢,, (¢) is constant relative to T, using equation (5.10),
equation (5.9) becomes
t+T

b @ =11 5 [ WH, V)T 10
1

+T 14T
i g —_ t l _ wip*
+ {va('b) wH, (w")b (D)dT + T*{-!‘sz(q WP )t
1 t+T
=10, THw () + ¥ [ WH(q - w'P" )
t

+T

+ -;- “[ Ya ) = wH, (whb (.

Choosing a simple Lyapunov function V = L, ()0, (2), we have
V==y0hM{0E T)+0'¢.T) ) 0a®

t+T

+20u (3 [ wH@O-wP)d)
ot

+200 (% [ a® - wH Wb @d1)

1
4T,  4Toa + TolwiFIH, 1)
< oy S% e e m ot Te”
<-2y 2T0|I¢av”{ lball = —= P b
where the last inequality is obtained by using equation (5.1), (5.6) and
the bounds of a($) and b(t). It follows that [|9,, ()|l converges to a
neighborhood of zero exponentially with rate 2yoo/2T,. The size of the
neighborhood is proportional to & and v, thus can be made small by
choosing € small ( hence T large ) and y small. Furthermore, since

10D = 194, (8) + b (@)
< 1,1 + 1@ < 16, ()| +YTD,

1¢(t)! will also become small if y is small. Hence, P converges to a
neighborhood of P .

1. Experimental results

The adaptive motor controller defined by (3.5) and (3.10), was suc-
cessfully implemented in our lab for motor speed control (i.e. 8; = con-
stant). The motor used is a 90-pole axial-gap hybrid step motor with sta-
tor and rotor saliency (teeth) and the shaft angle is sensed with an opti-
cal quadrature encoder. The encoder has 5000 lines and therefore gen-
erates 20,000 pulses per revolution. The controller hardware consists of
an IBM/AT, a twelve-bit digital-to-analog board, a quadrature counter
interface, and a pulse-width modulated current amplifier. The computing
speed of the IBM/AT allowed a 2ms sample time and the capability of
adapting three parameters corresponding to the *“DC torque-ripple’” and
a single torque-ripple harmonic of the pole frequency.

For purposes of comparison the torque ripple spectrum of the
motor was measured without adaptation and is shown in Figure 1. The
commutation waveforms were the ‘‘ideal’’ sinusoidal signals, but torque
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Figure 1. Acceleration-Ripple Spectrum with Sinusoidal Commuta-
tion and No Adaptation.

ripple is clearly seen at the pole frequency and its harmonics. This spec-
trum was produced with the following experimental procedure: First, a
constant current i, was applied to the motor with a low-gain velocity
feedback loop to keep the motor running at roughly constant speed.
Once a near steady-state motion was attained the motor current was, for
our purposes, constant. Next, a series of shaft-angle measurements was
stored at the sample rate. This series was interpolated and resampled
uniformly in the spatial shaft—angle domain. Finally, 2048 samples
corresponding to 2 revolutions of the motor were used to generate a
(noisy) acceleration estimate which was FFT’d to generate Figure 1.

In a preliminary experiment, the adaptive control law was imple-
mented with a low-gain PD controller to track a constant speed trajec-
tory. The parameters are initialized to be zero, corresponding to
sinusoidal commutation. After steady-state was attained, the same pro-
cedure was followed to generate the new torque ripple spectrum shown
in Figure 2. Observe the dramatic reduction (32db) in the first torque-
ripple harmonic. The reduction in the third harmonic cannot be
explained by the adaptation since this harmonic was not adaptively can-
celled. It appears that there is some unmodeled nonlinearities which cou-
ple the first and third harmonics. Finally, the initial adaptation process in
time domain is illustrated by Figure 3. Note how the velocity ripple was
gradually suppressed.
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Figure 2. Acceleration-Ripple Spectrum after Adaptation at 2.3
Radians/Second.
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Figure 3. Time-Domain Plot of Velocity Showing Effect of Adapta-
tion on Velocity Ripple.

7. Conclusion

In this paper we described a nonlinear adaptive control scheme
which provides dramatic reduction in step-motor torque-ripple at fre-
quencies specified by the control system designer. The scheme used is
similar to that proposed by Sastry and Isidori [7] except for a nonlinear
term in the state and parameter error that appears in the error dynamics.
This term motivated our study of robustness to such nonlinear perturba-
tions and we were able to show parameter convergence with this term
present. This nonlinear term could have been eliminated had we
parameterized torque-ripple in the two periodic function f(0) and g(8)
separately, however persistency of excitation would have been lost.

The parameter convergence result of section 5 is illuminating
though somewhat weak since it requires stationarity of signals internal to
the nonlinear system and we do not yet have conditions on exogenous
signals which guarantee this property. Ergodic theorems for nonlinear
systems which would provide such conditions are not yet available but
this is an active research area (see e.g. [18] and the references therein).
Taking a more macroscopic perspective, it is intriguing to see that the
apparently mundane problem of motor control leads us to fundamental
mathematical questions.

Finally, the potential application of sophisticated control algorithms
such as this one to motor control can not be underestimated. The rapid
growth in microelectronics technology makes the use of new algorithms
inevitable in the control of motors of all sizes.
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