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Abstract

An iterative digital tuning algorithm which will be presented in
[1] has been reviewed and simulated extensively, and its functional-
ity has been investigated experimentally. This tuning algorithm is
applicable to digitally programmable continuous-time filters. The
algorithm estimates filter characterization parameters based upon a
system identification method described in [2], and calculates control
parameters for tuning adjustments. Extensive simulations show this
algorithm converges to a solution within 10 iterations in most cases,
even in the presence of various measurement errors, parameter varia-
tions and over-ordering effects. This algorithm is very insensitive to
initial parameter variations, as good results are obtained even with
30% parameter error. This algorithm also attains good speed and
accuracy in the presence of 5% measurement errors and high over-
ordering effects. Experimental results with a second—order monolithic
programmable OTA-C integrated circuit filter verify the robustness
of the algorithm in tuning continuous-time filters.

1. Introduction

It has been considered that an iterative digital tuning algorithm of-
fers improvements in speed and accuracy over other approaches using
digital optimization techniques and conventional analog master-slave
techniques [1]. Each iteration of the digital tuning consists of three
phases: measurement, system identification and adjustment. Mea-
surements are made by using a low speed analog to digital converter
which converts signals grabbed by a high speed sample and hold cir-
cuit. To identify a deterministic linear time-invariant system in a ro-
bust way, an iterative complex least squares method [2] is used for the
frequency-domain system identification. This identification method is
robust in the presence of over-ordering effects and high measurement
errors, so it makes the model-based tuning algorithm applicable to
over—ordered systems.

The basic idea of this tuning algorithm is to estimate the model
parameters of the OTAs (Operational Transconductance Amplifiers)
of the digitally programmable continuous-time filter structure [3],[4]
based on the reliable results of the system identification. Then the
contol voltages and mirror gains of the OTAs are adjusted in such
a way as to minimize the errors between the identified system and
the desired system response. In this paper, we will focus on the per-
formance of this tuning algorithm using the iterative complex least
squares system identification method.

2. Digitally Programmable Continuous-Time
Filter Architecture

The digitally programmable continuous-time filter architecture
[3],(4] is shown in Fig. 1. This structure was selected specifically as
a test vehicle for investigating the performance of the digital tuning
algorithm. The structure of each biquadratic block is shown in Fig. 2.
The ideal transfer function of the block is given by
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where the B variables can be 0 or 1 depending upon the switch set-
tings. Thus, the ideal transfer function of the system identification
model for each biquad is given by
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which has only 4 degrees of freedom, instead of 5 in ordinary second or-
der rational transfer functions. The coefficients are given respectively
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From (3)-(6), it follows that we can get independent or sequen-
tial adjustment of the system characterization parameters. This ideal
model for the system is not exact because the actual physical sys-
tem will have over-ordering problems due to the parasitic poles of the
OTAs as well as other layout parasitics. However, the iterative com-
plex least squares algorithm [2] makes it possible to use a low order
model for identifying the higher order physical system. Thus, we can
maintain near independence of adjustment of system characterization
parameters even in the presence of significant parasitics.

3. Tuning Algorithm

In this section we briefly review the tuning algorithm, of which
more details appear in [1]. The control mechanism relating the g of
the OTAs to their control voltage V. and current mirror gain M, is
characterized by the linear equations.

W

mi(Vei, M;) = MiK{T[Vci — Vi — Vri] )

where K,' and V7; are the process dependent transconductance and
threshold voltage, M; is the controllable output stage mirror gain,
and W;, and L; are the width and length of the input differential pair
devices. This can also be expressed as,

Imi(Veis M) = Mimi (K[, Wi, L) Ve + ni(Virs))] (8)

We consider V, and M as the control parameters for tuning the filters.
V, will be used for smaller (fine) adjustment while the mirror gain M
will be used for more significant (coarse) adjustment.

The tuning algorithm based on the identification of the actual sys-
tem consists of the following steps.
(1) Set the initial process parameters m.
their design (nominal) values.
(2) Obtain the transfer function coefficients (ago), a((]D), bﬁo), and b(()o) of
each biquad) of the system ID model from identification of the physi-
cal filter.
(3) Make an estimate of the system process parameters m; and n; for
i=1,2,3,4,5.
(4) Calculate the control voltages Vc(,-l) and M.»(l) with the updated
estimates for control parameters and adjust the transfer function co-
efficients to their design values.
(5) Obtain the coefficients (agl), at(,l),bﬁl), and bl()l)) from identification
of the physical filter.
(6) Make improved estimates of the system process parameters m; and
n; based upon the identifications at stage (2) and (5).
(7) Calculate the control voltages VC(Z-Z) and M,-(z) and adjust the trans-
fer function coefficients.
(8) Repeat the step (5), (6), and (7) until a tuned state is obtained.
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If the system model is ideal, this algorithm will converge after two
iterations. In reality each OTA has parasitic poles and zeros, so actual
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systems have higher order (over-ordered) transfer functions. Thus,
more iterations are needed for convergence. The parasitic poles and
zeros can be approximated by a single pole (w,) giving the following
expression for the transconductance of each OTA:

9m(8) = gmol ) 9

S
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then the transfer function of an actual biquad can be modelled for the
tuning simulation by
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where T = 1/wp, Bip = 0, and Bjp = By, = 1. This over—ordering

makes it hard to identify the system and thus hard
so-called Q-

problem not only
to tune, but also leads to an undesirable phenomenon,
enhancement.

For filters with medium to high Q the actual enhanced Q factor
(@) can be characterized by

., @
&= 1— 2w, TQ (1)
where Q is the design value. If the parasitic pole exists at 10 times
higher frequency than the resonant frequency, i.e. w,r = 0.1, and
the filter is designed with Q equal to or greater than 5, then the
result is an oscillatory circuit. Therefore, predistortion techniques
should be adapted to implement filters with high Q. At the initial
implementation of a filter we use a predistorted value instead of the
design value in order to prevent the filter from oscillation:

4. Simulation Results

In the tuning simulation, measurement errors (mn%), parameter
variations (p%), and over—ordering factors (w,/wp) were included. The
manufacturing process parameter variations were simulated via Monte
Carlo techniques with random values of +p%. Frequency domain ad-
ditive measurement errors of +mn% with uniform distribution were
fed to the system identification algorithm. For every simulation, 50
measured noisy data obtained at 50 equally spaced frequency points
were used for the system identification. The iterative complex least
squares method was performed with the iteration limit set to 10. The
iteration limit for tuning was also set to 10, and the filter is considered
to be tuned if all the control voltages (fine adjustments) are within 9
bit accuracy with respect to the previous control voltages.

In order to evaluate the effect of various over-ordering problems on
this tuning algorithm, a 6th—order elliptic lowpass filter was chosen
for tuning which has a normalized cutoff frequency at 1 and 0.5 dB
passband ripple. This filter consists of three second—order LowPass
Notch (LPN) filters and its transfer function is given by
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The transfer function coefficients of the LPN filters and their quality
factors and resonant frequencies are given in Table 1. Three LPN bi-
quads were tuned separately to tune the 6th-order elliptic filter. The
tuning results with various over-ordering factor, 1% measurement er-
ror and 5% parameter variation and various over—ordering factors are
shown in Table 2, Fig. 3 and Fig. 4. For the third LPN filter, predis-
tortion was performed for every over-ordering case because the filter
has very high design Q of about 56, while for the first LPN filter no
predistortion was performed due to its low Q. From the results it can
be seen that this tuning algorithm converges fast and attains good
results in the presence of over—ordering (up to w,/w, = 0.1) effects.
But, the over-ordering factor w, /wp = 0.2 leads to a relatively big rip-
ple error at the transition region. More iterations might give a better
result.

To evaluate the effect of measurement errors and parameter vari-
ations on this tuning algorithm, a simple second-order lowpass filter
was chosen with the following transfer function:

1

Hiplo) = o7

(13)

Tuning results with various parameter variations, 1% measurement
error and over-ordering factor w,/w, = 0.1 are shown in Table 3,
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and Fig. 5. Even when 30% parameter variations were considered the
tuned filter had a maximum gain (Amaz) Within 0.35% of the desired
maximum gain and a resonant frequency within 0.01% of the desired
frequency. Therefore it can be seen that this algorithm is not sensitive
to the effect of parameter variations.

Tuning results with various measurement errors, 5% parameter vari-
ation and over—ordering factor w,/w, = 0.1 are shown in Table 4 and
Fig. 6. Even in the presence of high measurement errors (up to 5%),
this tuning algorithm attained good accuracy and fast convergence.
However, 10% measurement error resulted in a poor tuned state. Ac-
tually, in this case, the tuning algorithm had not converged but was
stopped by the iteration limit of ten. Actually, in this case, the itera-
tion limit was exceeded. This phenomenon is caused by the fact that
this model-based tuning algorithm heavily depends on the results of
the system identification and the accuracy of the system identification
is a function of the accuracy of measurements.

5. Experimental Results

This tuning algorithm was applied to tune several sample filters.
The desired linear transfer functions were implemented with the dig-
itally programmable monolithic continuous-time filter [3] which has
only 6 bit resolution for the fine control. A workstation HP 9000/300
is used as the tuning host, and all instruments are connected on the
HP-IB and are controlled by the tuning host. Measurements are made
by the HP 54111D digitizing oscilloscope, which has programmable
built-in commands for automatic measurements and has 6 bit single—
shot accuracy and 8 bit accuracy with averaging. Excitation signals
are generated from a HP 3325A programmable function generator.

First, the simple 2nd—order lowpass filter which has a resonant fre-
quency of 500 KHz was implemented and tuned. Gain and phase data
were measured at 50 equally spaced frequency points from dc to 600
KHz for each iteration and used for system identification. Fig. 7 shows
that the tuned filter has a frequency response close to the desired one
while the initially implemented filter has an erroneous frequency re-
sponse. The entire tuning process took 9 iterations. Another tuning
experimental result is shown in Fig. 8. The filter was tuned to a
ond-order desired bandpass filter which has a resonant frequency of
100 KHz, a Q of 10 and a maximum gain of 1. After 7 iterations,
the tuned filter had a resonant frequency of 99.7 KHz, a Q of 9.97
and a maximum gain of 0.995. These data were calculated from the
identified transfer function.

6. Conclusion

In this paper, the performance of the iterative tuning algorithm to
be presented in (1] for digitally programmable monolithic continuous—
time filters has been analyzed and simulated extensively. Simulation
results have showed that the algorithm is insensitive to the parameter
variations and measurement noise unless the measured data are badly
contaminated. This algorithm also attains good speed and accuracy
in the presence of high over-ordering effects. The experimental re-
sults have demonstrated that the tuning algorithm can be successfully
applied to tune filters with high accuracy.
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Table 1 Coefficients of the low-pass notch filter models and their
resonant frequencies and quality factors

LPN1 LPN2 LPN3 || 6th-order Elliptic Filter

No. of | No. of | No. of Passband | 3dB band

w,/wy || iteration | iteration | iteration | ripple (dB) | error (%)
0.01 2 2 2" 0.501 0.30
0.05 5 6 4* 0.634 0.34
0.1 6 4* 4* 0.556 0.32
0.2 7 7* 5* 1.357 0.60
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Fig. 1 Digitally Programmable Analog Filter Architecture[3]

* Predistortion was performed

Table 2 Tuning results of the low-pass notch filters, thus the 6th-
order lowpass elliptic filter with w,/w, over—ordering factors
(mn =1.0%, p = 5.0%)

Parameter No. of | DC Gain | Max. Gain | wpez | Wo
Variations (p) || Iteration | Ao (%) | Amaz (%) | (%) | (%)
1% 7 0.005 0.27 0.13 [ 0.10

5% 9 0.002 0.79 0.44 | 0.80

10% 1 0.232 0.32 0.02 | 0.60

20% 4 0.096 0.10 0.27 | 0.10
30% 6 0.937 0.35 0.72 | 0.01

Table 3 Tuning results of a simple lowpass filter with p% parameter
variations (mn = 1.0%, w,/wp = 0.1)
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Data Ad
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ress

By Ehp By Ebp

Measurement No. of | DC Gain | Max. Gain | wpar | wo
Error (mn) || Iteration | Ao (%) | Amaz (%) | (%) | (%)
0.1% 7 0.186 0.31 0.30 | 0.4
1% 9 0.002 0.79 0.44 | 0.8
5% 7 0.331 1.18 0.30 | 0.4
10% 10° 0.349 5.29 1.68 | 0.8

Fig. 2 Biquadratic Building Block[3]

* Tteration limit was exceeded

Table 4 Tuning results of a simple lowpass filter with mn% measure-
ment errors (p = 5.0%, w,/wp = 0.1)
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Fig. 5 Tuning results of the simple second-order lowpass filter (a) Parameter variations p=1% (b) Parameter variations p=30%
(Over-ordering factor w,/w, = 0.1, and Measurement errors mn=1%)
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Fig. 8 Tuning results of the simple second-order lowpass filter (a) Measurement errors mn=5% (b) Measurement errors mn=10%
(Over-ordering factor w,/w, = 0.1, and Parameter variations p=5%)
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Fig. 7 Experimental tuning result of a simple second-order lowpass
filter: magnitude response measured from the HP 54111D
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ter(Q=10): magnitude response measured from the HP 54111D



