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Abstract

One of the important nonideal factors causing op-amp errors is the
common-mode rejection ratio (CMRR). The CMRR contains both de-
terministic and random components, and the random component of the
CMRR is usually comparable to the deterministic component. How-
ever, little attention has been paid to the random CMRR. In this paper
expressions for the random and deterministic CMRR of a CMOS op-
amp architecture are derived, and the statistical characteristics of the
CMRR are analyzed. Definition of the CMRR for processes is also
made.

1. Introduction

The performance of practical op-amps is usually degraded by lots of
nonideal effects. Among them, finite CMRRs along with nonzero offset
voltages and finite open-loop gains are the major sources which limit
the high-precision applications of amplifiers. The CMRR and offset are
not totally deterministic but have both deterministic and random com-
ponents. These random components due to device mismatches make
it difficult to analyze the op-amp errors. The statistical characteristics
of these parameters must be well understood to obtain high-precision
performance. Several analyses of the random CMRR in differential
amplifiers have been made [5],(6], but these analyses were made several
decades ago for bipolar differential amplifiers. Moreover, they focused
on the methods to increase the CMRR, not on its statistical character-
istics.

The term, CMRR, is widely used and has appeared in texts for
many years [1]-(4]. For a single sample amplifier, the term is defined as
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CMRR =

(1)

where Agm and A, are the small signal differential-mode and common-
mode gains respectively. For the single sample amplifier, the CMRR is
deterministic and can be readily measured in the laboratory. Of more
importance than the CMRR of a single sample amplifier from an op-
erational amplifier yield viewpoint is the CMRR of an amplifier archi-
tecture in a process. Unfortunetely, a rigorous definition of the CMRR
has not appeared in the literature. Consequently, designers have been
basing designs on inaccurate models and/or expensive “worst case”
simulations. The impact has often resulted in designs that are overly
conservative or designs that have substantially degraded performance.

In this paper the CMRR of CMOS op-amps and its statistical char-
acteristics are thoroughly analyzed. In section 2 the random and deter-
ministic CMRR of a two-stage CMOS op-amp shown in Fig.1 are de-
rived, and in section 3 the statistical characteristics of the total CMRR
are discussed. Definition of the CMRR for processes and some conclu-
sions are given in section 4 and 5, respectively. The sample amplifier
in Fig.1 has been designed for high-speed and high-precision applicia-
tions. The simulated performances of the op-amp are shown in Table 1.

II. Derivation of the random and deterministic CMRR

The CMRR of the two-stage CMOS op-amp will be dominated by
the first stage. The small signal equivalent circuit of the differential
stage is shown in Fig.2. Ideally M1 and M2 are matched as are M3 and
M4.

The small-signal output voltage is given by

Vo = AgmVq + Aem e (2)
where
Vinl + Uin2
Ud = Vinl = Vinz, Ve = '"T"' (3)
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The nodal equations at nodes (1), (2), and (3) are

(gm1 4 ga1)v1 — (gm3 + ga1)ve =

(gmz + 9a2)v1 — Gmava — (ga2 + 9aa)Vour =

gm1Vin1
gm2Vin2 (4)

(9m1 + gm2 + ga1 + gaz + 9o)¥1 — 9d1¥2 — Gd2Vout = gm1Vini + Gm2Vin2-

The model parameters are all random variables and can be expressed
as

gmk = gmkN + gmkR1 + GmkR2 (5)
9dk = gakN + 9dkR1 + Gakr2, K =1,2,3,4

where the N subscript denotes the nominal. value which is determin-
istic, the R1 subscript denotes a random component that is process
dependent but which does not vary from device to device on a wafer
and where the R2 subscript denotes a random component that varies
randomly from device to device on a wafer. It will be assumed that
process dependent random variables (those with an R1 subseript) are
totally correlated and identical for matched devices and that the wafer-
level random variables (those with an R2 subscript) are identically
distributed for ideally matched devices but statistically uncorrelated.
Assuming that g, >> ga, for all k,! € {1,2,3,4} and that M1 and
M2 are nominally matched as are M3 and M4, we can obtain the ex-
pressions for the differential-mode gain A4, and the common-mode
gain Ac,, which are themselves random variables,

(202.:9mt + 9%:(29miR1 + gm3R2 + ImaR2) + 20migmt (29mim1
+9miR2 + gm2n2))/ [20migmi(9ai + gar)] (6)

Adm >~

Acm 2 [~gdigmigo + (294i9mi + Jogmi)(gm1k2 — gm2a2) — 20miGmi(gd1R2
— 9d2R2) = GoImi(9m3R2 — ImaR2)}/[29migmi(9ai + 9a))y  (7)
where

gmi = miIN = gm2N,
9mi = 9m3N = gmaN,
9di = §diN = gd2N,
9dl = gdan,

ImiR1 = gmi1R1 = gm2R1
ImiR1 = gm3R1 = ImaR1 (5)
9diR1 = 9d1R1 = 9d2R1

where the i subscript denotes the input transistors M1 and M2, and
the ! subscript denotes the load transistors M3 and M4.

Since the random component of the differential gain is very small
compared to the deterministic component of the differential gain as can
be seen in (6), the total differential-mode gain can be approximated by
the deterministic gain only.

mi
9di + 9d

~

©)

Adm

The random component of the common-mode gain is, however, com-
parable in magnitude to the deterministic component of the common-
mode gain. The deterministic and random common-mode gains, A2,
and A7, , can be defined so that

Aem = A, + AL, (10)

From (7), natural definitions of A2, and AR are

D 9diJo
= 1
o 29mi(94i + gar) (1)
R _ 1 [y (gmmz — gm2R2  9m3R2 — gmmz)
. _
o 2(gai + gar) Imi Imi
+20u (gmmz — 9m2R2 _ 9d1R2 ~ ydmz)J ) (12)
gmi 9di



The ratios of (12) are readily obtained in terms of the geometric and
process device parameters.

1 [ (W1R2 - Wape | Larz — Lire
o +

AR, =
o Hgas + 9a0) L Wi L;

+Wsm - Wipe + Lapz — Larz | Vrare — Vime
W, L, Vgsi — Vri
Vrarz — VT3R2) + 2 Vrir2 — Vr2m2 (13)
Vesi = Vmi Vesi — Vri

The CMRR, defined in (1) where A.m is now a random variable, is
itself a random variable. If we define

4P AR
CMRRp' = ﬁ and CMRRR' = f’ (14)
then we have
_ Adm
CMRR = o
Adm
AD + AR,

. (15)

1
(CMRR;,‘ + CMRRE!

From (9), (11), (13) and (14), the deterministic and random CMRRs
are given by 049

CMRRp! = —2%%_ 16
b 2gmigml ( )

and

1 Wip, — W, Laps - L
CMRRR' = 5___{0( 1R2 2re | Lomr — Lime

W; L;
+W3m - Wars + Laps = L3r2 Vrome — Vrime
W, L Vesi — Vi
Vrape — Vram) Vrirz - Vsz]
+ 2g4; .
Vesi — Vmu

17
Vasi — Vri (an

The deterministic CMRR given by (16) is as reported in 2] and [3].
From (17) we can see that the random component of the CMRR is
caused by the nonzero output conductance of the bias current source,
go, and the nonzero output conductance of the input transistors, gqi,
as well as the mismatch of the paired devices. It can be seen that the
effect due to g, on the random CMRR are more dominant than that
due to gg;.

At this stage, we will calculate a pseudo worst case CMRR to com-
pare the magnitude of the random and deterministic components of
the CMRR. To calculate the pseudo worst case CMRR of the op-amp
shown in Fig.1 whose simulated parameter values are shown in Table
2, it is assumed that the wafer-level random component of L and W
are normally distributed with zero mean and standard deviation

or = ow = 0.014um (18)

and that the corresponding random component of V7 is normally dis-
tributed with zero mean and standard deviation

ovp = ﬁ’ (19)

where k=0.0236 Vum. We define the pseudo worst case CMRR to be
the sample CMRR that would result if all random variables compris-
ing the CMRR are at the 3o value and in the direction that they add.
The corresponding o values for width, length and threshold variations
are summarized in Table 2. The deterministic CMRR calculated from
(16) was 63.7dB which is close to the simulated one shown in Table
1. The pseudo worst case random CMRR calculated from (17) was
51.6dB which dominates the deterministic CMRR. The worst case to-
tal CMRR was thus 49.6dB.

III. Statistical characteristics of CMRR
In this section the statistical characteristics of the random vari-

able, CMRR as defined by (15), will be investigated. For notational
convenience we will define
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¢ =CMRR,
d = CMRRp},

x = CMRRR! (20)
y=x+ d (21)

where the bold letters are used to denote random variables. From (15),
the common-mode rejection ratio can be expressed as

S

Equation (17) shows that the random variable x = CM RRyp'isa
function of 12 random variables. These random variables are assumed
independent and normally distributed with zero mean. Since x is the
sum of 12 uncorrelated zero mean random variables, its mean will also
be zero and its variance is equal to the sum of the variances. Thus, x
is distributed as

x ~ N(0,02) (23)

where

1 1 1 1 1
2 _ 2.2 ~ il 2.2 — —
O = Zgrzni [goaL (L? + le) + 90w (W._z + “,'12)

o}, (95 +49%) s | (24)
(Vesi - Vri)?  (Vesi — Vmi)?

Since d in (21) is deterministic, the random variable y = x + d is
normally distributed with mean d and variance o2,

y ~ N(d, o':). (25)

The mean of |y| can be expressed as (7].

E{lyl} = az\/ge""/“i +2dP (di) -d (26)

where 1 "
2
Pe)= o= [ e, 27)
The variance of |y| is then
oty = E{lyl’}-E*{lyl}
= E{y’}- E*{Iyl}
= ol+d - E¥{lyl}- (28)

The probability density function, f.(c), of the common mode re-
jection ratio ¢ can be obtained as follows. We want to determine the
density of ¢ in terms of the density of y. Since ¢ > 0, fe(¢c) =0 Ve < 0.
The equation ¢ = ]%\ has two solutions for ¢ > 0,

a

1
h=- Y2 = s (29)

From the fundamental theorem of determining the density of a function
of a random variable (7], the pdf of ¢ is then

fy(?/l) fu(?!z)
lg' ()l 19" (32)l

s e

where fy(y) is the pdf of y, and g(y) = \%I. Since from (25) the pdf of

fele) =

yis
_ 1 (y - d)?
fy) = NP ] (31)

the pdf of the common-mode rejection ratio ¢ becomes

1 1 - dc)? 1+ dc)?
fe(f):m[ezp{—#}ﬁ-ezp{—%c%}], c>0
(32)

The probability density curves of ¢ are shown in Fig.3 where r =
|d/o.| and the CMRR},! of the op-amp in Fig.1 was used for d. These
curves show that the pdf of ¢ is similiar to a Gaussian density function,
but the symmetry is somewhat skewed and the mean is finite. Since
we know the pdf of ¢, we can find the mean and variance from the
expressions,




E{c} /o * ef(c)de (33)
ot = E{c’}-E¥c} (34)

1]

If |y| is concentrated near its mean, then E{ c } and 42 can be approx-
imated from the procedure of estimating the mean and variance of the
functions of a random variable [7]. The approximated E{c} and o2
are

1 oy \?
Efe} E{|y"|}[“(‘r:{|y4})] (35)
- oy \?
= (gh) - (36)

The mean and variance of |y| are given in (26) and (28). From (32)-
(36), it is clear that the statistical characteristics of the common-mode
rejection ratio, i.e., its mean, variance, and pdf, can be readily obtained
if the variance of the process parameters are known.

The statistical parameters of the CMRR of the sample op-amp were
calculated using the derived equations and the data in Table 2. The
approximated equations (35) and (36) were used to calculate E{ ¢ } and
a.. The calculated results are listed in Column A of Table 3. In order
to investigate the correctness of these derived equations, 200 Gaussian
random numbers with zero mean and variance d were generated and
used to calculate the corresponding parameters. From these sample
data of the random variable x, the sample data of |y| and ¢ can be
obtained using (21) and (22). Their calculated mean and variance are
shown in Column B. The E{|y|} and o}y from the derived equations
are very close to those from the generated sample data, but the E{c}
and o. of Column A somewhat differ from those of Column B because
the E{c} and o. were calculated from the approximated equations (35)
and (36). The histogram of the generated random data of x and the
CMRR histogram are shown in Fig.4 and Fig.5. Since the r(= |d/o,|)
of the sample op-amp in Fig.1 is 2.2, Fig.5 corresponds to the curve
(r=2.2) of Fig.3. These two plots are very similiar and support the
model of equation (32) for the pdf of c.

IV. Definition of the CMRR for processes

The random offset of CMOS amplifiers has been defined for pro-
cesses as three times its standard deviation. The reason is that the
offset voltage has a Gaussian distribution, so 99.7% of a sample sat-
isfies the specification. However, attention has not been paid to the
random CMRR of CMOS amplifiers, and no definition of the CMRR
including random components has been made. Thus, the CMRR of
CMOS op-amps for processes will be defined in this section.

In the previous section we found the pdf f.(c) of the CMRR. We
want to find ¢ such that 99.86% of a sample set has their CMRR greater
than ¢. Integration of the pdf, f.(c), from ¢ to infinity gives the follow-
ing results:

f " f.(e)de = P(a) + P(b) - 1 (37)
where
azl_/ﬂ and b:I_/éLl. (38)
61 a!

From the equation (38) we can see that a is always greater than b by
2|d/o| since d is negative for the sample op-amp. Thus, P(a) is also
greater than P(b) because the function P(z) defined in (27) increases
from 0.5 to 1.0 as z increases from 0 to co. Since we want to make

[m fe(¢)de > 0.9986, (39)

P(b) should be very close to 1.0. This means that P(a) is almost 1.0. In
most cases, |d/o.| > 0.5, 50 a > b + 1. Therefore, under the condition
in (39), the approximation

x f.(c)de ~ P(b) (40)
can be used. From the equation (39) and (40),

P (I—/f’l") > 0.9986 (41)
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and from the table for P(z) in [8],

l/_é_*-‘_i >3 (42)
-3

We can obtain an integer 3 and thus a nice and simple expression,
&< (30, —d)™L (43)

This is the reason why we chose a figure of 0.9986 in (39). If we use
(30, — d)~! as the CMRR specification in designing CMOS amplifiers,
then 99.86% of a large sample will satisfy the specification. If d is
positive, then P(b) is greater than P(a) and finally we have

é< (30, +d)71. (44)
Therefore, we can define the CMRR for processes as
CMRR = (30, + |d|)™! (45)

where d and 0, are CMRRp;' and the standard deviation of CMRRE.
The CMRRL' and CMRRE' were defined in (14). The calculated

CMRR for the sample op-amp was 56.2dB. Comparing with the den-
sity curve (r=2.2) in Fig.3, we can see that the value 56.2dB is very
reasonable.

The CMRR definition for processes of (45) and the CMRR pdf of
(32) are general for the op-amps whose deterministic and random com-
ponents comparably contribute to the total CMRR. If an op-amp has
a first stage with differential output, then its deterministic common-
mode gain is significantly reduced by the next stage [6]. In this case the
deterministic CMRR can be ignored, i.e., d >~ 0 and the obove CMRR
definition and the pdf must be changed. If d is near zero, then the pdf
of the total CMRR is

2 1
fele) = mezﬁ [— @] , ¢>0. (48)
The integration of the pdf from ¢ to co becomes
had 1
/é fi(e)de = 2P (E) Y (47)
Thus, the CMRR definition for processes is
CMRR = (30;)7! (48)

where 99.73% of a sample set will be greater than (30.).

V. Conclusions

The CMRR of a two-stage CMOS op-amp has been analyzed. Sev-
eral equations representing the statistical characteristics have been de-
rived. Using these equation, we can readily find the distribution, mean,
and variance of the CMRR if the process parameter variations are
given. The derived equations have shown that the CMRR pdf is dis-
tributed similiar to that of a Gaussian density, but the mean is finite
and the symmetry is skewed. The CMRR is defined by (30, + |d|)™}
for the op-amps which have both dominant deterministic and random
CMRR so that 99.86% of a large sample may be greater than the de-
fined value. For the op-amps whose deterministic CMRR is near zero,
(30:)~! can be used for the definition of the CMRR, where 99.73%
of a large sample satisfies the specification. The d is the ratio of the
deterministic common-mode gain to the differential-mode gain and the
o is the standard deviation of the ratio of the random common-mode
gain to the differential-mode gain.
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Table 1: Simulated performance

Specification | Performance
Settling Time (2V Step, 5mV) 16.5 nS
Systematic Input Offset Voltage 0.26 mV
Open Loop Voltage Gain 58.3 dB
Unit Gain Frequency (GB) 59 MHz

Phase Margin 75°

Power Dissipation 16.5 mW
CMRR 62.5 dB

Table 2: Simulated parameter values and component o values

Imi 1030pA]V Imi TI2uA]V

9o 43.7 x 10~° gdi 22.0 x 10~¢
(Vs — Vr): 0.393V (Ves — Vr) 0.542V
ar 0.014um ow 0.014pm
Tvg, 1.1TmV Ty, 1.57TmV

Table 3: The CMRR statistical characteristics calculated from
(A) derived equations (B) 200 generated random numbers.

A B
d -6.55 x 10~%
o2 2.976 x 10~4 2.763 x 104
E{ly|} 6.579 x 104 6.612 x 10~*
Ty 2.797 x 1074 2.691 x 10~*
E{c} || 1.795 x 10* (65 dB) | 2.017 x 10° (66 dB)
7. 6.462 x 102 1.847 x 10°

Figure 1: Two-stage CMOS operational amplifier
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Figure 3: Probability density curves of CMRR (r = |d/0.]|)
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Figure 4: Histogram of the 200 samples generated for the random
variable x (x = CM RRR')
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Figure 5: Histogram of the 200 samples calculated from the data
in Fig.4 for the random variable ¢ (¢ = CM RR)




