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Abstract

The identification of rational polynomial transfer functions
of continuous—time filters is performed in the context of tuning
monolithic continuous—time filters to high precision using a low
cost on-chip digital signal processing and control system. The
original contribution detailed here is a robust s domain sys-
tem identification algorithm which uses (low cost) noisy com-
plex frequency domain measurements (s; = jw;). We use large
over-sampling in frequency (e.g. x 10), while minimizing the
time-domain sampling rate. We introduce an iterative method
which solves a complex least-squares problem at each step. The
algorithm is observed to converge rapidly and is robust in the
presence of parasitic poles and zeroes.

Introduction

Monolithic analog filters typically require only 1% to 10%
of the die area of comparable order and rate digital filters, but
their use has been limited because of large component toler-
ances due to processing, temperature, and aging. We propose
an on-chip digital tuning system, but to achieve low cost and
high accuracy requires that transformation errors from the z
to the s domain be minimal without resorting to high over-
sampling in the time domain. Practical solution of this prob-
lem opens a host of reduced cost and new signal processing
applications.

Previous approaches to tuning analog filters have used non-
linear optimization techniques [1]-[4], which are limited to ~1%
tuning range by local minima capture. On-line Identifica-
tion(ID) time-domain techniques require a large number of
time-domain samples, which are expensive and slow in our sys-
tem. Qur iterative method uses s domain complex data, which
i[s ]related to the iterative least squares method using real data
5.

Problem Motivation

We consider the problem of digitally tuning continuous-time
(analog) active filters to highly accurate design specifications.
Operational Transconductance Amplifiers (OTA) with digital
control of capacitive loading and g,, are configured to cover a
wide tuning range [6]-[8]. Our work is motivated by the fact
that active analog filters are known to require orders of mag-
nitude less die area than comparable digital filters. However,
component tolerances have in the past made them unsuited
for many monolithic IC applications. We implement tuning
by iteratively estimating (system ID) and adjusting the sys-
tem in a quickly converging manner. The accuracy, stability,
and convergence rate of tuning is thus highly dependent on the
accuracy of the system ID algorithm, which must be insensi-
tive to transformation errors and parasitics. To preserve the
advantages of the analog filter, the digital identification and
control must also have a very low cost implementation.
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While many ID methods are possible, our gaal here is to
ID (and to tune) filters quite close to their parasitic poles and
zeroes. For an analog filter with bandwidth of 10M Hz, a rel-
atively modest over-sampling X2 requires an effective 40M H z
sampling rate, which is near the practical limit in inexpensive
technologies. Thus the desire to avoid the x10 over-sampling
typical in the ID of continuous-time systems by the ID of a z
domain counterpart. To avoid the expense of a high speed A/D
converter, which is a major expense of the all digital filter, we
use a periodic excitation source, a narrow aperture sample and
hold, and a low-cost low-speed A/D. Time domain sampling is
thus low cost even at an effective high sampling rate, but data
acquisition is slow, so traditional on-line ID methods are inap-
propriate. Many low cost excitation and measurement systems
are possible, including sinusoids and pseudo random number
generators (PRNG). A binary PRNG can be smoothed by an
untuned passive RC filter designed to operate with large com-
ponent tolerances. The period of the PRNG is chosen to gen-
erate many more harmonics than unknown parameters in the
rational polynomial model. Magnitude and phase estimates at
these frequencies, Tas(jw;), serve as inputs to the system ID
algorithm.

Formulation of Iterative Identification
Algorithm

If the ideal transfer function T'(s) of the system to be iden-
tified is given by

T(s) = ag+ a5 + a2s? + ags® + -+ ams™ _ N(s) )
14+0b154bys2 +b3s34---+bus® ~ D(s)

then, the complex estimation error at the i’th frequency de-
noted by e; becomes

_ N(@w) .
& = D(jw;) - Tm(jwi) (2)
= D—(]l'a;;[N (Jwi) = D(jw)Taa ()] 3)

An iterative algorithm is generated by replacing the denomi-
nator in (3) with a previous estimate of D(:).

ek, ) [Np(jwi) = Di(jwi) Tm(gwi)]  (4)

= Dia(ws

Treating Di—1(-) as a known polynomial gives a set of N linear
complex equations in n + m + 1 unknowns, where n and m
are the number of poles and zeroes respectively. We choose
N > n+ m+ 1 so the equations are overdetermined and can
be solved by a complex least squares method due to Levy [9].
Thus, at k’th iteration, the coefficients in Di(-) and Ni(-) can
be estimated by minimizing the sum of squares of the error
terms, so the performance criterion is given by

N

Te = €fieri (5

i=1
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where # denotes complex conjugate transpose. Let m =
Ch,i, then

eki = Cii[Np(jwi) — Diljwi)Ta(jwi)] (6)
= Ckil(ao + arjwi + ...+ an(jwi)™)
(14 b1jwi + - . + ba(Guwi)") Tar(Jwi)] (M
= —CriTm(jwi) \
—[CribrjwiTa(Gws) + - . - + Cribn(jwi)" Trne (Jwi)
~C,ia0 — Criarjwi — ... — Cyiam(jw*)] (8)
€r1 —Ci1Tu(jun) CrajwiTm(juwn)
€2 —Cr2 Ty (jws) Cr2jw2Tm(jws)
exs | — | —CraTm(jws) | — | CrajwsTam(jws)
exN —Ci NTM(jwn) Cr NiwNTM(jwN)
where,
1
C = -~ 7. N
k1 Dy_1(jun)
1
C = -~ 7 N
k2 Dy_1(jws)
1
C A
k3 Di_1(jws)
1
Gy = ———
kN Di_1(jwn)

For N measured data Th(jw) at wy,ws, . ..,wy, We can get the
above matrix expression at k’th iteration. If a matrix/vector
notation is used, then (9) can be denoted by

e, =b— Ax; (10)
The performance criterion of (5) becomes
N
Jy = Zezyiek,,-
i=1
= efe; (11)
= (b— Ax;)*(b - Axy) (12)

The partial derivatives of Jx with respect to x; can be ex-
pressed

g_iz - aixk[(b — Ax)*(b - Axy)] (13)
= 61}% (b= Axr) (b - Axy)] (14)
= —A*b-Ax;) - AT(b - Axy) (15)
= —(Ab+ATh)+ (A*A + ATA)x;,  (16)

The value of %; minimizing Ji is found by setting the partial
derivatives in (16) equal to zero, giving

% = (A*A+ATA)1(A*b+ ATD) a7)

= (A"A+A*A)'(A*b + A*b) (18)
[Re(A*A)]"![Re(A”D)] (19)

Now, the coefficients of the denominator (b1, bs,...,b,) can be

extracted from X and used for the next iteration.

Simulation Results

In order to evaluate this algorithm a 6th-order elliptic

lowpass filter which has a normalized cutoff frequency at
1(rad/sec) was chosen for identification. It consists of three
second-order lowpass notch filters. Its transfer function is
given by
H(s) = f[ __f_ﬂ_oi_ (20)
- o1 2t Aus+ Ay
) ) . b
Cia(jwn)" Tr(jwr)  —Cra =Cra(jor)™ .
Cra(jw2)"Tr(jwz)  —Chyo —Cia(jw)™ N
Ci3(jws)"Tu(jws) —Cis ~Cr3(jws)™ )
. . . o
Cen(jwn)"Tu(jwn) —Cikn ~Cr.N(jwn)™ :
m
where,
i Ay Aoi Bo; Wo QP
T 0.933855 0.611899 4.36790 | 0.7822 | 0.8376
21 0.156221 0.934830 1.19243 | 0.9669 | 6.1891
310.017576 0.990620 1.02486 | 0.9952 | 56.628
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It was assumed that measurement was performed at uniformly
spaced frequency points on the normalized frequency range .
from dc to 2 (rad/sec) to obtain NOD(Number Of Data) com-
plex data. Measurement errors were modelled as complex in-
dependent Gaussian random variables with variance 0.1MN
in passband and 0.01MN in the stopband. The stopband
noise models the measurement system noise floor, while the
passband noise models the relative resolution of large signals.
Other measurement noise models including simple additive
noise and multiplicative noise were found to give similar per-
formance. The iteration limit was set to 20. The algorithm
was considered to have converged if all the identified coeffi-
cients were within 0.1% of their previous values.

First, we assumed there were no over—ordering effects due to
parasitics. The ideal 6th—order filter was identified with a 6th—
order model. Different number of data were used and various
measurement errors were considered in the identification. The
results are shown in Table 1 and 2, and Fig. 1 and 2. From the
results it can be shown that very accurate results and fast con-
vergences were obtained when using 50 or more data points.
The magnitude error between the true and identified system
is seen in Table 1 to be less than 0.2% of the passband gain.
It took less than 5 iterations. The accuracy is proportional
to the number of data used for the identification but inversely
proportional to the measurement error as seen in Table 2. We
can still, however, attain fast convergence and error less than
1% even with 5% measurement error. Therefore, very accurate
results can be attained with 50 or more data points and with
reasonable measurement errors if the system model is ideal,
i.e., if the transfer function of the actual system to be identi-
fied has the same order as that of the model which is used for
the identification.

In reality, however, actual filters have parasitics which cause
their real order to be higher than designed one. This is called
the over—ordering problem. In our target architecture [7], there
is no attempt to tune or cancel the parasitics themselves. A
straightforward method is to then approximately identify the
over-ordered real system with a low order model. Usually,
parasitic effects in an OTA can be approximated by a single
pole(w,) and the over-ordering factor can be defined by wo/wp,
where w, is the desired system pole.

In the second simulation, the actual 12th-order system due



to over-ordering effects was identified using an ideal 6th-order
model. We assumed the over-ordering factor was 0.1, i.e., the
parasitic pole was located at 10 times the desired system pole.
The identified results are shown in Tables 3, and 4, and in Fig.
3 and 4. Note that zero error in ID is not possible because
the ID is now approximating the over-ordered system. But
these results show that very good results can be achieved in
the presence of over—ordering effects. The passband error was
less than 0.23% when 50 or more complex data was used and
1% measurement error was assumed. However, a significant
measurement error (10%) gave a relatively big passband gain
error and the iteration limit was exceeded. Comparison of the
results at different iterations is given in Table 5. Comparing
the result of the first iteration, which corresponds to Levy’s
algorithm [9], we see that our iterative algorithm gives great
improvements in accuracy.

Conclusion

In this paper an iterative complex least squareis algorithm
for frequency domain parametric system identification has been
proposed. Extensive simulation results show that this algo-
rithm converges rapidly and attains very accurate results even
in the presence of large measurement errors. This algorithm
is also robust in the presence of over—ordering effects due to
parasitics, so it is possible to identify a high-order physical
system with a low-order ideal model. Thus, this algorithm
can be simply applied to various tuning algorithm.
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Number of | Max. passband | 3dB band-edge
NOD || Iterations Error (%) Error (%)
13 8 51 (L.62°) 2.03
% 1 30 (0.92%) 0.45
50 4 0.2 (0.2%) 0.015
100 7 0.18 (0.14%) 0.015

* Maximum error from dc to 0.9

Table 1 Identification results of the ideal 6th order system

with NOD number of data points and MN = 1.0%

Number of | Max. passband | 3dB band-edge
FMN | Iterations Error (%) Error (%)
0.1% 3 0.02 0.001
1% 4 0.2 0.015
5% 5 1.0 0.01
10% 6 2.1 0.02

Table 2 Identification results of the ideal 6th order system
with MN% complex measurement error and NOD = 50

points
Number of Number of | Max. passband
Complex Data || Iterations Error (%)
13 12 7.90
25 5 1.21
50 6 0.23
100 6 0.16

Table 3 Identification results of the 12th order system includ-
ing parasitics with a 6th order model (w,/w, = 0.1, MN

= 1.0%
Measurement || Number of | Max. passband
Error Iterations Error (%)
0.1% 0.13
1% 6 0.23
5% 207 2.1
10% 20* 8.7

* Iteration limit was exceeded

Table 4 Identification results of the 12th order system includ-
ing parasitics with a 6th order model (w,/w, = 0.1, NOD

= 50)
Number of || Max. passband | 3dB band-edge
Iterations Error (%) Error (%)
1 29.7 (1.22°) 0.778
2 0.27 (0.20%) 0.015
3 0.20 (0.20%) 0.015
4 0.20 (0.20%) 0.015

* Maximum error from dc to 0.9

Table 5 Iterative improvements of the ID algorithm for the
ideal 6th order system (MN = 1.0%, NOD = 50)
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Fig. 1. Identification results of the ideal 6th order system with NOD number of data points and MN = 1.0%
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Fig. 2. Identification results of the ideal 6th order system with MN% complex measurement error and NOD = 50
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Fig. 3. Identification results of the 12th order system with NOD number of data points (wo/wp = 0.1, MN = 1.0%)
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Fig. 4. Identification results of the 12th order system with MN% complex measurement error (w,/wp = 0.1, NOD = 50)
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