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Nonideality Consideration for H igh- 
Precision Amplifiers-Analysis of 

Random Common-Mode Rejection Ratio 
Chong-Gun Yu and Randall L. Geiger, Fellow, IEEE 

Abstract-Nonideal factors which play a key role in perfor- 
mance and yield in high-precision applications of operational 
amplifiers are rigorously investigated. Of necessity, the combined 
effects of both deterministic and statistical parameters must be 
incorporated. The statistical characteristics of the common-mode 
rejection ratio and the offset of two-stage CMOS op-amps are 
investigated. The op-amp errors associated with finite open-loop 
gains, finite CMRR’s, and nonzero offset voltages are analyzed. It 
is shown that the random common-mode gain as determined by 
the mismatch of paired devices is comparable to the deterministic 
common-mode gain. It is shown that the probability density 
function of the CMRR is distributed similar to that of a Gaussian 
random variable, but the mean is finite and the symmetry 
is skewed somewhat, as contrasted to the probability density 
function of the offset voltage which has a Gaussian distribution 
with zero mean. It is also shown that a nonideal finite CMRR can 
actually reduce the op-amp errors caused by a finite open-loop 
gain. 
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CMRR;l 
Expected value 
Probability density function 
Output conductance 
Transconductance gain 
Output conductance of the bias current source 
Drain current 
Transconductance coefficient defined as &70x/2 
Channel length 
Channel length modulation parameter 
Bulk mobility 
Normal (Gaussian) distribution 
Absolute value of the ratio of d to ga: 
Standard deviation 
Common-mode input voltage 
Equivalent input voltage required for an infinite- 
CMRR op-amp 
Differential-mode input voltage 
Gate-to-source voltage 
Input voltage 
Output voltage 
Input referred offset voltage 
Threshold voltage 
Channel width 
CMRR&l (a random variable) 
x + d (a random variable) 
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LIST OF SUBSCRIPTS 

Nominal value 
Process dependent random variable, not varying from 
device to device on a wafer 
Wafer-level random variable, varying from device to 
device on a wafer 
Input transistors (Ml and M2) 
Load transistors (M3 and M4) 

I. INTRODUCTION 

N UMEROUS nonideal effects impact and generally de- 
grade the performance of practical op-amps. Three fac- 

tors-finite gain, finite common-mode rejection ratio (CMRR), 
and nonzero offset-are the major sources which limit the 
high-precision low-frequency applications of amplifiers. It is 
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well known that precision applications require a high open- 
loop gain, a large common-mode rejection ratio, and a low off- 
set voltage, but practical limitations force the designer to make 
tradeoffs between these parameters. Because of the nonlinear 
relationship between these parameters and the performance 
parameters of interest, and because of the inherent statistical 
nature of the offset voltage and CMRR, the relationship 
between these parameters and the performance of amplifiers 
is still not fully formulated, causing designers to still commit 
nonoptimal designs to the foundry. For example, an infinite 
CMRR is often not optimal in the presence of a known finite 
open-loop gain of the op-amp. This paper focuses on a rigorous 
formulation of the relationship between these parameters and 
the performance of precision finite-gain amplifiers. Simple 
mathematically tractable relationships between the finite gain, 
CMRR, and offset voltage are developed and related to the 
overall performance of high-precision finite gain amplifiers. 
The CMRR and offset are not totally deterministic but have 
both deterministic and random components. Unfortunately, 
the performance and yield of systems using integrated op- 
amps are often dominated by the random components. These 
random components which are primarily due to the device 
mismatch make it difficult to analyze the op-amp errors. The 
statistical characteristics of these parameters must be well 
understood to practically obtain high-precision performance. 
Several analyses of the random offset [ 11, [2] and the random 
CMRR [5]-[7] in differential amplifiers have been made, 
but these analyses do not focus on the mixed effects of 
these nonidealities on amplifier performance. The analyses 
of the random CMRR [5]-[7], made several decades ago, 
concentrated only on bipolar differential amplifiers. Moreover, 
they focused on the methods to increase the CMRR, not on 
the statistical characteristics of this parameter which play a 
key role in the performance of precision finite gain amplifiers. 

The impact of the CMRR may be best appreciated by 
reviewing the term itself. The term is widely used and has 
appeared in elementary electronics and instrumentation texts 
for many years [ l]-[4]. For a single sample amplifier with dif- 
ferential input and single-ended output, the term is defined as 

CMRR= 1 I I 
&m 

(1) 
lAcml 

where A&, and A,, are the small signal differential-mode 
and common-mode gains, respectively. Often it is expressed 
logarithmically rather than linearly. For the single sample 
amplifier, the CMRR is deterministic and can be readily 
measured in the laboratory. Of more important than the CMRR 
of a single sample amplifier from an operational amplifier 
yield viewpoint, from a discrete systems designers viewpoint, 
and from an integrated systems designers viewpoint, is the 
CMRR of an amplifier architecture in a process. In this case, 
the common-mode gain, which is ideally zero, becomes a key 
parameter in determining the CMRR. Since the common-mode 
gain invariably has a random component and a deterministic 
component, the same comment can be made about the CMRR. 

Unfortunately, a rigorous definition of the CMRR has not 
appeared in the literature. Consequently, designers have been 
basing designs on inaccurate models and/or expensive “worst 
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Fig. 1. Two-stage CMOS operational amplifier. 

case” simulations where it is often difficult to ascertain that 
the simulations are actually worst case. The impact has often 
resulted in designs that are overly conservative or designs 
that have substantially degraded performance. The rigorous 
definition of the CMRR, although seemingly straightforward, 
is complicated by the observation that the CMRR is actually 
a random variable that is ideally infinite and that has a 
probability density function. The probability density function 
of the CMRR is nonlinearly related to the probability density 
functions of several other random variables which characterize 
the transistors comprising the operational amplifiers. 

In this paper, the CMRR and offset of CMOS op-amps 
are thoroughly investigated. Op-amp induced errors in pre- 
cision finite gain amplifiers due to these nonideal effects are 
compositely analyzed. A model amplifier of these analyses is 
the two-stage CMOS op-amp shown in Fig. 1. The sample 
op-amp has been designed for high-speed and high-precision 
applications in a 2pm CMOS process. The device sizes and 
other performance parameters are shown in Tables I and II. 
Although the formulations in this paper focus on the two-stage 
amplifier of Fig. 1, the results are readily extendable to other 
op-amp architectures as well. 

II. DERIVATION OF THE RANDOM AND DETERMINISTIC CMRR 

Since in multistage amplifiers the CMRR of the first stage is 
usually an important factor in the overall CMRR, the CMRR 
of the two-stage CMOS op-amp will be dominated by the first 
stage. The small signal equivalent circuit of the differential 
stage in Fig. 1 is shown in Fig. 2, where g,, denotes the internal 
output conductance of the transistor used as a bias current 
source. Ideally, Ml and M2 are matched as are M3 and M4. 

The small-signal output voltage is given by 

where 

vo = &mVd + Acmvc (2) 

“-‘d = uinl - vi,2 
Vinl + Vim2 

21, = 
2 . 

The nodal equations at nodes (l), (2), and (3) are 

(3) 

(4) 

(gml + gdl)ul - (h3 + gdl)v2 = %l’Uinl 

(gm2 + gd2)vl - %4V2 - (gd2 + gd4)vout = gm2vin2 (5) 
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TABLE I 
TRANSISTOR SIZE OF THE OP-AMP IN FIG. 1 

Ml 
M3 
M5 
M7 
l/B 

20412 M2 20412 
7513 M4 7513 
33613 M6 100/2 
25012 M8 1414 
3.3 v  Gz  2.39 pF 

TABLE II 
PERFORMANCE OF THE OP-AMP IN FIG. 1 

Specification 
Settling Time (1V Step, 0.1%) 
(2V Step, 5 mV) 
Systematic Input Offset Voltage 
Open Loop Voltage Gain 
Unit Gain Frequency (GB) 
Phase Margin 
Output Voltage Swing 
Power Dissipation 
CMRR 

Performance 
18.3 nS 
16.5 nS 
0.26 mV 
819.4 (58.27 dB) 
59 MHz 
750 
+4.1 v, -4.3 v  
16.5 m W  
62.5 dB 

gml(vml-vl) 

Fig. 2. Small signal equivalent circuit of the differential stage of Fig. 1. 

(hl + gm2 + gdl + gd2 + go)% - gdlV2 - gd2V,,,t 

= QmlGZl + gmz’U;,z. 

The model parameters are all random variables and can be 
expressed as 

gml = %nlN + %lRl + gmlR2 

gm?. = gm2N + !hZRl + gm2R2 

gm3 = gm3N + %3Rl + gm3R2 

gm4 = gm4N + .%n4Rl + gm4R2 (6) 
gdl = gdlN + gdlR1 + gdlR2 

gd2 = gd2N + gd2Rl + gd2R2 

gd4 = gd4N + gd4Rl + gd4R2, 

where the’ W subscript denotes the nominal value which is 
deterministic, the Rl subscript denotes a random component 
that is process dependent but which does not vary from device 
to device on a wafer, and where the R2 subscript denotes 
a random component that varies randomly from device to 
device on a wafer. It will be assumed that process dependent 
random variables (those with an Rl subscript) are totally 
correlated and identical for matched devices and that the 
wafer-level random variables (those with an R2 subscript) 
are identically distributed for ideally matched devices but 
statistically uncorrelated. 

Assuming that L&& >> C&l, for all k, 1 E (1, 2, 3, 4}, and 
that Ml and M2 are nominally matched as are M3 and M4, 
we can obtain the expressions for the differential-mode gain 
Adm and the common-mode gain A,,, which are themselves 
random variables (see (7) and (8), bottom of page), where 

hi = %nlN = gm2N 

.!hiRl = $nlRl = gm2Rl 

gml = gm3N = %n4N 

%nlRl = h3Rl = %4Rl 

gdi = QdlN = gd2N 

(9) 

gdiR1 = gdlR1 = gdPR1 

gdl = gd4N, 

where the i subscript denotes the input transistors Ml and M2, 
and the 1 subscript denotes the load transistors M3 and M4. 

Since the random component of the differential gain is 
very small compared to the deterministic component of the 
differential gain as can be seen in (7), the total differential- 
mode gain can be approximated by the deterministic gain only. 
Hence, 

&m - 
%$&nl 

%&hn&di + gdl) 

Smi 
gdi + gdl . 

(10) 

The random component of the common-mode gain is, how- 
ever, comparable in magnitude to the deterministic component 
of the common-mode gain. The deterministic and random 
common-mode gains, AFm and A&, can be defined so that 

A ,,=A,D,+A,R,. (11) 

From (8), natural definitions of Afm and A& are as shown 
in (12) and in (13) (see bottom of next page). 

A& = - gdi$ni& 

~!higml (gdi + gdl) 

gdigo 

= -2gnd(gdi + gdl) 
(12) 

&m p 
2dzigml + gk(2gmlRl + gm3R2 + gm4R2) + 2gmigml(2gmiR1 + QmlR2 + gm2R2) 

2hi%n1(gdi + gdl) 
(7) 

A,, cv -&t&n& + (2gdigml + %%l)(%lRZ - gmZR2) - %nigml(gdlR2 - gd2R2) - gogmi(gm3R2 - gm4R2) 

2gm&d (gdi + gdl) 
> (8) 
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The ratios of the numerator of (13) are readily obtained in 
terms of the geometric and process device parameters. Details 
of this calculation appear in the Appendix. Substituting (84), 
(85), and (88) into (13) gives 

W lR2 - W2R2 

W 

+ L2R2 - LlR2 

L; + 
W3R2 - W4R2 L4R2 - L3R2 

Wl + Ll 

+ 
VTZRZ - h’lR2 

VGS~ - VTi 

+ v,4R2 - b3R2 

VGSl - VT1 > 

f 2gdi 
VTlRP - VTZRZ 

VGSi - VTi 1 ’ 

The CMRR, defined in (l), where A,-,, is now a random 
variable, is itself a random variable. If we define 

(15) 
AR C&fRR$ = 2 
&m ’ (16) 

then we have 

1 
CIPIRR,~ + CMRR;’ ’ 

(17) 

From (lo), (12), and (14)-( 16), the deterministic and random 
CMRRs are given by 

C&~RR;~ = _ %Wo 
29mi9rn1 

(18) 

and 

WlR2 - W2R2 

Wi 

+ L2R2 - LlR2 

Li + 
W3R2 - W4R2 

w, 

+ 
L4R2 - L3R2 

Ll 

v,2R2 - hlR2 
+ VGSi - VTi + 

VT4R2 - b’3R2 

VGSl - VT1 

+ 2gdi 
VTlR2 - VTZRZ 

VGSi - VT.L 1 ’ 

The deterministic CMRR given by (18) is as reported in [2] 
and [3]. From (19) we can see that the random component of 
the CMRR is caused by the nonzero output conductances of 

TABLE III 
SIMULATED PARAMETER VALUES OFTHE OP. AMPIN FIG. I 

Srnl 1030 @ N  srll 712 &V 

%  43.7 PAN Ydt 22.0 &4N 

VGSi - hi 0.393 v  VGSl - e-1 0.542 V 

the bias current source and the input transistors as well as the 
mismatch of the paired devices. It can be seen that the effect 
due to go on the random CMRR is more dominant than that 
due t0 gdi. 

We are accustomed to characterizing the CMRR by a single 
number. Unfortunately, it can be seen from (17)-( 19) that the 
CMRR is actually a random variable and, as such, character- 
ized by a probability density function, not a single number. 
Nonetheless, it is instructive to develop an appreciation for 
what the CMRR of sample amplifiers will be and to determine 
how important the random part of the CMRR actually is. 
At this stage, we will calculate a pseudo-worst case CMRR 
to compare the magnitude of the random and deterministic 
components of the CMRR. The probability density function 
itself will be explored in the next section. 

To calculate the pseudo-worst case CMRR of the op-amp in 
Fig. 1, whose simulated parameter values are shown in Table 
III, it is assumed that the wafer-level random component of L 
and W are normally distributed with zero mean and standard 
deviation 

0~ = gw = 0.014pm. (20) 

We chose ffAL = a&w = 0.02 pm, which is a very reason- 
able choice as indicated in [lo]. From the choice, (20) was 
obtained. Since AL = L1 - L2 = LiR2 - L2R2 and 0AL = 
,/w, CL = CL1 = (TL2 = CAL/&? = 0.014pm. It is 
also assumed that the corresponding random component of VT 
is normally distributed with zero mean and standard deviation 

*v, = &> 

where k = 0.0236 Vpm. The k value was obtained based on 
the choice of aAv, = j mV for LW = 20 x 20 pm2 according 
to the experimental data in [ 111. 

We define the pseudo-worst case CMRR to be the sample 
CMRR that would result if all random variables comprising 
the CMRR are in the direction that they add, and at the 
3a value that would most degrade the sample CMRR. The 
corresponding 0 values for width, length, and threshold volt- 
age variations are summarized in Table IV. The deterministic 
CMRR calculated from (18) was 63.7 dB, which is close 
to the simulated one shown in Table II. The pseudo-worst 
case random CMRR calculated from (19) was 5 1.6 dB which 

A& = (%digml + %Sml)(S mlR2 - hZR2) - 2%ni%nl(gdlR2 - gdZR2) - gogmi(gm3RZ - gm4R2) 

2%i!hl(gdi + gdl) 

1 .%nlR2 - gm2R2 _ gm3R2 - %4R2 gmlR2 - gm2R2 

= 2(gdi + gdl) 

_ gdlR2 - gd2R2 

gmi Sml gmi gdi 
)]. (13) 
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TABLE IV 
COMPONENT 0 VALUES FOR THE OP. AMP IN FIG. I 

UL 0.014 pm 
CbV 0.014 pm 
0 VT * 1.17 mV 
UT,- 1.57 mV 

dominates the deterministic CMRR. The worst case total 
CMRR was thus 49.6 dB. Since the random CMRR can have 
both positive and negative polarity, the total CMRR can be 
either improved or degraded by the random CMRR. 

III. STATISTICAL CHARACTERISTICS OF CMRR 

In this section, the statistical characteristics of the random 
variable, CMRR as defined by (17) will be investigated. For 
notational convenience we will define 

where 

-Y=/2 dy. (32) 

The variance of ]yI is then 

ary, = WYl”> - E”{lYl> 

= WY21 - E”{lYl> 
= Vdyl+ E2{Yl - E”M> 
= 02 + d2 - E2{ Iyl}. (33) 

The probability density function, fc(c), of the common 
mode rejection ratio c can be obtained as follows. We want 
to determine the density of c in terms of the density of y. 
Since c > 0, fc(c) = OVc 5 0. The equation c = If) has two 
solutions for c > 0, 

Yl = ;> y(/2 zz -‘. (34) r 
c = CMRR 

x = CMRR;l 

d = CMRR;’ 

y=x+d 

(22) From the fundamental theorem of determining the density of 
(23) a function of a random variable [8], the pdf of c is then 
(24) fY(Yd fY(Y2) 
(25) fc(c) = Id( + lS’(Y2)l 

where the bold letters are used to denote random variables. 
From (17), the common-mode rejection ratio can be expressed 

= $[fy($ +fy(-i)]> (35) 

as 

(26) 

Equation (19) shows that the random variable x = 
CMRRgl is a function of 12 random variables. These 
random variables are assumed to be independent and normally 
distributed with zero mean. 

WlR2, W2R2, I/I/liR2, W4R2 - N(O, &,, 

LlR2, L2R2, L3R2, L4R2 - N(0, a;) (27) 
blR2r vT2R2 N  N(O, ‘&, 

VT3R2, VT4R2 - N(O, a&). 

Since x is the sum of 12 uncorrelated zero mean random 
variables, its mean will also be zero and its variance is equal 
to the sum of their variances. Thus, x is distributed as 

x N N(0, a;) (28) 

where 

where fy(y) is the probability density function of y, and 
g(Y) = IsI. Since from (30) the pdf of y is 

(36) 

the pdf of the common-mode rejection ratio c becomes 

fc(c) = fi; z  c2 [exp { -(12ig’2} 
+exp {-$-$)2}]> c > 0. (37) 

The probability density curves of care shown in Fig. 3 where 
r = Id/a,1 and the CMRRD’ of the op-amp in Fig. 1 was 
used for d. These curves show that the pdf of c is similar to 
a Gaussian density function, but it is not symmetric, and the 
left side of the peak point goes to zero faster than the right 
side, so the mean lies at the right of the peak point. Fig. 3 also 
shows that for the op-amp of Fig. 1, the CMRR probability 
below 55 dB is almost zero. Since the pdf of c is known, the 
mean and variance can be found from the expressions 

E(c) = mcf&) dc 
J’ 

IT,” = i{c2] - E2{C}. 

(38) 

(39) 

Since d in (24) is deterministic, the random variable y = xfd If IyI is concentrated near its mean, then E(c) and a: can 

is normally distributed with mean d and variance 02, be approximated from the procedure of estimating the mean 
and variance of the functions of a random variable [8]. Let 

Y - NC4 d$ (30) c = f(ly]) = $ and m = E{IyJII}. If f(lyl) is approximated 

The mean of /y] can be expressed as [8] 
- 

by the first th;e terms of the Taylor series of f(ly]) with 
center m, then 

E{ lyl} = ca: &-d2~2u~ + 2dP (;) - d (31) f(lvl) 2 f(m) + f’(m>(lyl - m) + F(lyl - m)2. (40) 



6 IEEETRANSACTI~NSONCIRCU~TSANDSYSTEMS--I:FUNDAMENTALTHE~RYANDAPPLICATI~NS,VOL.~~,NO.~,JANUARY 1993 

f<(C) 

0 
40 45 50 55 60 65 70 75 80 65 90 

c (dB) 

Fig. 3. Probability density curves of CMRR. c = CMRR and T = ld/czl. 

Taking the expected values on (40), we obtain 

w(lYl)l 2 f(m) + qqE{ Iyl”} - m2). (41) 

The approximated E(c) is thus 

E(c) - E{lYll - +I+ (&)‘I. (42) 

The first-order estimate of a: is given by 

(43) 

The mean and variance of IyI are given in (31) and (33). 
From (37)-(39), (42), and (43) it is clear that the statistical 
characteristics of the common-mode rejection ratio, i.e., its 
mean, variance, and pdf, can be readily obtained if the variance 
of the process parameters are known. 

The statistical parameters of the CMRR of the sample op- 
amp in Fig. 1 were calculated using the derived equations and 
the data in Tables III and IV. The approximated equations 
(42) and (43) were used to calculate E(c) and gc. The 
calculated results are listed in Column A of Table V. In 
order to investigate the correctness of these derived equations, 
200 Gaussian random numbers with zero mean and variance 
~2 were generated and used to calculate the corresponding 
parameters. From these sample data of the random variable 
Z, the sample data of IyI and c can be obtained using (25) 
and (26). Their calculated mean and variance are shown in 
Column B of Table V. The E{lyl} and Q from the derived 
equations are very close to those from the generated sample 
data, but the E(c) and mc of Column A somewhat differ from 
those of Column B because the E(c) and oc were calculated 
from the approximated equations (42) and (43). The histogram 
of the generated random data of z and the CMRR histogram 
are shown in Figs. 4 and 5. Since the r(= Id/o,0 of the 
sample op-amp in Fig. 1 is 2.2, Fig. 5 corresponds to the 
curve (r = 2.2) of Fig. 3. These two plots are very similar 
and support the model of (37) for the pdf of c. 

IV. DEFINITION OF THE CMRR FOR PROCESSES 

The random offset of a CMOS amplifier has been defined 
for processes as three times its standard deviation. The reason 

TABLE V 
THE CMRR STATISTICAL CHARACTERISTICS OF THE OP-AMP 
IN FIG. lb CALCULATED (A) FROM THE DERIVED EQUATIONS 

AND (B) FROM THE zoo GENERATED RANDOM NUMBERS 

A B 

d -6.55 x 1O-4 

072 2.976 x 1O-4 2.763 x 1O-4 

E{lvll 6.579 x 1O-4 6.612 x 1F4 

ulY/ 2.797 x 10-J 2.691 x 1W4 

E(c) 1.795 x 10” (65 dB) 2.017 x lo3 (66 dB) 

UC 6.462 x 10’ 1.847 x 10” 

20 

-8 -6 -4 -2 0 2 4 6 8 10 
x (x10-4) 

Fig. 4. Histogram of the 200 samples generated for the random variable 

25 

20 

15 

f(c) 
10 

5 

0 J 
55 60 65 75 80 85 

c 
[dog) 

Fig. 5. Histogram of the 200 samples calculated from the data in Fig. 4 for 
the random variable c. c = CMRR. 

is that the offset voltage has a Gaussian distribution, so 99.7% 
of a sample satisfies the specification. Attention, however, has 
not been paid to the random CMRR of CMOS amplifiers, and 
no definition of the CMRR including random components has 
been made. Thus, the CMRR of CMOS op-amps for processes 
will be defined in this section. 

In the previous section we found the probability density 
function fc(c) of the CMRR. We will define the CMRR to 
the value of c such that 99.86% of a sample set has a CMRR 
greater than L?. The choice of the 99X6%, which is close to 
the 99.7% used in the definition of offset voltages discussed 
above, will be discussed later. Integration of the pdf, fc(c), 
from i: to infinity gives the following results: 

s imL(c) dc = P(a) + P(b) - 1 (44) 
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where 

Since d is negative for the sample op-amp, we can rewrite a 
and b as 

(47) 

From (47) we can see that a is always greater than b by 
2ld/a,l. Thus, P( > a is also always greater than P(b) because 
P(Z) defined in (32) increases from 0.5 to 1.0 as z increases 
from 0 to 03. 

Since we want to make 

J imfc(c) dc = 0.9986, (48) 

P(b) should be very close to 1 .O. This means that P(a) 
is almost 1 .O because P(u) is greater than P(b), and the 
maximum value of the function P(X) is 1.0. In most cases, 
Id/v51 > 0.5, so a > b + 1. Therefore, under the condition 
of (48), the approximation 

s EmfC(~) dc II P(b) = P (49) 

can be used. From (48) and (49) we obtain 

(50) 

It now follows from tables for P(Z) [9] that (50) will be 
satisfied provided 

l/i:+d ‘3 -= 
ox 

(51) 

which can be expressed as 

i: = (30, - d)-I. (52) 

The reason we chose a figure of 0.9986 in (48) was to obtain 
the integer 3 in (51). If we use (3a, - d)-’ as the CMRR 
specification in designing CMOS amplifiers, then 99.86% of 
a large sample will satisfy the specification. If d is positive, 
then P(b) is greater than P(u), and finally we have 

i: = (30, + d)-‘. (53) 

Therefore, we can define the CMRR for processes as 

CMRR = (3a, + IdI)-’ (54) 

where d and (T, are CMRR-1 and the standard deviation 
of CMRR,l. The CMRR, P and CMRRR’ were defined 
in (15) and (16). The calculated CMRR for the sample op- 
amp in Fig. 1 was 56.2 dB. Comparing with the density curve 
(T = 2.2) in Fig. 3, we can see that the value 56.2 dB is very 
reasonable. 

The CMRR definition for processes of (54) and the CMRR 
pdf of (37) are general for the op-amps whose deterministic 
and random components comparably contribute to the total 

CMRR. This case usually corresponds to the op-amps whose 
first stage has a single-ended output. If op-amps have a 
first stage with differential output, then their deterministic 
common-mode gains are significantly reduced by the next 
stages [6]. In these cases, the deterministic CMRR can be 
ignored, i.e., d 2~ 0, and the above CMRR definition and the 
pdf should be changed. If d is nearly zero, then the pdf of the 
total CMRR is 

fc(c) = fiYzc2 exp 

1 [ 1 -- 
2+2 ’ 

c > 0. (55) 

The integration of the pdf from c to 03 becomes 

J f,f,(c)dc=2P (56) 

The CMRR definition for processes is thus 

CMRR = (3az)-l (57) 

where 99.73% of a sample set will be greater than (3~~)~~. 
The approximated mean and variance of the CMRR have the 
same equations (42) and (43), but the E{]y]} and alyl should 
be modified as follows: 

- 

WIYII = y/z 

2 
alyl = CTp 1 - ; . 

( > 

V. OFFSET ANALYSIS 

The offset voltage of an op-amp consists of two compo- 
nents: a deterministic offset and a random offset. The former 
results from improper dimensions and/or bias conditions, so it 
can be reduced to a very small value by careful design. The 
latter is due to the random errors in the fabrication process, 
i.e., mismatches in identically designed pairs of devices. For 
two-stage op-amps, the first stage will have a dominant effect 
on the offset. Therefore, the total input referred offset voltage 
of the two-stage op-amp will be highly affected by the first- 
stage random offset voltage. The input offset voltage, Vos, 
is defined as the differential input voltage that is required to 
make the differential output voltage exactly zero. If both input 
terminals are grounded, then the input referred offset voltage 
of the first stage can be expressed as 

K vos = - 
aAI, =- 
Sm 

AID 

= zID/(vGSi - VTi) 

VGSi - VTi AID 
= 

2 ID 
1 (60) 

where V, is the first-stage output voltage, and A is the first- 
stage small-signal voltage gain. 

Since AI, is mainly affected by the mismatch in the 
threshold voltage and the device width and length, and other 
factors can be ignored [lo], we will consider only offsets 
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in the VT and W/L of the input differential pair (Ml and 
M2) and the current mirror pair (M3 and M4) in Fig. 1. The 
AI,; = Ior -ID, due to the mismatch of the input differential 
pair and the AI,, = 103 - 104 due to the mismatch of the 
current mirror pair are given from the Appendix. Substituting 
(89) and (90) into (60), we have the input offset voltage due 
to the mismatch of the input differential pair, 

vosi = VT2R2 - blR2 + 
VGSi - hi 

2 

-( 

W lR2 - W2R2 L2R2 - LlR2 

W  
+ 

Li > 
, (61) 

and the input offset voltage due to the current mirror pair, 

V VGSi - VTi wR2 - W4R2 
OS1 = + 

L4R2 - L3R2 

2 W -5 

+ VGSl - VT1 
vGsi - vTi (VT&? - vT3R2). (62) 

The total input referred offset with be the sum of these terms 
(61) and (62), 

vos = vosi + VOSl 
VGSi - VTi WlR2 - W2R2 

2 [ Wi 
+ 

L2R2 - LlR2 

Li 
W 

+ 
3R2 - W4R2 

+ 
L4R2 - L3R2 

w, Ll 

+ z(VT2R2 - blR2) + 2(&4R2 - VT3R2) 

VGSi - VTi VGSl - VT1 1 . 
(63) 

Since the offset voltage is the sum of 12 uncorrelated zero 
mean Gaussian random variables, it is also normally dis- 
tributed with zero mean and standard deviation 

(64) 

Therefore, the offset has a Gaussian density function with zero 
mean and variance a~~,. 

Assuming again the pseudo-worst case as in Section II, and 
using the data of Tables III and IV, the calculated pseudo-worst 
case random offset of the sample op-amp in Fig. 1 is 27.9 
mV. The offset due to the (W/L) mismatch is 14.1 mV while 
the offset due to the VT mismatch is 13.8 mV. It shows that 
the two factors give almost equal contribution to the random 
offset for the sample op-amp. 

VI. ANALYSIS OF OP.AMP ERRORS 

The gain of a unity-gain configured op-amp will be exactly 
one if the op-amp is ideal. Practical op-amps, however, don’t 
offer the exact gain because of finite differential gains, finite 
common-mode rejection ratios, and nonzero offset voltages. In 

“DO 1 

Fig. 6. Two-stage CMOS operational amplifier with a programmable current 
mirror. 

a 

:-•-\, 
Ad VO 

VClSfO 
CMRR=co 

(b) 

:z&- 

A VO 

+ 
vos=o 
cMRM(x, 

c 

vZij$- 

lx VO 

+ 
vos=o 
cvRFkco 

Cd) 

Fig. 7. Equivalent models for a nonideal op-amp interpreting CMRR and 
offset and showing differently defined open-loop gains. 

this section, the op-amp errors associated with these nonideal 
effects are analyzed. First, we define the different open-loop 
gains as shown in Fig. 7. We denote the finite open-loop gains 
of the op-amps which have different characteristics as follows: 

A: Finite CMRR and nonzero offset 
A& Infinite CMRR and nonzero offset 
A’: Finite CMRR and zero offset 
A&: Infinite CMRR and zero offset. 

Simulated results of these gains for the op-amp in Fig. 6 
obtained by neglecting statistical variations are shown in Table 
VI, where A,,CMRR,AL, and CMRR’ are the common 
mode gains and the common mode rejection ratios of a nonzero 
offset op-amp and a zero offset op-amp, respectively. The VOS 
is the input referred offset voltage. The op-amp in Fig. 6 differs 
from that in Fig. 1. It has a programmable current mirror 
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TABLE VI 
SIMULATED G AINS OF THE OP-AMP IN F1c.6 

.4 386.8 A' 386.6 
Al 386.5 il& 386.2 
-4,: 0.4811 -4; 0.4803 
CMRR 805.8 CMRR' 805.8 
I/n< -20.4 UV 

instead of a simple one as a load of the differential input pair. 
The programmable current mirror can be used to compensate 
the offset voltage of the op-amp by adjusting the bias voltages 
VT1 and/or VT2 as described in [ 121 and [ 131. Basic concepts 
concerning the influence of each nonideal factor are briefly 
reviewed in the following three subsections. This is followed 
by discussions about the combined effects of the nonideal 
factors. 

A. Finite Open-Loop Gain Effect 

Assuming that an op-amp has an infinite CMRR and a zero 
offset, the output voltage of the unity-gain configured op-amp 
will be 

If the pure differential gain Ai is infinity, then the input V; 
will be equal to the output V,, but the output of a practical op- 
amp will be less than the input due to the finite open-loop gain. 
Hence, the gain of a unity-gain configured op-amp will always 
be less than one under the assumption of infinite CMRR and 
zero offset. 

B. Finite CMRR Effect 

Considering a finite-CMRR and zero-offset op-amp which 
is equivalent to the op-amp in Fig. 7(c) if the voltage source 
VOS is removed, the output of the op-amp will consist of two 
terms: 

V, = V,A’, + &A& 
v, + v, = ----A’, + (V2 - &)A; 

2 

= 2;;;;, A:, + (V-2 - VI)&. (66) 

From these equations, the op-amp can be modeled as in Fig. 
7(d) if the voltage source VOS in Fig. 7(d) is removed, where 

V v, + v, 
CMRR = 2CMRRl’ 

If this op-amp is used for a unity-gain configuration, i.e., 
VI = V, and V2 = Vi, then the output voltage will be 

K = A&(K + VCMRR~ - VO) 

Hence, 

(68) 

(69) 

It can be seen that an infinite CMRR reduces (69) to (65). 
Equation (69) shows that the finite CMRR can compensate or 
overcompensate for the gain decreasing effect due to the finite 
open-loop gain. 

C. Nonzero Offset Effect 

To investigate the effect of nonzero offset, we consider an 
nonzero-offset and infinite-CMRR which is equivalent to the 
op-amp in Fig. 7(b) if the voltage source VCMRR is removed. 
The input referred offset voltage can be defined as the voltage 
applied at the positive input so that the voltage existing at the 
output becomes zero. Thus, the nonzero-offset and infinite- 
CMRR op-amp can be modeled as a voltage source VOS 
which is equivalent to the input offset voltage and a pure 
differential op-amp. This model is equivalent to Fig. 7(d) if 
the voltage source VCMRR is removed. If this op-amp is used 
for a unity-gain configuration, then the output voltage will be 

Hence, 

V, = A;(% - Vos - Vo). (70) 

v, = g&K - Vos), 
d 

where it is well known that the offset voltage can be either 
positive or negative. 

D. Total Op-Amp Error 

Now, the three effects are combined to derive the total op- 
amp error. The nonideal op-amp shown in Fig. 7(a) can be 
modeled as two voltage sources, VOS and VCMRR, applied at 
the positive input and a pure differential op-amp which has 
an infinite CMRR and a zero offset voltage as shown in Fig. 
7(d). The output is then 

v, = &Pi - vos + VCMRR - &) 

= A; V, - Vos + VI + v, - vos 
2CMRR’ 

If this op-amp is used for a unity-gain configuration as shown 
in Fig. 8(a), then the output will be 

V-0 = AI, Vi - Vos + v,+vi-vos -v 
2CMRR’ > o ’ (73) 

The total output affected by a finite gain, a finite CMRR, and 
a nonzero offset is thus given by 

v, = A&P + &) 
A’,(1 - &I + l 

(vi - Vos) (74) 

where 

CMRR’++= CMRR. (75) 
c  c  

If the op-amp is used for a high-gain configuration as shown 
in Fig. S(b), then the output becomes 

v, = A’,0 + &I 
A’,@ - A) + 1 (K - Vo.5) (76) 
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Vi 
vos=o 
CMRFtcm 

(4 

Vi 
vos=o 
CMRkcu 

(b) 
Fig. 8. (a) Model of a unity-gain configured op-amp, and (b) model of a 

high-gain configured op-amp. 

-2 ’ I I 1 I 
30 40 50 &RR (2) 80 90 100 

Fig. 9. Output error of the op-amp in Fig. 6 versus CMRR with p as a 
parameter. The offset voltage VO/OS = 0, and the open-loop gain A = 52 dB. 

where 

o= _ R1- . 

From (74), it can be easily seen that (71), (69), and (65) can 
be obtained by setting T/OS = 0, CMRR’ = co, and both of 
them, respectively. 

From (74) and the data given in Table VI, the calculated 
unity-gain configured output voltage of the op-amp in Fig. 6 
is 0.9987 V when Vi = 1.0 V, while the simulated settling 
point of the output voltage is 0.9988 V. This result shows 
that (74) gives a very consistent result with the simulated one. 
In this example, the random CMRR and the random offset 
have not been considered, but the correctness of (74) has 
been demonstrated. In practical op-amps, that kind of accuracy 
could not be obtained because of the random components 
described in the previous sections. With the assumption that 
VOS = 0, the output errors of the op-amp in Fig. 6 as a 
function of CMRR were calculated at different closed-loop 
gains, and the results are shown in Fig. 9. Even though the 
offset is zero and the CMRR is very high, the output error of 
the unity-gain configured op-amp (,LI = 1) is about 0.3% due 
to the finite open-loop gain. If the CMRR is 52 dB, then the 
output error is nearly zero. This shows that the finite CMRR 
can reduce the error attributable to the finite gain as mentioned 
in Section VI-B. From the figure it can also be seen that 
high-gain configured op-amps show more errors than low-gain 
op-amps. 

%  

(a) 

I I I I I 
vos = -1mV - 

0.2 - I/os=ov-- -- 
vos = 1mv - 

-1 
K&J 

(b) 

Fig. 10. Output error of the op-amp in Fig. 1 versus Vi and Vos as a 
parameter. The open-loop gain A = 58 dB, and CMRR’s are: (a) 56 dB and 
(b) 100 dB. 

If the offset of a given op-amp is compensated, and the 
compensated offset range is known, then the output error of the 
given op-amp can be analyzed from (74) and (76) because the 
CMRR range of the op-amp can be easily found from the pdf 
of the CMRR derived in Section III or the CMRR definition 
in Section IV. Assuming that the offset is adjusted to less than 
1 mV in magnitude, the output errors of the sample op-amp 
in Fig. 1 were analyzed. It was shown in Section IV that the 
sample op-amp in Fig. 1 had CMRR for the process of about 
56 dB. Thus, the CMRR of most individual amplifiers will be 
greater than 56 dB. Fig. 10 shows the output errors relative to 
2 V of the unity-gain configured sample op-amp as a function 
of the input IJ$. From the 56 dB CMRR curves in Fig. 10(a) 
and the 100 dB CMRR curves in Fig. 10(b), it can be seen that 
the output errors are less than 0.2% through the input range of 
-2 V to +2 V if the magnitude of the input offset is less than 
1 mV. As expected, the 56 dB CMRR curves show reduced 
errors compared to those of the 100 dB CMRR curves. 

VII. CONCLUSIONS 

The CMRR and offset of two-stage CMOS op-amps have 
been analyzed. Equations representing their statistical char- 
acteristics have been derived. Using these equations, we can 
readily find the distribution, mean, and variance of the CMRR 
and offset if the process parameter variations are given. The 
derived equations have shown that the CMRR pdf is similar to 
that of a Gaussian random variable, but the mean is not zero 
and the symmetry is somewhat skewed, whereas the offset 
has a Gaussian distribution with zero mean. The CMRR for 
the processes has been defined. The CMRR is defined by 
(3cr, + IdI)-’ for the op-amps which have both dominant 
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deterministic and random CMRR so that 99.86% of a large By the same way, 
sample can be greater than the defined value. For the op-amps 
whose deterministic CMRR’s are nearly zero, (30,)-l can be 
used for the definition of the CMRR, where 99.73% of a large 

1+ Nnl$,wzRz 
z 

sample satisfies the specification. The variable d is the ratio 
of the deterministic common-mode gain to the differential- 
mode gain, and ga: is the standard deviation of the ratio of the 
random common-mode gain to the differential-mode gain. Hence, 

The op-amp errors due to finite open-loop gains, finite 
CMRR’s, and nonzero offsets have been analyzed. A finite 
differential open-loop gain always makes the gain of a unity- 
gain configured op-amp less than one, and a finite CMRR can 
compensate for the error attributable to the finite open-loop 
gain unless it is too small. If the compensated offset range is 
known, then the op-amp error range can be found. 

VIII. APPENDIX 

If the channel-length modulation effect is ignored, the small- 
signal transconductance gains of the paired transistors Ml and 
M2 which act in the saturation region are given by 

(VGSi - VTl) (78) 
1 

(VGSi - VTZ), (79) 
2 

where K’ = &‘0~/2. Only mismatches in the VT and 
W/L are considered. The similar expressions as in (6) for 
the random variables, L, W, and I+, can be used as follows: 

L1 = Li + LiRl + LlR2, ,& = L; + LiRl + L2R2 

WI = wi + W iRl + wlR2, w, = wi + W iRl + W2R2 

VT1 = VTi+VTiRl+VTlR2, VT2 = VTi+VTiRl+VT2R2, (80) 

where Li, Wi, and VT~ are the nominal values, and the 
subscripts Rl and R2 are the same as before. 

Using these definitions, gml can be approximated by ignor- 
ing higher order terms, 

gml = 2K’ 
( 

wi + WiRl + WlR2 

Li + ‘%Rl + LlR2 ) 

x (VGSi - VTi - VTiRl - VTlRP) 

= 2K’ T (VGSi - VTi) 
( > 

1 _ CTiRl + VT,,2 

( 

1+ (WiRl + WlR2)/Wi 

1 + (LiRl + hRZ)/Li 1 

. 

( VGSi - VTi ) 

11 gmi 1+ ~Rl-&wlR2 

( >( 

1 _ LiRl + LlR2 

L 

. 

( 

1 _ VTiRl + GTlR2 

VGSi - VTi > 

=g,i 1+ 
( 

WiRl + WlR2 LiRl + LlR2 

Wi - L; 

fiiR1 + VTlR2 - 

VGSi - VTi > ’ 
(81) 

LiRl + ‘52R2 

Li 
VTiRl + VT2R2 

VGSi - VTI 
). (82) 

WlR2 - W2R2 L2R2 - ‘51R2 
Sml - gm2 = gmi 

Wi 
+ 

Li 

_ VT2R2 - VTlR2 

VGSi - VTI 
)- (83) 

Since gmi - gm2 = gmlR2 - g&R2 from (6) and (9), 

%nlR2 - Qm2R2 WlR2 - W2R2 L2R2 - LlR2 
= 

Smi Wi + Li 

+ vT;2,:F1y. (84) 
GSz Tz 

By the same procedure, 

!h3R2 - h4R2 W3R2 - W4R2 
+ 

L4R2 - L3R2 

Sml = Wl Ll 

+vT4R2 - VT3R2 

VGSl - VT1 . 
(85) 

Since the drain current 1, and the output conductance gd can 
be expressed as 

(86) 

g = AID, (87) 

by the same method as above we can obtain 

gdlR2 - gd2R2 WlR2 - W2R2 L2R2 - LlR2’ 

gdi = Wi + Li 

+ z(VT2R2 - VTlR2) 

VGSi - VTi 
, (88) 

and 

IDI - ID2 WlR2 - W2R2 
+ 

L2R2 - LlR2 
= 

IDi Wi Li 

+ z(VT2R2 - h’lR2) 

VGS~ - VTi 
(89) 

1~3 - 104 W3R2 - W4R2 
+ 

L4R2 - L3R2 
ZZ 

ID1 W Ll 

+2(VT4R2 - h3R2) 

VGSl - VT1 
(90) 

where ID = IDi = Iol. 
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