488 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 3, MARCH 1993

magnitude [dB]

log w

Fig. 2. Magnitude Bode plots of (weighted) sensitivity function.(a)
inf |WS|l. in all stabilizing controllers, (b1) S with a stable control-
ler obtained by the proposed algorithm, and (b2) WS with a stable con-
troller obtained by the proposed algorithm.

V. NUMERICAL EXAMPLE

We consider sensitivity reduction with stable controllers for
the following plant satisfying PIP and the weighting function

(s—1(s—4) s+1 T
G+ DG -2)(s - 3) W(s)=[10s+1]‘

The specification is [[WSll. < 0.1. Taking A =y = 0.1, a solu-
tion of the N-P problem is

P(s) =

—1.1564s% + 3.6119s — 5.3601
1.1800s% + 3.7986s + 5.4417

which interpolates m(1) = —0.2787, n(4) = —0.2383, and
n(e) = —0.9800 given by (15). Then, using (17), Sy is given by

n(s) =

(s + 1.1022 X 1072)(s + 3.1399 x 10%)
Sy (s) = 0.001 . —.
(s + 1.6095 — 1.4216i)(s + 1.6095 + 1.42161)

Finally, by using (18) we can obtain a stable controller of degree
five as

(s + 1)(s — 0.7739)(s + 0.3027)

solving the N-P problem. In the algorithm, the upper bound of
the weighted sensitivity can be minimized by using binary search.
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Application of Kharitonov’s Theorem
to Mechanical Systems

Tesfay Meressi, Degang Chen, and Brad Paden

Abstract—In this note, we apply Kharitonov’s theorem to derive a
robust stability condition for PID controlled multi-degree-of-freedom
mechanical systems. The characteristic equation of such a system is
given as a determinant of a third-order polynomial with matrix coeffi-
cients from which a scalar interval polynomial is obtained. We describe
a simple procedure for designing PID controllers for these mechanical

(5% + 0.3646s + 9.901 X 1072)

(s +0.1)°(s + 1.102 X 107%)
(s + 3.14 X 10%)

C(s) = —2.981 x 102

(27)

Bode plots of S and WS are shown in Fig. 2 (b1), (b2). We can
see that |[WSll. < 0.1 is satisfied and a significant sensitivity
reduction at low frequencies is attained. In this case, the infi-
mum of A obtained by binary search is 0.03881. This value is
very close to 0.03879 which is the infimum in all stabilizing
controllers.

V1. CONCLUSIONS

In this note, it has been shown that the #” optimal controller
of weighted sensitivity minimization almost always has /-1
unstable poles when the plant has / unstable zeros. An algo-
rithm for finding solutions to the sensitivity reduction problem
with stable controllers has been proposed, which is based on

syst and prove a new Kharitonov-like result which states roughly
that a controller designed for an upper bounding inertia matrix results
in stable set-point regulation for all other inertias.

1. PROBLEM FORMULATION

Consider the dynamics of multi-degree-of-freedom mechani-
cal system (e.g., robot manipulator) given by
M(0)6+ C(6,0) +G(8)=F (1.1)
where 8 is a vector of joint displacements, M(8) is the configu-
ration-dependent symmetric positive definite inertia matrix,
C(8, §) is the vector of centrifugal and coriolis forces (quadratic
in §), G(0) is the gravity force vector, and F is the vector of
applied joint forces. If a multivariable PID set-point controller
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with gravity compensation is used, the control is given by
t
= _KI_/;][B(T) — 6,)dr — Kp[6 - 6,]

~Kpl6- 6] +G(8) (12)
where 6, is the constant set-point and Kj, Kp, K, are sym-
metric (usually diagonal in practice) controller gain matrices.
Defining € 2 j{16(r) — 6,]dr and linearizing the combined
dynamics of the robot and controller about the equilibrium point
(e, 6, 6) = (0, 6,,0) yields

M(6,)€® + Kpé + Kpé + K = 0. 13)

If these linearized dynamics are exponentially stable, then
Lyapunov’s indirect method (see [1] page 179) implies the (local)
exponential stability of the equilibrium point (0, 6,,0) for the
combined nonlinear system (1.1) and (1.2). However, with 6,
time varying stability is not guaranteed. The interested reader is
referred to [2] and [3] for approaches to the nonlinear tracking
control problem.

The problem addressed in this note is that of finding set-point
controller gains Kp, K;, Kp such that (1.3) is stable for each
fixed 6. Our results only provide theory for the set-point regula-
tion problem. However, the -results can provide guidance to
practitioners who iteratively tune PID tracking controller gains
at a family of set-points representing the range of robot inertias.

We begin by designing controller gains which stabilize the
system (1.3) for each fixed 6, These dynamics are depicted
graphically in Fig. 1. Since robots and other mechanical systems
usually have revolute joints, or prismatic joints with limited
motion, the set of inertias is assumed to be continuously param-
eterized by a parameter in a compact set, ®. Thus, there exists
positive definite symmetric matrices M and M such that M <
M(8) < M V6 € ©. This raises two important Kharitonov-like
stability questions. 1) Under what conditions will the PID regu-
lated robot manipulator be stable for the whole class of inertias
as depicted in Fig. 1? 2) How do we design a robust stabilizing
controller if bounds on the inertia matrix are known?

Question 1) is answered in Section II where a simple sufficient
condition for robust stability of a large class of PID regulated
mechanical systems is derived. Question 2) is answered in Sec-
tion I1I by a new procedure for designing a stabilizing controller.
In addition it is shown that a controller designed based on an
inertia matrix larger than all others in the family stabilizes the
entire class. This is our new “Kharitonov-like” result. A two-link
planar manipulator example is given in Section IV to illustrate
the results. In Section V, we show via a counterexample that an
intuitive extension of our result is not true. Our conclusions are
made in Section VI.

11. APPLICATION OF KHARITONOV’S THEOREM

Kharitonov’s theorem [4] provides a powerful criterion for the
strict Hurwitz property of a family of polynomials with coeffi-
cients varying within given intervals. This well-known theorem
states that the strict Hurwitz property of the entire family is
equivalent to the strict Hurwitz property of four specially con-
structed vertex polynomials. This number can be reduced for
polynomials of degree less than six [5], [6].

Here we apply the simplification of Kharitonov’s theorem for
third-order polynomials to find a robust stability condition for
PID controlled robot manipulators. It is of interest to ascertain
whether or not the stability of the family of polynomials can be

. B 8
8 Kp+ }(,,sa-l(;l M7®,) Sﬁe ) —
Fig. 1. PID control of a multi-DOF mechanical system.

determined by checking only some extremal polynomials. In
Minnichelli et al.’s specialization of Kharitonov’s theorem to
third-order interval polynomials tests the stability of the whole
family with just one vertex polynomial [6]. We now extend these
ideas to our mechanical system (1.3).

The characteristic equation of (1.3) is easily computed to be

@1

Let A be a root of x(s) for the fixed 6; € ®. Then there exists
an associated “mode shape” v with unit 2-norm satisfying

x(s) = det[M(6,)s> + Kps® + Kps + K;].

(2:2)

Multiplying this equation on the left by the conjugate transpose
of v, »*, yields a polynomial in A with real coefficients

[M(8,)A% + KpAZ + KpAly = 0.

a A+ a2+ ah+ay=0 (2.3)
where
as = v*M(6)v, a, = v*Kpv, a, = v*Kpv,
ay = v*K;v. (24)
Observe that
a3 € [Apin(M), Aax(M)] 2 [ 23, 35]
2y € [Agin(Kp)s Amax(Kp)] 2 [g,,3,]
a, € [Ain(Kp)s Amax(Kp)] 2 [ay,d,]
a9 € [Amin(K1)s Amax(K1)] 2 [0, 0] (25)

Equation (2.3) is therefore an interval polynomial. The stability
of this interval polynomial can be verified by checking just one
of the Kharitonov polynomials. According to [6], (2.3) is Hurwitz
if the following polynomial is Hurwitz

x(X) = @5A° + @, A2 + g, A + a.

(2.6)

The test can be further simplified by using the Routh—Hurwitz
stability test which requires
)a,>0
i) a, >0
iii) a; >0
a,a; — dyd;

ivy) ————>0. QN

a

Conditions ii i), and iii) are satisfied if K;, Kp, and M are
positive definite. In this case a,d, > @y@; implies iv). Therefore,
under the assumption of symmetric positive definite gains, the
closed-loop system given by (2.1) is stable if

Amin(Kp) Amin(Kp)
’\max( Kl )

This is only a sufficient condition, but this condition is tight for

some practical numerical experiments. The assumption of sym-

metric positive definite gains can be justified by the design
procedure described in the next section.

Ama( M) < (298



490 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 3, MARCH 1993

ITI. CONTROLLER SYNTHESIS

In this section, we describe a simple procedure of choosing
PID gains and show that a controller design based on an upper
bounding inertia matrix stabilizes the entire class of inertias.
Since the roots of the characteristic equation (2.1) (with M
replaced by M) remain unchanged if the matrix polynomial is
pre and postmultiplied by M(~'/(8,), we have

x(s) = det[Is® + K)ps? + Kps + K}] 3.1)
where
Kp = IVI("I/Z’KDM(_VZ),
Kb = MCVIK MY,
K} =MCVYIK,MCVD, (3.2)

Since the transformed inertia matrix is the identity matrix, the
design can be treated as a set of n decoupled PID controller
designs which can be accomplished by, say, pole placement. We
choose the primed gain matrices to be scalar multiples of the
identity matrix:

Kp =k 1, 3.3)

The controller gains used for implementation are therefore
given by

K, =kpl, Kj=kI.

K, =k,M, K, =kM.

Kp=k,M, (3.4)

A surprising fact is summarized in the following theorem.

Theorem: Let det[Ms® + K5 + Kps + K;] be the charac-
teristic equation of a stable PID controlled mechanical system
with the controller gain matrices chosen based on the above
procedure. Then the characteristic equation

x(s) = det [Ms® + Kps? + Kps + K;]

is Hurwitz whenever 0 < M < M.

Proof: Since det [Ms® + k Ms? + kpMs + k;M] = det
[(s> + kgs® + k,s + k)M) is Hurwitz by design, the
Routh-Hurwitz stability test yields the stability condition

k; <kgk,. 3.5)
Let A be a root of the characteristic equation det[Ms® +
kyMs? + k,Ms + k;M] = 0. Then there exists a vector v of unit
2-norm satisfying

[M/\3 kB + kA + kv =0 (3.6)
= v*MuAS + kv MvA? + kpv*]t_lv)\ + kp*My =0 (3.7)

v*My

o ——= N + kAP + kA + k=0

v*My

(3.8)

Since M < M, we have »*Mv < v*Mv. This together with (3.5)
gives

v*Mv
—_V*kai < kyk, 3.9)
which implies the stability of
x(s) = det[Ms® + Kpps* + Kps + K] (3.10)

and the proof is complete. a
Corollary: For x(s) define the stability degree 2 — max
A

(Re (A,)) where the A, are its roots. Let o be the stability degriee

of x(s)with M replaced by M. If o < k,/2kg, then the stability
degree of x(s) is greater than or equal to o.

Proof: This follows directly from a change of coordinates
s—osto.

IV. EXAMPLE

In this example, we use the controller design procedure
described in Section III to examine the stability degree of the
closed-loop system for various inertias. Consider the two-link
planar manipulator with revolute joints and point masses at the
distal end of the links as shown in Fig. 2. The dynamics of the
manipulator are given by

M(6)6+ C(6,0) + G(8) =F (4.1)
where F = [f, f,I" is the vector of applied joint forces and

weoy = ] “2)
is the inertia matrix with
myy = (my + my)lE + mylj + 2mylil; cos (6;)
myy = myy = myl3 + mylil; cos (6;)
my, = myl3. (4.3)

(0, 0) =Ic, cz]T is the vector of centrifugal and coriolis forces
with
¢y = —2mylyl,6,8; sin (6,) — myly1, 6% sin (6;)
¢, = mylyl, 6% sin (6,)
and G(8) =[G, G,J" is the gravity force vector with
G, = (my + my)gl;cos (8;) + myl,g cos (6, + 6)
G, = myglycos (6, + 65). (4.5)
Suppose the desired set point is (e, 6, 6) = (0, 6;,0), where
€= Ji[6(r) — 6,1dr as defined in Section I. Linearizing about
this point gives M(6,)0 = F. Taking m, =m, = 1 and [, =
I, = 1, the inertia matrix simplifies to
3+ 2cos(8,) 1+ cos(8,)
1 + cos(6,) 1 ’

4.4)

M(6y) = (4.6)
An upper bound on the inertia matrix over a given range of 6,
can be found with the help of the following lemma.

Lemma: Let M,, M, be symmetric positive definite matrices.
Let U be the transformation matrix such that U T™M,U = 3., and
U™M,U = 3, are diagonal. Let T, be the diagonal matrix defined
by (), & max((£)),(2,),)- 1t M = U-H"3U!, then

M, <M, M,<M. 4.7

Furthermore, there is no “smaller” M satisfying this condition,
i.e., AM such that

M, <M, My<M, andM< M. (4.8)

Proof: The proof is straightforward and hence omitted.

This lemma can be used to generate a numerical upper bound
on the family M(6,) by 1) discretizing the set, 2) choosing two
members and finding an upper bound on these, 3) choosing
another member and finding bound on the previous upper
bound and the new member etc. The upper bound generated
will, in general, depend on the order that the elements are
scanned, but can be used in the design procedure none-the-less.

Next, we design a robust controller based on an upper bound-
ing inertia for the two-link manipulator. Suppose the desired set
point 6, has the property that 6, € [0, 7r/2). For this particular
example, an upper bound M is generated using the above
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Fig.2. Two-link planar manipulator.

lemma just once with M; = M(8, = 0) and M, = M(6, = w/2).
The upper bound is given by

i [ 5.0607

_ 1.8536
M= 138536 ] :

1.3536 (+9)

If we place the closed-loop poles for each of the decoupled
systems at —1, —0.1 + j, —0.1 — j, then the required controller
gains are

. = [1:2000 0.0000 . = [1:2100 0.0000
p=]o0000 12000 %P~ {00000 12100
. [1.0100 0.0000

Ki=10.0000 1.0100] (4.10)

Using (3.4)

k. - [60728 22243 k. [6123¢ 22428

b= 202043 16243 Kr=|202428 1.6378)
_[5.1113 18721

Ki={18721 13671] (4.11)

To check that the design is indeed stable for all 9, € [0, w/2] we
compute the eigenvalues of the closed-loop system as a function
of 8, and plot the stability degree of the system as a function of
6, (see Fig. 3). Note that the system is stable for 0 < 6, < w/2
(ie, M < M) with a stability degree greater than the stability
degree corresponding to M. When §, is increased beyond /2,
increasing the inertia above M, the stability degree decreases
and the system (1.3) is eventually destabilized.

V. COUNTEREXAMPLE

Following the positive results of the theorem, it is natural to
conjecture that Kharitonov’s theorem can be generalized to
polynomials with symmetric matrix coefficients lying in matrix
intervals. The answer is negative as illustrated by the following
counterexample. Let

k. _[04970 o0212] {05235 04767
p=|o02752 03153]° K¢~ [04767 08830

. [04387 0.4827

1= (04827 1.1720

77 [06260 06930] , _[00673 00701

06930 08624 M= |o0701 01258)

 [0.2008 02677

M=102677 0.4234]' G-

It is easy to check that M < M < M and that the equations

x(s) = det[Ms® + Kp,s% + Kps + K;] (5.2)

0.25

0.2 b

o
=
[
T
L

Stability Degree
=}
=
i

o
R

-0.05 t .
0 % b

Joint Angle 8, [rad]

Fig.3. Stability degree versus regulated joint angle 8, [rad].

and

x(s) = det[Ms® + Kps? + Kps + K] (5.3)
are Hurwitz. But

x(s) = det[Ms® + Kps? + Kps + K] (5.4)

is not. Hence, it is not sufficient to check the extremal polynomi-
als 5.2 and 5.3. Our result is therefore very particular to mechan-
ical systems and our design procedure.

VI. CONCLUSION

In this note, a simple sufficient condition for robust stability of
a large class of PID-controlled mechanical systems was derived.
This adds to the works of Shiel et al. [7] who found the
conditions for the stability of second-order matrix polynomials.
This is one of a few realistic applications of Kharitonov’s theo-
rem and serves as additional motivation for pursuing results of
this kind. A procedure for designing a stabilizing controller is
outlined and it is shown that a controller designed based on an
upper bounding matrix stabilizes all other inertias. Furthermore,
an example is presented to show that Kharitonov’s theorem for
interval polynomials cannot be generalized to polynomials with
symmetric matrix coefficients lying in matrix intervals.
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