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Abstract

A sub-binary radix DAC which achieves high effective resolution
in small VLSI area is demonstrated and is shown to be especially
well suited for certain static analog memory applications, includ-
ing tunable analog circuits. An intentional sub-binary radix is
used to create a redundant number system with radix less than
two, while still using normal binary coefficients (on/off control). A
current mode DAC with greater than ten bits effective resolution
was implemented in only 41 mil® area in a 24 CMOS technology.
Achieving high resolution with the sub-binary scheme isn’t depen-
dent on accurate device matching, so chip yield and high resolu-
tion are not problematic. A simple iterative algorithm to control
(set) these non-linear and non-monotonic DACs is detailed.

1 Introduction

It is well known that achieving high accuracy monolithic analog
integrated circuits in the presence of process variations requires
that these circuits be tuned or compensated. For continuous time
linear filters in particular, the tuning must compensate for initial
time constant shifts as large as +50%, while a control resolution of
+0.1% or better may be required for high accuracy system perfor-
mance. Thus, a desirable tuning mechanism would have one part
in a thousand resolution, i.e., ten bit resolution. Typically many
analog parameters must be tuned, so the tuning devices must be
kept small. Since there are undesirable side effects of continuous
tuning, such as clock feed through, it is often desirable to perform
the tuning process infrequently, possibly during a special tuning
mode when the filter is off-line. In such applications it is desirable
to have long term stability (e.g., > 1073 sec.), or storage of tun-
ing information. The required re-tuning rate is mainly dictated
by temperature variations. Unfortunately, traditional approaches
to high accuracy and highly stable analog memories have required
very large area, and have often been plagued by low yield. In this
paper we show that achieving high resolution itself doesn’t require
large area or low yield. We present a solution which requires an
unconventional and sometimes inconvenient control mechanism.
However, for certain applications, including tuning and analog
memory, the control is shown to be simple and inexpensive.

Our solution uses a redundant number system, which we call
a sub-binary radix number system, which is described in section
2. Our system uses a digital memory to drive the sub-binary
DAC, which generates the desired analog values. Our method
differs from conventional high-resolution DAC design in that no
attempt is made to build an accurate, or linear, or monotonic
basis DAC. Rather, the sub-binary DAC is intentionally designed
to be non-linear and non-monotonic so as to maximize net ef-
fective resolution in small area given our control method. Con-
ventional methods of achieving high resolution DACs tend to be
very area intensive and/or require very complicated correction
schemes. Our sub-binary DAC can actually be used to tune such
self-calibrating DACs. The reader is referred to [4], [3], [2], [9],
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(6], [10], [7], and [8] for a representative look at high resolution
data converters and their complexity.

A simple iterative control algorithm for sub-binary DACs is de-
tailed in section 3. The statistical insensitivity of the sub-binary
DAC:s effective resolution to process variations is described in sec-
tion 4. A general tuning application requiring static analog mem-
ory is demonstrated in section 5. The design and measured results
of an IC 10 bit effective resolution current mode sub-binary DAC
is presented in section 6.

2 Sub-binary radix number systems

The sub-binary radix system is based on a binary weighted (coef-
ficient) number system with non-binary radices, all less than two.
A quantity (number), @, in a radix R number system of order k
(k digits) can be represented as

Q=ai- B +aps- R+ tap-Rtag (1)

An alternative representation of (1) is
)

In a conventional radix R system, R is a positive integer and
the coefficients, ao, a1, . .., ax_1, ai, are chosen a;e{0,1,--- R—1}.
While the coefficients could be fractional, we will limit them to the
binary bits a;e {0,1}, called binary weighting. Binary coefficients
are chosen since we will use conventional digital binary storage
and binary (on/off) switches. An example of the normal uniform
binary radix R = 2 (binary) is:

(10)10=1-234+1-2240-2'+0-2°

Q = (arag-1 -~ @1a0)p

®

If the radices, Ry in (1), vary from term to term, i.e., Ry # r*,
then we say we have a mixed radix system. Mixed radix systems
are useful in describing the operation of real data converters, even
if they were designed for a constant uniform radix, because pro-
cess errors generate R; = R + e;. For example if a data converter
is designed with a uniform radix of two, the result after random
process variation of the converter components might cause the
values of the k radices to spread both above and below the de-
signed radix of two. We use the term sub-binary radix number
system for both binary weighted mixed radix number systems and
binary weighted constant radix number systems with radices less
than two.

Visualizing how numbers are represented in a binary weighted
mixed radix system is difficult, so we first consider binary weighted
constant radix systems. Here the radix is not necessarily equal to
two, but it stays constant throughout the termsin 1. Fig. 1 shows
several examples of 4-bit binary weighted constant radix number
systems. Each system has 16 possible values that it can represent

(0000), (0001)g, ..., (1110)g, (1111)a )

The z axis in Fig. 1 is labeled with the decimal integer from 0 to
15 corresponding to the normal base two (radix 2) interpretation
of the four control bits. The y axis represents the actual values
generated by each particular radix. Note that when the radix is
equal to two, the values increase monotonically with a constant
step size. If the radix is greater than two, monotonicity is pre-
served, but step size is no longer constant and large gaps occur
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Figure 1: A visual demonstration of the values realized using
different radices with binary control bits.
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Figure 2: The values realized by different radices displayed sorted.

in the represented numbers. If the radix is decreased below two,
neither monotonicity nor constant step size is maintained. Also,
significant overlaps in the values represented occur, i.e., several bi-
nary control words may represent approximately the same value
@. While this would be a disadvantage in most systems, we ex-
ploit the natural trade off between redundancy and resolution.
Every non-monotonic step (jog down) in the binary counting se-
quence results in redundant values, meaning that the sub-binary
systems have less dynamic range than normal radix two systems.
To achieve equal dynamic range and effective resolution as binary
systems, the sub-binary systems must therefore use one or two
extra DAC bits.

An important performance measure of data converters is their
resolution. The tuning DAC must have sufficient resolution to
manipulate the parameters of the circuit being tuned to within
specifications. In Fig. 2 the values represented in the example
4-bit binary coefficient constant radix systems have been sorted
to illustrate the effective resolution. In Fig. 3 the difference be-
tween adjacent sorted values is plotted. These differences are the
called the incremental step size. Notice that as the radix is in-
creased past two, the maximum error that can occur increases due
to the widening gaps between successive numbers. As the radix
is decreased below two (sub-binary radix), the difference between
successive sorted numbers decreases. The maximum step size also
decreases, but the sub-binary radix system doesn’t cover as large
a range as the base two system. This lack of coverage can be com-
pensated for by adding additional bits to the sub-binary systems,
extending the range to the desired level. Sub-binary radix num-
ber systems are thus redundant, but if the radix is close to R = 2,
then they are not highly redundant. The sub-binary system can
achieve any desired resolution, but control is now non-linear. Ob-
viously we would prefer not to have to learn and/or measure the
exact values of the implemented radices. And further, we don’t
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Figure 3: Step size between sorted values for different radices.

want to have to sort through the large number of possibly close
representations. Fortunately, a simple iterative algorithm exists
that avoids sorting or table look-up.

3 A simple iterative control algo-
rithm for sub-binary radix DAC

A control algorithm is needed for practical use of high resolution
sub-binary DACs. If the DAC must have a normal digital power of
two binary number interface, which additionally must run at the
maximum speed, then there is little choice but to learn the radices
exactly and perform a complicated digital binary to sub-binary
radix conversion. However, the typical analog-memory or tuning
environment has far different requirements. Typically there is no
binary number digital input, but rather a simple test indicating
that the analog value is either too large or too small. Also, the
speed of tuning is typically not limited by DAC speed but by the
response time of the circuit being tuned and by the measurement
circuit itself. A simple iterative algorithm using & + 1 iterations
to control £ + 1 sub-binary radices is given below.

Algorithm: Control sub-binary radix DAC
c Test(D,Q) = too high or too low
%is only measurement information
[ D is desired, Q is actual
c a(i) is i’th control bit
Initialize: a(i)=0 for all i
For i=k to 0 by -1

set a(i)=1

if Test(D,Q)= too_high

then a(i)=0,

end if
Return
End

This control algorithm first enables (turns on) the most sig-
nificant control bit and checks to see whether the tuning test
(synthesized analog output) is too high or not. After setting this
bit, the next most significant bit is enabled and the tuning test is
checked. This process continues until all of the control bits have
been set. A dual algorithm initializes the DAC (Q) as all ones
and tunes .down. In the next section we examine the statistical
behavior of the sub-binary radix system using this simple control
algorithm.

4 Tolerance of sub-binary radix sys-
tems to random radix variations

We now consider the effect of random perturbations of the de-
signed radices by imperfect processing. First consider the worst
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radix.
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Figure 5: Effect of random radix variations on resolution error

case approximation error of constant radix systems. Fig. 4 shows
how the maximum relative step size, defined as the worst case
step size normalized by full scale, varies with the chosen radix.
Notice that the error climbs very fast when the radix is increased
above two. A simple interpretation of Fig. 4 is that radices that
randomly fluctuate above two will cause severe loss of resolution.

Random processes inherent in manufacturing will create a
mixed radix number system. For simplicity, assume a zero mean
Gaussian distribution of radices. Fig. 5 shows the effeet of ran-
dom radix variation on a simple R2R type DAC structure with
ten control-bits. The bottom curve corresponids to no variation,
while the variance steadily increases for the upper curves. The y
axis shows the maximum step size averaged over 75 experiments.
The ‘optimal’ choice of design radix occurs where the curve (for
a given variance) drops to its lowest error value. This point is
highly dependent on the variance of the process. Fundamentally,
the radix must be chosen low enough so that random perturba-
tions are not likely to increase some radix above two. The sub-
binary radix system can be thought of as design for statistical
yield optimization. Note that the error only increases slowly with
decreasing radix below two. Thus, a conservative design approach
can achieve both good resolution and effectively 100% yield (due
to accuracy). We have proven than a sufficient condition for ef-
fective resolution equal to one-half of the least significant radix
is:

R; < Riya for all i

(5

In practical applications, some number G of the least significant
radices, Ro, Ry, -+ Rg-1 can be designed as normal powers of two.
The number G of such radices is the largest number of bits that
can be implemented easily in a given technology and circuit style
without resorting to tuning, sub-binary radices, etc. The higher
significant digits can then be implemented with decreasing sub-
binary radices.

427

- SYSTEM
SUB- BINARY PARAMETER
COMPARATOR
REGISTER UP/DOWN
SEQUENTIAL SIGNAL
A STATE MACHINE
CONTROL
BITS

Figure 6: A sub-binary DAC tuning system.
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Figure 7: Two stages of a sub-binary radix DAC, with two control
bits per stage.

5 A binary weighted sub-binary radix
DAC for tuning analog circuits

Consider the generic analog circuit with associated tuning system
of Fig. 6. We propose to set the control bits of the sub-binary
DAC by using the iterative algorithm of section 3. The only in-
formation needed at each iteration is simply: is the present DAC
output too high (or too low). Note that the analog circuit be-
ing tuned could itself be a DAC or Analog to Digital Converter
(ADC), where the ADC has its radices tuned to exact powers of
two. Here the sub-binary DAC supplies the analog tuning input
to the system needing tuning. A test system comparator measures
the status of the system being tuned. The comparator function
will vary greatly depending on what type of parameters need to be
measured. For example the test comparison block could measure
the frequency, magnitude, or phase of sine waves. The neces-
sary output of this comparator is an up/down signal used in the
approximation algorithm for the sub-binary DAC. The approxi-
mation algorithm is encoded in the state machine. The output of
the state machine is stored in a static register holding the DAC
control bits. ’

6 Design of a sub-binary radix DAC
for tuning

The design goal for the DAC was to produce a small digitally con-
trolled circuit with over ten-bits resolution to tune typical OTA-C
filters or data converters. The designed sub-binary DAC uses 12
control bits. OTA based circuits are typically tuned by adjusting
their transconductance gain via the differential pair tail current.
Since the DAC is to supply a bias current, its output should be
constant over time. A building block of this DAC is shown in
Fig. 7. This implementation uses simple current mirrors to scale
down the reference current within each block. If this scaling were
used for the entire structure, then the largest transistor would
be 22 times larger than the smallest. This would consume far




too much area. To solve this problem, the tuning DAC was im-
plemented in stages similar to a R-2-R DAC structure. In each
stage the current is twice divided by two and then passed to the
next stage. This procedure reduces the area because the ratio
of transistor sizes is compared against the first transistor in each
stage, not to the first one in the DAC. Therefore the maximum
ratio between transistors in each stage is 4. The choice of two
divisions per stage was a compromise between having large area
used for large transistor size ratios and having large area over-
head for transistors connecting the stages. While it appears each
stage might be identical, each stage much be sized according to
the current it handles. The first stages must be wider to keep the
transistors in saturation, while the last stages must be longer to
keep the transistors out of subthreshold.

To make this tuning circuit a sub-binary radix structure, the
gain of the cascode pipe between stages is made greater than
one, while the ratios of the transistors inside each stage were kept
at ratios of two. This made it easier to size the transistors in
each stage. Only integer sizes of transistor lengths and widths
are allowed, and changing one unit in a small device causes a
large change in the ratio. It was therefore easier to implement
the fractional gain ratios in the less numerous cascode connecting
pipes. Each current can be controlled by the MOS switch at the
drain of the output current devices. The final size of a 12-bit
tuning DAC was approximately 40 mi/? in 2 /mu MOSIS CMOS.
Note that approximately 100 such DACs can be fit on a Tiny
MOSIS chip, and over 10,000 could be put on a modern large
chip. Maintaining the effective theoretical resolution indicated
may require that superposition of the selected current sources hold
at the current adder. If the iterative control algorithm is use, this
non-superposition problem is greatly lessened. Spice simulations
show it isn’t a problem in this application.

Many other circuit techniques can be used to achieve sub-binary
radices. For example, we can use power of two division chains,
and then apply a small amount of feedback from output to input.
While this sub-binary DAC was implemented using MOS current
sources, the basic idea of sub-binary radix systems can be applied,
for example, to capacitance [5], resistance, or charge selection
circuits. Each circuit technique will have its own dynamic range
and integer sizing tradeoffs, so different variants of sub-binary
radices may be found to best match these tradeoffs.

An important practical issue is the area required by digital
memory to drive the tuning DACs. In other words, the sub-binary
DACs are so small that the digital latches holding control bits may
dominate area. In typical analog monolithic IC applications the
large parameter variation of manufacture roughly tracks across
chip. Thus, a course tune representing, e.g., tuning from 50%
to 3% can be performed for the whole chip using only 4 digital
storage latches. The fine tuning of some N components to, e.g.,
0.1% can then be accomplished with four fine tuning bits for each
of the N components. For example, a T'th order leapfrog filter
requires about 32 bits of on chip storage, which is reasonable.

7 Results and Conclusions

Our design was fabricated in 2y MOSIS CMOS process and tested.
The measured response was highly non-linear and non-monotonic
as expected. The measured step size between adjacent values is
shown in Fig. 8. Notice that the worst case step size is very close
to 2719 which was the design resolution (i.e., the design radix
was decreased the maximal amount to enhance yield while still
achieving ten bit resolution). :

We have shown that achieving high resolution in analog values
for monolithic ICs can simply be extended beyond component
matching if simple tuning tests can be accommodated at the sys-
tem level. Achieving this high accuracy simply and in small area
is most naturally done by using a redundant fractional radix num-
ber system, which we call sub-binary radix. While using such a
number system for typical DAC applications might be very cum-
bersome, in the tuning environment it is not a hindrance and is

428

0.001

T - Y

T v T T T
Delta Betwaen Successive Pointa After Sorting —

0.0009
0.0008
0.0007 ‘
0.0006
0.0005
0.0004
0.0003

0.0002

Normalized Step Size Between Points

0.0001

[ o, v i \

0 ijhlihl\lihlu.hhllﬂllhai.u_mhulﬂu..i um.“lmhlm

0 500 1000 1500 2000 2500 3000 3500 4000
Input Value to the DAC

4500

Figure 8: Measured response of fabricated 12-bit DAC with sub-
binary radix.

simple to implement. We have demonstrated the technique with
the design of a small DAC with over ten bits of effective reso-
luti.on using twelve control bits. The design extends simply and
easxly to greater resolution, but our prototype application only
required ten bits of resolution [1]. The use of sub-binary DACs
extends naturally to the design of writable (pseudo) analog static
memory. As long as write access time is long enough to allow the

itera.tivs algorithm to converge, then no other special circuitry is
"."(!l!'r(’ .
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