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Abstract

A tuning algorithm applicable to digitally programmable
continuous-time filters is presented. This algorithm is based
upon estimates of filter characterization parameters based
upon the results of a system identification and subsequently
calculated adjustments of the modelled controlling compo-
nents. Simulations show this algorithm converges to a solution
after two iterations in the ideal case and attains good speed and
accuracy even when parasitic effects are included in the system
model. Simulations of the tuning of a 6th-order elliptic low-
pass filter with 0.5dB passband ripple designed to have a nor-
malized cutoff frequency at 1(rad/sec) indicate that 0.501dB
passband ripple and 0.015% accuracy in the 3dB band-edge
can be achieved in the presence of typical parasitics.

1. Introduction

Monolithic continuous-time filters usually suffer from de-
graded performance due to inherent process parameter vari-
ations and the presence of large and uncontrollable parasitic
components. Tuning is essential when high precision filtering
is required.

Conventional approaches to tuning continuous-time filters
have used analog tuning loops associated with the master-slave
techniques [1}-[3] or standard optimization techniques {4],[5].
The performance of circuits based upon master-slave struc-
tures suffer from imprecise matching of desired and parasitic
components between the master and slave circuit. Standard
optimization algorithms have been generally applied to deter-
ministic tuning and thus suffer from parasitics as well as algo-
rithmically induced local minimum convergence problems.

In digitally programmable analog filters, extreme precision
and accuracy can be achieved with good tuning algorithms.
In the context of this paper, digital tuning consists of three
phases: measurement, system identification, and adjustment.
Measurements will be made by using a low speed analog to dig-
ital converter which converts signals grabbed by a high speed
sample and hold circuit. To identify a deterministic linear
time-invariant system in a robust way, we will use frequency-
domain methods in which a number of sinusoidal excitations
are used to obtain least-squares estimates of the transfer func-
tion. An iterative complex least squares method is used for the
frequency-domain system identification.

The central idea of this tuning algorithm is to estimate the
model parameters of the OTAs(Operational Transconductance
Amplifiers) of the digitally programmable continuous-time fil-
ter structure [6],&7] based on the reliable results of the system
identification and then to calculate and adjust the contol volt-
ages for the OTAs in such a way as to minimize the errors
between the identified system and the desired system response.

2. Digitally Programmable Analog
Filter Architecture

The basic digitally programmable continuous-time filter ar-
chitecture [6],[7] we will be using is shown in Fig. 1. This
structure has been selected specifically as a test vehicle for
investigating the performance of digital tuning algorithms.
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The system consists of an analog bus, a digital bus, a local
digital controller, a performance monitor and a number of dig-
itally programmable biquadratic sections. This filter structure
is capable of realizing any of the standard even order filter
functions. The structure of each biquadratic block is shown in
Fig. 2. The ideal transfer function of the block is given by
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where the B variables can be 0 or 1 depending upon the switch
settings. If the transfer function of the system identification
model for each biquad is given by
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which has only 4 degrees of freedom for identification instead
of 5 in ordinary second order rational transfer functions. The
coefficients are given respectively by
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From (3)-(6), it follows that we can get independent or se-
quential adjustment of the system charaterization parameters.
This ideal model for the system is not exact because the ac-
tual physical system will have over-ordering problems due to
the parasitic poles of the OTAs as well as other layout par-
asitics. Actually, it is impossible to obtain the exact model
including all parasitics since we do not know even the order of
the physical system. The iterative complex least squares algo-
rithm which will be addressed in the next section makes it pos-
sible to use a low order model for identifying the higher-order
physical system. Thus, we can maintain near independence of
adjustment of key system charaterization parameters even in
the presence of significant parasitics.

3. Iterative Complex Least Squares
Method

The rudiments of an iterative complex least squares system
identification algorithm are discussed in this section. Addi-
tional details appear in [8]. Consider an analog filter that has
transfer function

ap+ a8 + azs® + azsS + -+ ams™ . N(s)
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T(s) =

Various methods are available for measuring T(juw;), ¢ =
1,2,...,N(N > n+ m+1). With any measurement method,
there will be unavoidable measurement errors. We denote the
results of the measurements by Tar(jw;), ¢ = 1,2..... N. If we
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denote the complex estimation error at the i’th frequency as
e;, then

N(jwi)

D) ®

(9)

ei — Tr(juwi)

mw (Jwi) = D(jwi) Ty (jws)]
An jterative identification algorithm is generated by replac-
ing the denominator of (9) with a previous estimate

eri = [Nk(jwi) = De(jwi)Ta(jwi)]  (20)

1
Dy—1(jws)
Treating Di—1(jw;) as 2 known polynomial gives a set of N lin-
ear complex equations which can be solved by a complex least
squares method [9] to obtain estimates of Ni() and Dg(-). The
coefficients of the initial denominator polynomial Do(jw) can
be set to 1 or other values. The algorithm converges rapidly,
taking less than 5 iterations in repeated simulations. It is also
robust in the presence of over-ordering problems and measure-
ment errors. As an example, a 6th-order elliptic lowpass filter
which was assumed to have a 12th-order transfer function due
to over-ordering was identified with a 6th-order model in the
presence of 1.0% measurement errors and under the assump-
tion that the dominant parasitic poles of the OTAs are located
at 10 times the filter resonant frequency. The identification
of the 12th-order system with a 6th-order model showed very
good results exhibiting a 0.23% error of the passband gain es-
timate [8].

4. Tuning Algorithm

The control mechanism relating the g, of the OTAs to their
control voltage V. and current mirror gain M, is characterized
by the linear equations.

Wi
Gmi(Vei, M) = Mikif[vci -V, — Vi (11)

where K,f and Vr; are the process dependent transconductance
and threshold voltage, M; is the controllable output stage mir-
ror gain, and W;, and L; are the width and length of the input
differential pair devices. This can also be expressed as,

9mi(Veir Mi) = Mymi(K;, Wi, Li)[Vei + ni(Vri)] (12)
We consider V, and M as the control parameters for tuning
the filters. V, will be used for smaller(fine) adjustment while
the mirror gain M will be used for more significant(coarse) ad-
justment. Thus, the transconductance g,,; of i’th OTA of each
biquad can be controlled by changing V.; and M;. The basic
idea of the tuning algorithm is to calculate the control param-
eters V; and M; for adjustments such that the identified g,.;
of each OTA comes close to its design (nominal) value. The
identified ¢,,; of each OTA can be obtained from identified co-
efficients through the relations (3) to (6).

The tuning procedure can be divided into three parts: ini-
tial implementation, first iteration and subsequent iterations.
In the initial implementation part, the initial parameters m;
and n; for i = 1,2,...,5 of each biquad are set to their de-
sign values, and the initial control parameters V,; and M; are
ca%culated. These control parameter values are used for ini-
tial implementaion of the filter. Each iteration consists of four
steps as follows:

1. System identification using the iterative complex least
squares algorithm

2. Estimation of process parameters m; and »; from the
identified transfer function coefficients

. Calculation of control parameters V,; and M; fpom the
estimated m; and n;
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4. Adjustments using the obtained control parameters

The estimation formulas of m; and n; for ¢ = 1,3,4,5 are
summarized in Table 1 and 2 with special conditions By, = 1,
and By, = 0. It is assumed that Cg = C7 = C and gm2 = g3,
so the expressions for my and n, are the same as those for mg
and n3. At each iteration the control voltages can be calculated
by using the equations shown in Table 1. If the control voltage
Vei exceeds a specified range the current mirror gain M; should
be adjusted to keep the control voltage within the controllable
range. In the tables, the followings are should be noticed:

a((,k),agk),bgk), and bgk) : identified transfer function co-
efficients at (k+1)’th iteration

do, G1,bo, and b : design (ideal) transfer function coef-
ficients

Vc(ik) : control voltage of g,,; at k’th iteration
Mi(k) : current mirror gain of gn,; at k’th iteration

0 0) __(0) (0 .
VCE ),M,-( ),mg ),n,( ), and C : design values
pl=k—-land p2=k -2

The following is a detailed procedure to adjust the coefficient

ay of each biquad by this tuning algorithm.

[1] Set the initial control parameter gms and C7(= C) to their

design values. From (11) and (12), the parameters mgo) and
(0)

s

at the first iteration are given by

K Op©

m(50) _ SL(O)S (13)
5

o) = (Ve + V) (14)

where K0, W9, 1, and VY

set the initial current mirror gain Méo) to a proper value so
that it may not exceed the specified range in which the good
linearity of the transconductance is kept. Then, from (3) and

(12), the control voltage Vc(so) at the initial implementation
becomes,
aC
T (15)
BCIVIO
where C and d; are the nominal values.

[2] Obtain the identified coefficient a§°’ from system identifica-
tion of the physical filter.

are the nominal values. Also,

O

Vo -

[3] At the first iteration it will be assumed that ngl) = nf,F).
From (3) and (12),
1
a; = EmsMs(Vcs + ns) (16)
Thus, we may approximate the estimate for ms by
(0)
(1 _ a C
Mg = — oo (17
MOVE + i)
[4] Obtain estimates of V5 and Ms from
MY = M (18)
o _ _aC __ o
Vs’ = mgl)Ms(l) N5 (19)

and test if VC(;) exceeds the specified range. If it does, then
calculate new Vc(;) and Ms(l).

[5] Obtain the identified coefficient agl) from identification of



the actual filter with the updated control voltages and mirror
gains.
[6] To obtain mgz) and n(sz)-, observe from (16) that
1
o = ZmsMP(VE +ns) (20)
1
o) = ZmsM{(VE +ns) (21)

Solving these two equations simultaneously, we obtain the next
estimates of ms and ns.

(oM - ol /m5”)

s v v e
N U Y
MO — MO
[7] Obtain new estimates of V.5 and Ms from
MP = M) (24)
ve = —aC @ (25)

— 5 R
@

and check again Vc(sz), and calculate new VC(: ) and Méz) if nec-
essary.

[8] Test whether the system is tuned and repeat the step [5], (6],
and [7] until a tuned system is obtained.

Actually, the similar procedures for ag, b, and bg are per-
formed simultaneously. If the system model is ideal, this algo-
rithm will converge after two iterations. In reality each OTA
has parasitic poles and zeros which make the actual systems
have over-ordered transfer functions. Thus, more iterations
are needed to get a solution.

5. Simulation Results

In order to evaluate the tuning algorithm, a 6th-order el-
liptic lowpass filter which has a normalized cutoff frequency
at 1(rad/sec) and 0.5dB passband ripple was chosen for tun-
ing. The manufacturing process was simulated via Monte Carlo
techniques with random values. It is assumed that the ca-
pacitors and the transconductors have +5% deviations from
their design values. Errors of the magnitude and phase mea-
surer;ents at each frequency points are assumed to be within
+1.0%.

Initially, an ideal case was simulated using the above condi-
tions. In the initial simulations, parasitics in the OTAs were
neglected. The results are displayed in the normalized fre-
quency range from dc to 2(rad/sec) in Fig. 3. From the results,
it can be seen that this algorithm converges to a solution after
two iterations if the system mode] is ideal.

Fig. 4 shows the results of the tuning algorithm when the
parasitic effects of the OTAs were considered. The OTAs were
assumed to have a parasitic pole at 10 times higher frequency
than the resonance frequency, so the initial actual system had a
12th order transfer function because of the over-ordering prob-
lem due to the parasitic poles. Measurement errors in the sys-
tem identification were modelled at £1.0%. In this case, more
iterations were required for the algorithm to converge. From
many simulations, it was observed that good convergence was
obtained within 10 iterations. The simulation results showed
that the filter tuned by this tuning technique had 0.501dB
passband ripple, 0.015%,accuracy in the cutoff frequency, and
2.83% dc error. This relatively big dc error was caused by the
fact that the biquads of the current digitally programmable
continuous-time filter structure [6],(7) don’t oﬂ%r a gain fac-
tor adjustment. This problem can be solved by changing the
biquadratic structure to have a gain factor adjustment.
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6. Conclusion

In this paper, an iterative tuning algorithm for digitally pro-
grammable continuous-time filters has been proposed. Sim-
ulation results have demonstrated that this algorithm offers
improvements in speed and accuracy over other approaches
using digital optimization techniques. Comparison with con-
ventiona% analog master-slave techniques suggests this method
gﬁ‘ers potential for improvements in accuracy by well over one

ecade.
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Table 1 Expressions for mgl) and ngl) at first iteration and
for Vc(ik) at k’th iteration.
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