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Adaptive Linearization of Hybrid Step
Motors: Stability Analysis

Degang Chen, Member, IEEE, and Brad Paden, Member, IEEE

Abstract—The adaptive linearization of step motors is an
attractive method for improving motor performance at relatively
low cost. However, due to the lack of robustness, a direct
application of a standard approach does not work well. In this
Paper we present a new adaptive linearization scheme for
torque-ripple cancellation and establish stability and robust-
ness. By taking a new approach in parameterizing the motor
dynamics, we reduce the number of adapted parameters by a
factor of two relative to the standard approach. This new pa-
rameterization and the unique periodic property of the motor
enable us to find conditions on exogenous signals which guaran-
tee persistency of excitation. As with many challenging control
applications, the adaptive motor linearization problem raises
new and fundamental theoretical questions. For example, we
develop a new robustness result which, roughly speaking, shows
that the allowable model perturbation does not decrease in size
as the adaptation rate is slowed. This is accomplished with a
unique dual-Lyapunov-function technique. Also, the kind of per-
turbations we consider include nonlinear dependence on state
and parameter error. Finally, this nonlinear adaptive control
scheme has been successfully implemented. Experimental results
demonstrate over 30 db reduction in torque ripple.

1. INTRODUCTION

E control of electric motors is a traditional control
problem which has attracted new interest in the con-
trol theory community. The reasons for this are the devel-
opment of adaptive nonlinear control theory, the low cost
of high-performance digital control hardware, and an in-
crease in demanding applications for electric motors. One
such application is the actuation of direct-drive robots
where high torque and high linearity (low torque ripple)
are required. The application which motivated this work is
the actuation of a cylindrical coordinate robot for silicon
wafer transfer in a vacuum environment. In this case,
torque ripple must be reduced to prevent excitation of
structural vibrations and to reduce the risk of damage to
wafers.

Torque ripple in electric motors can be reduced either
by design or by control. The desirable detent torque of
step motors (which provides passive braking in the ab-
sence of power) is also reduced when a step motor is
designed for small torque ripple. Hence, the reduction of
torque ripple through control is an attractive option lead-
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ing to better overall performance. Interest in torque-rip-
ple reduction in the control community is fairly recent.
Le-Huy and Perret [1] make torque-ripple comparisons
for brushless DC motor drives for two and three stator
phases and several commutation waveforms, while de la
Ree and Boules [2] give a detailed analysis of torque
production with rectangular current excitation. In Nagase
et al. [3] velocity ripple is filtered through a band-pass
filter and fed back to the current-amplitude control loop
to avoid structural resonances. Torque ripple due to geo-
metric imperfection is addressed by Murai et al. [4] where
two types of nonsinusoidal flux distributions are consid-
ered and two heuristic switching strategies for torque-rip-
ple reduction are proposed. In this paper, we use a
sinusoidal commutation waveform together with adaptive
linearization which adaptively adds periodic signals to the
motor input current. This appears to be the first system-
atic approach to torque-ripple reduction via adaptive con-
trol.

Globally linearizing control is another very promising
approach to torque-ripple reduction and is first applied to
variable reluctance motors by Taylor et al. [5], [6]. This
methodology has the potential (in theory) to completely
eliminate torque ripple by introducing static nonlinear
compensation in the commutation waveforms. This com-
pensation depends on shaft angle and phase currents. The
results of Taylor’s work prove the value of the lineariza-
tion approach and encourage further research. Other
work in this area is by Hemati and Leu [7], [8] who also
study nonadaptive linearization of brushless DC motors
and take saturation into account. Although linear model-
reference adaptive control has been used in motion con-
trol [9], [10), nonlinear adaptive motor control is new and
is addressed here. Marino et al. [11] have also made
contributions to adaptive partial linearization of the non-
linear current-flux interaction in induction motors.

In addition to the previous work on motor control,
recent nonlinear adaptive control theory is background
for this study. Sastry and Isidori [12] present a general
adaptive control scheme for linearizable systems with Lip-
schitz nonlinearities. This approach achieves convergence
of tracking error. By introducing a certain matching con-
dition, Marino et al. [13] succeed in eliminating the
Lipschitz condition on the nonlinearity. With the same
matching condition, Taylor et al. [14] consider adaptive
regulation of nonlinear systems and establish robustness
to unmodeled stable fast dynamics. Using a back-stepping
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technique, Kanellakopoulos e al. extend this result to
systems satisfying an extended matching condition [15], or
in a more general parametric-pure-feedback form [16].
Pomet and Praly [17] work outside the framework of
linearizable systems and have nonlinear adaptive control
results for a class of stabilizable nonlinear systems.

Except in the case of Pomet and Praly [17], where
parameters are guaranteed to be bounded by using a
projection method, other schemes provide only partial
stability (convergence of tracking error) and, in [14], [15],
limited robustness. Persistency of excitation, parameter
convergence and robustness to other types of perturba-
tions are not guaranteed and impose potential instability
problems in practical implementations. In the motor con-
trol case, these adaptive linearization schemes reduce to
essentially the same scheme, which is hereafter called the
standard approach. Unfortunately, it does not work well
for motor speed control due to nonpersistent excitation.
As a consequence, unmodeled nonlinear dynamics cause
instability of the parameter estimate. Motivated by this,
we introduce a different approach in this paper. A differ-
ent, easy-to-implement parameterization is proposed. Al-
though the analysis of our scheme is complex, stability,
robustness and parameter convergence can be guaranteed
and an experimental implementation has been successful
[18].

The contributions of this study are in motion control
and nonlinear adaptive control. In the area of motion
control we contribute a stable adaptive control scheme for
adaptively linearizing the nonlinearities of step motors.
Although structurally very simple, experimental results
have shown that it is very effective in reducing torque
ripple. The particular parameterization we use reduces
the number of adapted parameters by a factor of two
relative to the standard approach in the motor control
problem. Moreover, the scheme provides the “intelli-
gence” for learning the torque ripple of a motor and
cancelling it on-line. It is also possible to use our scheme
for adaptive identification.

The particular structure of the motor control problem
has also motivated our study of some basic problems of
nonlinear adaptive control: First, we present conditions
on exogenous signals guaranteeing persistency of excita-
tion in a nonlinear system; these follow from the periodic
dynamics of motors. Second, in showing stability we pre-
sent a new robustness analysis for nonlinear adaptive
control systems with nonlinear modeling errors in the
state and parameters. This later analysis complements the
work of Taylor et al. [14] where robustness to unmodeled
stable dynamics is addressed.

The remainder of this paper is organized as follows. In
the next section, we derive a mathematical model for
two-phase hybrid step motors which identifies the source
and structure of torque ripple. In Section III, we develop
an adaptive linearizing controller using the standard ap-
proach and discuss its deficiencies. In Section IV, we take
a different parameterization approach and derive a new
adaptive linearization controller which has a simple struc-

875

ture and uses a reduced number of parameters. Section V
establishes conditions on exogenous signals which guaran-
tee persistency of excitation and hence lead to exponen-
tial stability of the simplified system. In Section VI a
general robustness result in slow adaptation is developed
using two coupled Lyapunov functions. Applying this re-
sult to the motor dynamics, robustness of the model
system 1is established in Section VII. Tracking error and
parameter error are shown to converge to a neighborhood
of zero with size depending on the size of the residual
torque ripple. Section VIII presents experimental results
showing over 30 db reduction of torque ripple. Finally,
Section IX concludes the paper with some remarks.

I1. MODELING OF HYBRID STEP MOTORS

Step motors have been widely used in many control
applications [19]. A full model of a two-phase hybrid step
motor consists of the electrical dynamics of the stator
coils together with the shaft mechanical dynamics. How-
ever, the electric response is much faster than the me-
chanical response, allowing us to consider the mechanical
dynamics only. The use of current amplifiers and the
robustness to electrical dynamics results of Taylor et al.
[14] are further justifications. Additional assumptions used
here are that of linear magnetic materials and symmetry
between the two motor phases.

With these assumptions, the dynamic equation of the
motor shaft angle is given by

. 1 oL T .

Jo S ] (1)
where J is the equivalent inertia seen by the rotor shaft, 6
is the angular position of the shaft, T, is the load torque
and friction, L is the 3 X 3 #-dependent inductance ma-
trix, i* = (i, i,,i,), i, and i, are the currents in phase a
and phase b, respectively, and i, is a fictitious equivalent
rotor current due to the permanent magnet used in field
generation.

Before we evaluate the electric torque, we first follow a
common practice of applying the so-called d — g transfor-
mation as an initial step towards linearization. This trans-
formation transforms from the natural stator frame to a
decoupled quadrature frame fixed to the rotor. The trans-
formed decoupled and quadrature currents i, and i, are
defined by:

i, cospd —sinpé 0 ig
ip| = |sinpd cospd 0}l
i, 0 0 114,

where p is the number of pole pairs. The “decoupled”
current i, is so named since it is does not contribute to
torque production in the ideal motor. Setting i, = 0, the
above transformation reduces to

a

i, = —sinpeiq,

i, = cos pli,.
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This way of determining the phase currents from the
quadrature current i, is termed sinusoidal commutation.
This commutation, in the ideal motor, generates an elec-
tric torque proportional to the quadrature current.

For an ideal motor, each entry of the inductance matrix
is a constant offset plus a pure sinusoidal function of 6
whose frequency is determined by the symmetries of the
motor. However, due to the nonsinusoidal gap saliency in
real motors, these inductances contain phase shifts and
higher order harmonics. This geometric imperfection is
the source of torque ripple.

Expanding the inductance in a Fourier series and set-
ting i, = 0, (1) is equivalent to

6=1I,+ Y [1,;sin jp6 + 1. cos jpo] + koi,
j=1

+i, Y [k,;sin jp6 + k; cos jp6]

2
j=1
£ f(6) +2(0)i,
where k, is the nominal torque constant and
f(8) =1, + Y [1,;sin jpd + l.; cos jp], 3)

=1

8(0) =k + . [k,;sin jpo + k. cos jpb1.
j=1

Here we have ignored the nonideal terms in the self
and mutual inductances of the stator phases L,,, L,,,
and L,, for simplification. These terms contribute to the
variable reluctance torque which is usually made small in
hybrid step motors by winding the phase coils properly.
This simplification eliminates terms quadratic in i, (also
periodic in 6) in the above equation.

All sinusoidal terms in (2) are due to geometric imper-
fection. (Neglecting these and friction yields the ideal
motor model). Equation (2) is the model used in deriving
our adaptive controller for hybrid step motors. To con-
clude this section, we make the reasonable assumptions
that the nominal torque constant dominates the torque
constant variations, i.e.,

21 k,;sin jp6 + k_; cos jp6| < k.
j=

III. STANDARD APPROACH TO ADAPTIVE MOTOR
LINEARIZATION

For the motor dynamics described in (2), the approach
by Sastry and Isidori and that by Taylor ef al. are equiva-
lent. In this study, we call their approach the standard
approach for brevity. Note that (2) satisfies the so-called
matching condition defined in Taylor et al. [14], that is,
the control variable i, and the torque-ripple uncertainty
enter the dynamics in the same place. In this section, we
will follow the standard approach and develop an adaptive
linearization controller for step-motor control. The rea-

sons why this controller fails to work well in practice are
discussed.

Suppose we want to cancel the first n harmonics (n can
be determined by analyzing the torque-ripple spectrum in
an open-loop measurement) and the DC component of
the torque ripple. Then, we can define a vector containing
shape functions

w’ = (1,sin p6,cos pf,sin2pf,---,cos npd), (4)
and two parameter vectors
P = (lﬂ’lsl’lcl"“7lcn)l’ &)
Py = (ko kg ke, kcn)"
Equation (3) can be rewritten as
f(0) =w'P, + (f(6) — w'Py),
8(0) =w'P, + (g(0) — w'Py),
and the motor dynamics of (2) rewritten as
§=wP, + (WPy)i, + ¢, (6)
where
[=f(6) —w'P, + (g(8) —w'P)i, ()

is the residual torque ripple not cancelled by the con-
troller.

Suppose P, and P, are the estimates of P, and P,,
respectively. Ignoring the term ¢ and using the certainty
equivalence [20] principle, a linearizing control law is
given by

i, = (wP,)  (v—wP,). (8)
Substituting (8) into (6) results in
6=v—wpP — iqw’lﬂ"2 + ¢, 9

where P, 2 P, — P,, i = 1,2. Using a simple PD controller
for tracking, the error equation becomes

(10

Parameter update laws can then be derived using a
Lyapunov approach. To do this we first ignore ¢ to get

(1

é+kyé+k,e— w'P, — iqw’I;2 +¢=0.

€+ kyé + ke —w'P —iw'P, = 0.
Choose the Lyapunov function
V=(é+k) +ky(k;—k,)e* + PIT'P, + PIT;'P,.
Its derivative along the solution of (11) is
V= -2k, —k,)é* — k,k,e?
+(PIT + (¢ + kae)w' )P,
+(BiTst + (¢ + kae)igw')B,.
The last two terms are made zero by choosing

P, =P, = —Ty(é + k,e)w, (12)

P, =P, = —Ty(é + k,e)ipw. (13)
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Equation (8) together with the update law of (12) and
(13) defines the standard approach to adaptive linearizing
control of step motors. Since the update laws are obtained
by making V' nonpositive in a Lyapunov approach, bound-
edness of ¢, e, P,, and P, are guaranteed automatically
for the error dynamics equation (11).

However, since i, involves division by P,, its bounded-
ness, and therefore the boundedness of &, is not ensured.
Consequently, error convergence of e, é — 0 is not guar-
anteed. This is usually fixed in the following way. Since we
know that g(6) is always positive definite, we can limit the
variations of P, during updating in such a way that
w'P, > € > 0. Then i, in (8) is bounded, which leads to
bounded é in (11). And the convergence of e and é
follows by a standard argument (see e.g., [27].

Convergent as the above e and é may be, parameter
convergence is difficult to obtain. The reason is that the
same error signal é + ke is used for the updating of both
P, and P,. Intuitively, if there is one torque-ripple har-
monic causing the error signal, it is difficult to determine
whether it is due to harmonics of f or g. Hence, making
corresponding corrections to P, or P, is difficult.

Without parameter convergence, the adaptive system is
not robust to uncertainties. The addition of the term ¢,
which is not cancelled by the control, will cause parameter
drift and instability in practice. Another drawback of over
parameterization in the standard approach is the large
number of parameters used. This poses computational
problems in real-time implementation.

IV. ADAPTIVE LINEARIZATION USING REDUCED
PARAMETERIZATION

In this section, we design a new adaptive linearization
controller for torque-ripple cancellation using reduced
parameterization. The controller adaptively introduces
some ripple into the input current to cancel the torque
ripple of the motor. The update law for tuning the adapted
parameters is derived using a Lyapunov approach.

Although the motor equation of (2) is in the standard
affine-in-control form, we do not parametrize f and g
separately as in the standard approach. Instead, we isolate
the “ideal motor part” in (2) from those nonideal torque-
ripple terms, and rewrite (2) as

6 = koi, (14)
where k, is the d.c. component of g and g = (g(8) —
ko, + f(8).

Our goal is to achieve smooth motion by cancelling the
“nearly periodic” term g. The idea behind our control law
is extremely simple. In order to cancel g, we intentionally
add some ripple to the input current to cancel the torque
ripple. Since the actual torque ripple is taken as unknown,
we choose a linearly independent set of periodic shape
functions (which will become the regressor vector) and
adaptively tune the coefficients. We have two probiems to
solve: 1) design a parameter update law to ensure the
asymptotic cancellation of ¢, and 2) design a tracking

+4,
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controller which will ensure good performance during and
after adaptation.

To implement this idea, we first define a regressor
vector

w' = (1,sin p@,cos pf,sin2pl,---,cos np), (4)
a parameter vector, which is to be tuned adaptively,
P = (%’ESI’}CI’TC.YZ’.'.7-];CH)’
and let
1 -
= —(w-wP), (15)
ko

where —w'P is the ripple added to the current, and u a
new control input. Substituting (15) into (5) yields
6=v+gq—wP. (16)
We think of w'P as an approximation to the first
harmonics of the torque ripple ¢ and we tune P to cancel
them. Also, we need to design a tracking controller to
ensure good performance during and after adaptation.
Let 6, be a desired trajectory with 6, and §, bounded.
Choose a PD control
v=0, + ky(6,— 6) +k,(6,~ 0) (17)
with k,, k; > 0 to ensure exponential tracking when q —
wiP = 0. Substituting (17) into (16) yields the error dy-
namics

é+kye+ket+qg-—wP=0,

where e = 6, — 6 is the output error. Now let P* be the
unknown desired parameter vector. Let (=g — w'P*
denote the residual torque ripple when the parameters
are set to the desired values. Finally, let P =P — P*
denote the parameter error vector. Then the above equa-
tion can be written as the following:

(18)

As we did in the last section, we first treat the case
¢ =0 which represents a simplified situation when ¢
contains only n torque-ripple harmonics. Setting { =0
the error dynamics equation becomes

é+kyé+ke—wP+ =0

é+kyé+kye—wpP=0. (19)
Note that this is of the same form as the error equation in
the standard approach of last section, except 1) the num-
ber of parameters is 2n + 1 instead of 4n + 2, 2) the
regressor contains only periodic functions of 6 and hence
is bounded.

Now we design the parameter update law for P (or
equivalently for P since P* = 0) in (19) using a Lyapunov
approach. Choose a positive definite Lyapunov function
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candidate
V=(é+kee) + (k, +k,(ky— k,))e* + PT'P,
(20)

where I' is a symmetric positive definite adaptation-gain
matrix (typically diagonal or simply yI; y > 0), and k,, > 0
satisfies

ky >k, > 0.
The derivative of ¥ along solutions of (19) is

= 2k, — k,)é* — 2k ke

(21)

+2P(T71P + (6 + ke)w).
Choosing the adaptation law

P=P=—(¢+k,e)Tw (22)
leads to

(23)

which is negative semidefinite when (21) is satisfied. The
update law in (22) will be used in two adaptive systems
defined by the following.

Definition 1: We call (18) together with (22) the model
system, and (19) together with (22) the simplified system.

Both of these systems share the structure shown
schematically in Fig. 1. If ¢ has a finite number of
frequency components all represented in the regressor
vector (a sufficient condition for this is that i, is constant
and f and g have a finite number of spectral lines), then
by taking P* to be the vector of Fourier coefficients for g,
(18) becomes (19) since the residual torque ripple ¢ will
be zero. In this ideal case, our results for the simplified
system hold for the model system.

The Lyapunov analysis immediately leads us to the
following.

Lemma 2: In the simplified system:

V= -2k, —k,)é* — 2k k,e?

i) the zero solution is globally stable in the sense of
Lyapunov,

i) w'P is bounded,

iii) e and é > 0as t - oo,

Proof: The proof is included for completeness.

i) is an immediate consequence of (23). Since i) implies

e,é,P e [” and |lw(®)| < 1, 1,---, DIl, we have w'P € L*
as required by ii). With these, (19) implies ¢ € L*. Thus,

d
—e, —¢ € L hence e, ¢ are uniformly continuous.

dt  dt
(24)

Moreover, from (23), we have

k, [ e at
0
= V(0) - V(T) < V(0).

Hence, ¢, ¢ € L. This and (24) lead to iii) and the proof
is completed.

2k, - ka)foTéz dt + 2k,

ed’éd ee PD i ip 0 6

—P D : X
N Controller| 0/ iy | Motor

8 T “hurrent

o B el cosp()

P = - ye+k,e)w] we)

6 6

Fig. 1. Structure of adaptive linearizing motor control system.

In the above derivation, we have used a simple PD
controller. However, any passive controller will work, and
all the following analysis holds with little modification.

V. EXPONENTIAL STABILITY OF THE SIMPLIFIED
SYSTEM

It is well known in the adaptive control community that
adaptive systems with only partial error convergence are
not robust to modeling error and other uncertainties [21],
[22]. Even for linear systems, various instabilities can
occur [23], [24]. One way to ensure robust stability is by
persistency of excitation of the regressor which guaran-
tees exponential stability for common adaptive control
systems. Although Dasgupta et al. [25] presented results
on persistency of excitation in identifiable bilinear sys-
tems, general nonlinear systems and closed-loop adaptive
control of nonlinear systems are extremely difficult to
analyze.

Fortunately in the motor control case, the regressor
functions are all continuous and periodic and hence
bounded. By taking advantage of these special properties,
we are able to find conditions on exogenous signals to
guarantee persistency of excitation and establish robust-
ness of our motor system.

This section establishes the exponential stability of the
simplified system. The key to this result is the establish-
ment of conditions on exogenous signals guaranteeing
persistency of excitation. Such conditions are impossible
to find for general nonlinear systems, but the special
structure of the motor dynamics leads to this exceptional
result. The development begins with the following Lemma.

Lemma 3 (Guaranteed Minimum Speed): For the simpli-
fied system, given w,, > 0, there exist T > 0, 0,y > @,
>0 and wy > w, such that wyy, = 6, > w,, for all ¢
implies wy > 6 > w,, for all ¢ > T.

Proof: In (19), conmder w'P as the input and ¢ as the
output. Then, the corresponding transfer function is given
by

S
H(s) s*+kys + k,
Since H is exponentially stable, for given initial condition
and ¢ > 0, there exists 7 > 0 such that the zero-input
response will be less than ¢; after T. Let €, be the bound
on |w'P|, then for all t > T .

16 — 8,1 = Il < | Hlle, + . (25)
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For a given w,, > 0, choose

Wy, = |Hlle, + € + w, (26)

and oy, > w,, and

wy =Hlie, + € + w,y- 27

Then, from (25), w;y, > 6, > w,,, for all ¢ implies wy >
6 > w,, for all t > T and the proof is complete.

The significance of the lemma is that it specifies a
condition on an exogenous signal which guarantees a
desired minimum motor speed. This minimum speed in
turn, by the next lemma, ensures persistency of excitation
of the regressor which is essential for robust adaptive
systems.

In control system design, the lemma provides qualita-
tive, rather than quantitative, guidelines for tuning the
adaptive system. For example, by (26) and (27)

oy — o, =2|/Hlle, + 2¢ + (053 — ®4m)-

Clearly, increasing k, and k, reduces motor speed varia-
tions, since doing so reduces || H || and reduces ¢; for fixed
T. Also apparent is that decreasing fluctuation in the
reference decreases fluctuations in motor velocity.

Lemma 4 (Motor Persistency of Excitation): If w,, > 6 >
@, >0 for t > T then w defined in (4) is persistently
exciting (PE) for all ¢ > T.

Remark 5: This result is intuitive yet very useful. It
simply says that by running the motor at a minimum
speed we can “see” the entire torque-ripple spectrum. If
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motor speed control. The inclusions of a dead-band in our
adaptation law around zero velocity may enable us to
handle more general adaptive motion control problems.

Proof: By Definition A.1, we must establish the exis-
tence of a, B > 0 and T, such that

I< [t+T°ww’ dr< BI forallt>T.
t

Choose T, = 27/pw,,). Since 6 > w,, for t > T we have

. 2m
(1 + T,) — 6(1) = [*T"a iz 0,1y = .

Then

- do

ft+T0WWtdt=fe(t+T0)thl
t [16)) 0

Since 6 < w,,, we have

4T, 1 rou+1y
f °ww'dtz-—f Tt o
¢ T

27
1 o7
> — [*" Twwido (28)

Wyr 70(2)

where the last inequality follows from the fact that ww' >
0 and 6(¢+ + T,) = 6(t) + (2/p). In substituting w from
(4) into (28), we obtain

1 sin p@ cos npf

1 27 | sin p6 sin’ p@ sin p# cos npf
t+Ty Loy X d6
f ww'dt > f cos p@  sin p#O cos po cos pb cos npf
t Wy -0
cos np@ sin po cos npf cos? npf
2@/p 0 0
1 0 0 T
= ces ﬂ-./p aes 2 12n+1'
Wy bwy
0 0 w/p

motor speed is too low, updating should be turned off to
prevent parameter drifting. Note that although here we
specified a positive speed, the direction of rotation does
not matter. This lemma and the previous one allow us to
specify conditions on exogenous signals that will guaran-
tee persistency of excitation. In relying on the condition in
this lemma we are restricting ourselves, more or less, to

On the other hand
0(t+ T,) = 6(t) + fHT“é dt < 6(t) + wy T,
t

It

Wy, 27 wy 127
(1) + — — < 0(1) + [—“]—
O P o, | P

where [ x] denotes the least integer greater than or equal
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to x. Therefore,

8 wy ] 27
D+ — 1 —
fH‘TOWWthS/ [a}ml P
t 0(t)

1 1
ww'—do < fww’—dé)
0 ®

m

1 sin p@ cos npf
1 sin pé sin’ pg sin p@ cos npb
= w*f cos spf  sin pé cos po cos pé cos np@ | d6
cos np@  sin pé cos npb cos? npf
2m/p 0
1l 1o 27 [w
= —[_M] 0 /P 0 5—[_1”]12”1‘
o, | @, por, | o,
0 /P

Therefore, by Definition A.1, w is PE on [T,) and the
proof is complete.

Roughly speaking, a larger (a/7,) means that the
regressor is “more exciting” and a larger (a/B8) means
that the excitement is “more persistent,” one expect that
parameter convergence is better when these are large.
From the proof, (a/T,) is proportional to (w,, / wy,) and
a/B to wl/wl.

We are now ready to present the main result of this
section.

Theorem 6 (Exponential Stability of Simplified System):
For the simplified system, there exist Wyy 2 Wy, >0
such that wgy > 6, > w,, for all ¢ implies e,é, P — 0
exponentially with convergence rate yk + O(y2) for some
k > 0, where vy is the adaptation rate.

Proof: Let € = ¢ + ke, and without loss of general-
ity, I' = yI;. Then our parameter update law becomes
P=— ywWe.
Considering w'P as an input in (19) and solving for €, we
obtain

€= He(w’ls),
where
s+k,

H S R E—
T+ hys +k,

e(s) =

For k, satisfying (21), we have
Kok, + (ky — k) w?
(k, — 0?)" + w23
forall we R (29)

and so H, is strictly positive real (SPR, see [26, definition
A.2]. Using standard results (see Lemma A.3 in the Ap-
pendix) on exponential stability of adaptive systems, Theo-
rem 6 will be proved if w is PE.

To show this, fix a minimum speed w,, > 0. Then, we
can choose w,, according to (26) and w,y > w,,. By
Lemma 3, there exist T and w, as in (27) such that
Wy 2 0 2 @y, > 0 for all ¢ implies wy, > 6 > w,, for

Re(H (jw)) =

all ¢ > T. This, by Lemma 4, implies that w is PE for all
t = T and the proof is complete.

This theorem is unique to motor control since it uses
the periodicity of the motor dynamics. Although it is
developed for the simplified system, it is of great practical
importance for proving robust stability of the model sys-
tem. Such results would be very difficult, if not impossible,
had we taken the standard approach.

VI. ROBUSTNESS IN SLOW ADAPTATAION

With the exponential stability of the simplified system,
we are now ready to study the stability of the model
system. The basic idea is to think of { as an unmodeled
perturbation to the simplified system and derive what
amounts to a robustness result.

There are some established robustness results in adap-
tive control aimed at these kinds of problems (see e.g.,
[27]). Such robustness results are based on a small-gain
argument. The unperturbed adaptive system is viewed as
an open-loop forward system and the perturbation is
viewed as a feedback block. If the prouduct of the
input—output gain of the forward system and that of the
perturbation block is less than one, the perturbed system
remains stable by the small gain theorem [28]. Therefore,
for a fixed controller and adaptation gain, a sufficient
condition can be given on the allowable perturbation.
However, this does not work very well if the adaptation
gain is allowed to change, since the allowable perturba-
tion goes to zero as the adaptation gain is reduced. The
reason is that the gain of the forward system is, roughly
speaking, inversely proportional to the adaptation gain in
slow adaptation.

On the other hand, this loss of robustness is not ob-
served in simulation or experiments. A closer look at the
structure of the adaptive system reveals that the perturba-
tion only enters the error subsystem directly, not the
parameter update loop. It affects the parameter subsys-
tem after being scaled down by the adaptation gain. These
observations lead to the hypothesis that robust stability
should be preserved in slow adaptation and independent
of the adaptation gain.
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Here, we take an approach which exploits the detailed
structure of the adaptive controller and removes the limi-
tations of the existing techniques which suggest that fast
adaptation must be used for robust stability. This is done
through a new two Lyapunov function approach which
proves to be very effective. The technique of Vidyasagar
and Vanelli [29] is used to construct Lyapunov function
dynamics for the error and parameter dynamics. The
contribution here is proving stability by the use of coupled
Lyapunov function dynamics. The resulting theorem is the
following.

Theorem 7: Consider the following adaptive system with
linear error equation, nonlinear regressor w and unmod-
eled disturbance ¢ due to modeling error:

i =Ax +b({+w'P) (30)
p= —ywc'x 31
{=H,(x,P,r) (32)

where A, b, ¢ are constant matrices and H, is a nonlinear
operator. Suppose the following:

i) H(s) =c'(sI —A) 'b is SPR;
ii) w is PE;
iii) there exist B;, K,, K, and K,, such that

IH,(x, P, )l < K,NIxll + K5I Pl + K, lirll + B, (33)

Under these conditions, there exist y*, and constants
py» P2 > 0 (independent of ) such that if y € (0, y*), K,
and K satisfy
K, +pKs <1, (34)

and r is bounded, then ¢, P and x are bounded.

Remark 8: In words, this theorem says that for arbitrar-
ily slow adaptation, if the perturbation is sufficiently small
relative to the stability of the matrix A4 and the degree of
persistency of excitation of w, the perturbed system re-
mains stable.

Remark 9: H, can be simply a nonlinear function. It is
then required to be sector bounded.

Remark 10: When (34) cannot be satisfied globally, a
local version of the result can be obtained.

Proof- Since H, is SPR, A, b, ¢ satisfy the positive-
real lemma (see Lemma A.4 in the Appendix). Choose
V, 2 x'(t)Px(t) where P> 0 is as in the positive-real
lemma. Then its derivative along the solution of (30) is

Ve = x'( A'P + PA)x + 2x'Pb(w'P + {)

=x'(=2p,] — QQ")x + 2x'c(w'P + {)

IA

=2pIWx()I7 + 2lx()lHlle(w'B(1) + L(D))I

Py
2 +
z(P) !

al/*(P)

Vi ie(w'P(t) + L)),
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where p,_ is given in the PR lemma. Let v; =
we immediately have

/2, Then,

d 1 -
:i—tvl(t) < - —(P) ——u,(t) + 1/Z(P)Hc(w’P(t) + 2,
(35)
which yields
1 o(P)
vl(t) < vl(()) + — —1/2—(T)“C(W P(t) + {(t))“ (36)

This equation describes the dynamics of the Lyapunov
function V. Note that it is coupled to P and ¢. (We will
also derive similar dynamics for a Lyapunov function
which is positive definite in the parameter P. Together
with a small-gain type argument, they give the desired
bounds.) First, we use the BIBO stability of (36) to get a
bound on ||x||. Since llx()ll < (1/g'/*(P)u(t) we have

m, m, .
lixll < p—HCIi Nzl + —=lwlilcliPll + B,, (37)
where
a(P)
m, = (P and B, = 272 (P) ————v(0).
Now using (30), (31) can be rewritten as
P = —ywH,(w'P) = ywH,({). (38)
Since H, is SPR, and w is PE,
P = —ywH,(w'P) (39)

is exponentially stable with convergence rate yk + O(y)
for some k > 0 independent of y. By the converse Lya-
punov theorem (Theorem A.5), there exists a Lyapunov
function V,(t, P) such that

IBOI? = Vy(t, B) 2 a I BODI?, (40)
V<39>(z P) < —a,llP(D)IP,
< a3l (1),

for all ¢ > 0, some a, >0, a, = vk, + O(y*), a3 >0,
and some k, > 0. Let ps = k,/4 then there exist y* such
that for all y € (0, y*)

2yp5 < vk; + O(¥?) = a5.

Differentiating V, along the solutions of (38) leads to

. L " ] -
VEO(e, Py = VP21, P) — 5Vz(1,P)7ng(£)(t),

< — |l B()IP + el P()I lywH (£

< = 2ypsll P(OI7 + a5l PO IlywH, (L) (DI

<~ 2yp¥i(t, B) + —z Vil wH OOl
1
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setting v, £ V,/? yields

d ay

2 2(0) < —yppup(t) + YW”WHC({)U)”, (41)
hence

1 a,
0 < vy(2) < v,(0) + p—ﬁm/—zﬂwﬂ IH,(&)()I.

(Note that the y dependence drops out here!) Using (40)
and the definition of v,, we obtain

- mg
1Al < p—:uwu IHIIZI + Bs (42)

with ms £ (a;/2a,) and B 2 (1/a}/?)v,(0). Substitut-
ing this into (37) gives

my mp 2 m,
llxll < ’. llell + —lell Iwl*NH Iz | + —Bs + B,.

X pP Py
(43)
Furthermore, from (32) and (33), we have
1< K, lIrll + K, lIxIl + K511 Pl + B, . (44)

Define p, £ (m,/pXlicll + (ms/pp)llcl IWIPIHD, p, 2
(mps/pp)wll | H,ll, and y, £ p,K, + p,K;. (Note that 1,
is assumed to be less than 1 in the statement of the
theorem.) Substituting (42) and (43) into (44) results in

mX
N0 < vl + Kl + B, + KsBs + K, B, + p—Kx Bs.

Since y; < 1,1 ~ y; > 0. Hence, from the above inequal-
ity, if r is bounded, we immediately have { bounded:

IZlh< @ —y)™

. {K,Ilrll + B, +KsBs+ K, B, + %Kx B,;} . (45

X

Denoting the right-hand side of (45) by y, and substitut-
ing (45) into (42) and (43) yields

- mg
IPll < FIIWII WH,llv, + Bs,
P

m, mg 2
llxll < . llell + FIIcII Iwl“IH Ny,
P

X

m,
+—llellliwll B5 + B,.
Px

This completes the proof.

From the proof we see that reducing p, and p, im-
prove robustness. This is equivalent to increasing the
convergence rates p, and ps and reducing the overshoot
m, and mp. This can be accomplished by increasing the
controller gain and improving the persistency of excitation
of the regressor.

Corollary 11 (Continuous Degradation): Under the con-

ditions of Theorem 7, x and P converge to neighborhoods
of zero with radii «,(1 — y))7!Irll and «s(1 — y) 77|l
(which go to zero as r goes to zero), respectively, for some
Kk, > 0andks > 0.

Proof: By inspection, the corollary follows immedi-
ately from (45), (41), and (35) since the B’s are due to
initial conditions, and «, and ks are given by

m, mg 2
k= lxll < —= el + —llellwli*Il Al | K, ,
x PP

mp
kg = —Iwll | HIK,.
Ps

VII. STABILITY OF THE MODEL SYSTEM

Applying Theorem 7 to our model system immediately
leads to the following results.

Lemma 12: Consider the model system (18) and (22). If
w is PE and 6, is bounded, then there exists €* > 0 such
that (llg() — kll/k,) < €* implies boundedness of e, ¢,
and P in the model system.

Proof: Equation (18) can be rewritten in the form of
(30) with

X 0 1
x'=(e é), A=|_ -k, |

P
b =0 1), ¢t =(k, 1), (46)
and
~{=q—wP*=(g(8) — k)i, +f(8) —w'P* (47)
= g—(%((;d+kdé+kpe +w'P) +f(0) — wP*
8(0) — ky ; g(0)
=—k0——'0d+f(9)— ko w'P
g(6) —k g(6) —ky
+ — ko O[kp kd]X+ k[) OWP'

Hence, { is of the form of (32) with K, =1, g, = 0 and

. 8(0) — K, 2(6)
Tk ks

r 6, + f(0) — w'P*,

(48)

By the assumptions on f, g, and ,,  is bounded, and so
are K, and K defined as follows:

) -k
K, - "g()k—o""n[k,, Kl (49)
) -k
Ky = O Kl (50)
0

Hence, ¢ satisfies condition iii) in Theorem 7. Also the
SPR condition is met due to (29) in Section V. Thus,
Theorem 7 applies. Note that both K, and K have the
common factor (||g(-) — k,ll/k,). Substituting them into
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(34) and taking out the common factor yields

lig(-) = koll

U (pillk, kAl + o) < 1.
0

Defining

e 2 {pllk, ki+ polw)

then (llg() — koll/ky) < &* implies (34) and therefore
implies boundedness of e, é, and P.

Finally, we can state the stability of the adaptive con-
troller with conditions on exogenous signals in the follow-
ing.

Theorem 13 (Stability of the Model System): For the
model system described by (18) and (22), there exist
Wy = 0y, > 0, €* and y* such that w,, > 6, > Wy
for all ¢, y< (0,y*) and (lg(-) — kll/ko) < €* imply
boundedness of e, ¢, and P. Moreover, e, é, and P
converge to a neighborhood of zero with radius propor-
tional to

Y ko . :
“ 80~k )ko 26, + ) - ‘E%W'P* :

Remark 14: Here we observe another way of having
parameter (and also tracking error) convergence. If we
choose 6; = 0, i.e., constant velocity tracking, and if f(:) is
in the range of w'(:), then there exists P* such that the
radius of the above neighborhood is zero. In practice, we
can only remove a finite number of frequency components
from the torque ripple so that f(8) — (g(6)/k)w'(8)P*
will contain higher frequency components. The theorem
tells us that the tracking error and parameter error con-
verge to a neighborhood of zero with radius proportional
to the size of residual torque ripple.

We do not actually calculate any of those bounding
numbers such as €*, y*, @,,,, K,, Ks, and so on. Their
qualitative role in stabilizing the system is more impor-
tant. For example, if the system is stable at a certain
velocity with a particular controller gain and adaptation
gain, then it is also stable if we increase motor speed or
controller gain, or decrease adaptation gain.

Proof: The boundedness follows immediately from
Lemma 12 if we have PE. The convergence follows from
Corollary 11 and (48). Hence, we only need to establish
that w is PE which, modulo the ¢{(8) term, can be
accomplished by the choice of reference signals by Lem-
mas 3 and 4. Therefore, we show that with nonzero ¢
Lemma 3 still holds, i.e., a minimum motor speed can be
achieved by choice of reference signal.

First, choose the Lyapunov function in (20). Differen-
tiating it along the solutions of (18) yields

v < clxg,

where ¢ and x are as in (46). Using (47), (49), and (50)
yields

Va8 < il el el + lell K Mxl> + el Kallxl 1Al (51)
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where ||r|l, K, and K are finite. Noting that
Lil(x(8), PO < V(1) < LI(x'(8), PP
for some ;,1, > 0, (51) reduces to
pas < 2L V2 4 21,V
for some 15,1, > 0. Substituting in v* = V yields
VI® < [ + L.
Integrating this differential inequality and observing that
(x4, POIl < I7 /%, we have [I(x'(t), PV < [se™ + g

for some I, 1 > 0.
Now fix a minimum speed ,,, let T; be finite and

sup IIW‘};(t) =2l

tefo, Ty

A
€ =

Parallel to the proof of Lemma 3, choosing w,,, and w,y
according to (28) and (29) ensures that wgy = 6; = @y
for all ¢ € [0, T,) implies wy, > 6 > w,, forall t € [T, T),
where T is as in Lemma 3.

Thus, the proof will be finished if we can find a bound
on ¢, which is independent of T; since allowing T; — «
yields a uniform bound on w'P(t) — {(¢). This is done as
follows:

sup lw'P(1) = {(1)l
tel0, Ty

€

max{ sup lw'B(2) — Z(DIl,
telo, T)

sup
te[T, Ty

wB(e) - zm@

< max {lSe’J + lg,

sup IIwP(t) = L),
te[T, Ty
sup {IwP(r) = £()I|6(r)
te(T,, ©)

€ [w,, wy] forallT> T,}}

sup {HWTI;(f) - f(t)nlé(”)

= max {lse’J + I,
te[T, »)

€ [w,, oy] ,foral s> T}}

where the last term is finite by Lemma 12 and depends on
T through the initial condition of x and P at T but not
on T,. Hence, the proof is completed.

VIII. EXPERIMENTAL RESULTS

So far it has been shown that with an appropriate
controller the motor can be run at a guaranteed minimum
speed by the choice of reference signals, which in turn



ensures the boundedness of all the internal signal. Build-
ing on this, further results on parameter convergence in
slow adaptation can be obtained [18], for the model Sys-
tem in the presence of residual torque-ripple harmonics
which are not cancelled by the controller. Performance of
the adaptive controller is evaluated in simulation and
experiments, and results are included here to show the
efficacy of the proposed controller.

Fig. 2 shows the experimentally measured torque-ripple
spectrum of a 90-pole 2-phase hybrid step motor before
adaptation. The commutation waveforms were the “ideal”
sinusoidal signals, but torque ripple is clearly seen at the
pole frequency and its harmonics. This spectrum was
produced with the following experimental procedure: First,
a constant current i, was applied to the motor with a
low-gain velocity feedback loop to keep the motor running
at roughly constant speed on the average. Once a near
steady-state motion was attained the motor current was,
for our purposes, constant. Next, a series of shaft-angle
measurements was stored at the sample rate. This series
was interpolated and resampled uniformly in the spatial
shaft-angle domain. Finally, 2048 samples corresponding
to 2 revolutions of the motor were used to generate a
(noisy) acceleration estimate which was FFT’d to generate
Fig. 2.

Next, the adaptive control law proposed in this paper
was implemented with a low-gain PD controller to track a
constant speed trajectory. The parameters were initialized
to be zero, corresponding to sinusoidal commutation. Af-
ter steady state was attained, the same procedure was
followed to generate the new torque-ripple spectrum
shown in Fig. 3. Observe the dramatic removal of all the
torque-ripple spikes, the reduction was over 30 db. Here,
the removal of the spikes serves as an indirect proof, and
may be the best proof, of parameter convergence.

Fig. 4 illustrates the initial adaptation process in time
domain. Low PD gains and low adaptation gains were
used. Note how the velocity ripple was gradually sup-
pressed. The velocity takes discrete values due to the use
of a digital encoder. As predicted by the analysis of
Section VII, slow adaptation did not destroy robust stabil-
ity. In fact, final parameter convergence was made better
by reducing adaptation gains. In Fig. 4, the initial velocity
variations can be reduced by increasing the PD gains,
while increasing the adaptation gains speeds up the veloc-
ity convergence.

While our scheme is very easy to implement, the stan-
dard approach to adaptive linearization of Section III is
not. Due to the division by w’'P, as we mentioned before,
it is very difficult to stabilize the system, in experiments or
simulation. One way to improve is to use projection or
simple bounding to limit the variation in P, if we have a
good initial guess of the range of P,. Another way is to
largely reduce the adaptation gain T , for P,, for example,
one thousand times smaller than that of I';. Fig. 5 shows a
simulation result of the standard approach using reduced
I;. Velocity converges very nicely, but parameters keep
drifting slowly due to the lack of persistency of excitation.
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Fig. 4. Time-domain response of motor velocity during initial adapta-
tion.

This drifting reflects instability in the system. To compare,
Fig. 6 shows parameter convergence, using our reduced
parameterization approach, in the presence of residual
torque ripple of higher order harmonics.
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Fig. 5. Parameter drifting in standard approach.
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Fig. 6. Parameter convergence in our approach.

IX. CONCLUSION

The parameterization taken in the standard approach is
simple and intuitive. However, it has three fundamental
deficiencies. First, it uses twice the number of parameters
to cancel the same number of torque-ripple harmonics as
required by our approach. This may be a significant prob-
lem in real-time implementation if only limited computa-
tional power is available. Second, due to this over parame-
terization, parameter convergence is not guaranteed. In
fact, persistency of excitation is lost in motor speed con-
trol, whereas in our approach PE can be guaranteed by
conditions on exogenous signals. Third, due to the inver-
sion in (8), which involves estimated parameters, a non-
sector-bounded nonlinearity is undesirably introduced.
This causes problems in stability as well as robustness.

Due to our reduced parameterization, we are able to
establish strong stability results and robustness to nonlin-
ear modeling errors. The results in Sections V and VII
are special to our motor system since we have made
explicit use of the periodicities in the motor dynamics.
The result of Section VI, that robustness is preserved in

0 5 10 15 20 25
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slow adaptation, is obtained in a fairly general setting,
using a novel technique of two coupled Lyapunov function
dynamics. The modeling errors that can be handled in-
clude nonlinear operators and nonlinear functions in
tracking error and parameters. This robustness result
complements that of Taylor et al. [14] where a nonlinear
adaptive control scheme is shown to be robust to unmod-
eled fast stable dynamics. The successful implementation
indicates the value of our approach for actuator lineariza-
tion. In fact, our scheme can be readily applied to brush-
less DC motors and other rotating machines.

Although our robustness result is proved in a general
framework and is useful outside motion control, it does
not apply to the adaptive system of Section III based on
the standard approach. There are two reasons for this.
First, Theorem 7 requires persistency of excitation which
is not ensured in the standard approach. Second, the
sector-boundedness of equation (33) cannot be guaran-
teed for the perturbation term ¢ in (7).

APPENDIX

R,R, real numbers, and nonnegative real numbers

C complex numbers

R” R**™ p-dimensional Euclidean space, and n X m
matrices with real entries

PE persistency of excitation, or, persistently excit-
ing

SPR strictly positive real

A(A) the ith eigenvalue of 4 € R**”

a(A4) the largest singular value of A4 € R™*™,
(A) = ymaxj_; A;(A44")

a(A) the smallest singular value of A € R"™™"™,
a(4) = y/min]_, A,(AA")

H a transfer function, or a linear operator with
transfer function H

H(s) the transfer function evaluated at s, when
seC

H(x) the output signal when passing x through a
linear operator H with suitable dimension
and zero initial condition, where x: R, — R”

H(xXt)  the vector value of H(x) at time ¢

lall the vector 2-norm if a € R", or,

1%l the [*-norm if x: R,— R” ie, x|l =
sup, e g, 2l

[LAll matrix 2-norm if A € R™™, ie, |4ll=
max - [l 4x|

IH I*-induced norm of an operator: |H| =
SUP, e 1=, |x= 0 "H(x)“/”x”

lal floor of a € R: |a|=max{i € Z: i < a}

[a] ceiling of a € R: [a]=min{i € Z: i > a}

g 2 {x: R,— R"[limg_,,sup,cp 7 IxOI <
oo

}
L 2 {x: R,— R"| [gllx(DI? dt < o}, where 1

<p <

Definition A.1: Persistency of Excitation (PE) [27].
A vector valued function w: R, — R” is said to be
persistently exciting (PE), if there exist constants T, a, B
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> 0 such that
T,
BL > [ w(ryw(r)ydr > al, > 0 forall 1. (A1)
t

Definition A.2: Positive Realness [30]. A rational func-
tion H(s) is said to be positive real (PR) if
i) the jw-axis poles of H(s) are simple with nonnega-
tive residual,
i) for all w € R for which jw is not a pole of H(s)

Re[H(jw)] > 0. (A2)

H(s) is said to be strictly positive real (SPR) if H(s — $)
is positive real for some ¢ > 0.

Theorem A.3: Exponential Stability Theorem [30]. Con-
sider the adaptive control system:

é= —ywH(wip) (A3)

where y > 0 is the adaptation gain. If H(s) is SPR and w
is PE, then ¢ and the internal state of H(s) converge to
zero exponentially with convergence rate yk + O(y?) for
some k > 0.

Lemma A.4: Positive Real Lemma [31]. Let H(s) =
‘(s —A)™'b + d be SPR and proper with H(x) < oo,
Then there exists P > 0 such that

PA+ AP = —2p.1 - QQ" (A4)
Pb=c— Q¢
£¢=12d

for some nonzero Q and p, > 0.

Theorem A.5: Converse Lyapunov Theorem. Assume
that f(z, x): R, X R” —» R” has continuous and bounded
first partial derivative in x and is piecewise continuous in
t for all x in a neighborhood of zero and t > 0. If the
solution of

X=ft,x)  x(t) =x (A.5)

converges to zero exponentially with convergence rate «,
then there exist a function v and strictly positive constants
@, a, and a; with a, = 2ka for some 1 > k > 0 such
that for all # > 0 and x in a neighborhood

1212 > v(e,x) > a,lxl?,
v 41, x) < ~a,llxl?,
ou(t, x)

< asllx]l.
o allxll

This is a modified version of the theorem as in Sastry and
Bodson [27]. (Normalize their v by their a,, and take
their (a;/a@,) to get our «, Finally take T =
(1/2a)In(2m?) to get the form of our a,).
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