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Abstract

In highly accurate pipelined analog/digital converters, precise
control of comparator trip-points, inter-stage amplifier gains
and effective levels of reconstructing D/A converters is diffi-
cult. A new calibration approach allows errors on all these
components, and compensates for them in the digital domain. A
system identification technique using the converter itself, deter-
mines the required digital coefficients. The achievable accuracy
is comparable to sigma-delta converters, at effective sampling
rates almost two orders of magnitude higher.

Mathematical Description

Fig. 1 shows a schematic of one stage of a pipelined ana-
log/digital converter (ADC). The incoming signal, V", is com-
pared against a number of reference levels, V"¢/, using a flash
converter consisting of M comparators which generate a local
code, cd. The flash section is followed by a reconstructing digi-
tal/analog converter (DAC), which subtracts one out of M +1
possible voltages, VPAC | from the input signal. The difference
signal (V® — VPAC) is amplified by a sample/hold (S/H) am-
plifier with gain A (positive or negative). The resulting signal
will be called the residue, V7¢°. A possible input-referred offset
of the will be considered a variation on the VPAC?s,

We will consider a converter with L nominally identical stages,
numbered 0 (last, or least significant stage) to L — 1 (input, or
most significant stage). For any given code, cd, of a stage, [, a
general relation can be written between V;"** and V.

Virb&

From the structure of the pipeline, it is clear that V", = Ve*.
The expression for the input voltage of each stage can then be
expanded, to finally yield (omitting the cd; for clarity):

Vir = VPAC[edi] +
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This equation is valid as long as all interstage amplifiers gains
are linear and free of hysteresis and the stages do not add any
noise to the signal. The equation (and the calibration method)
also applies to cyclic converters, in which the residue from a
single stage is fed back to that same stage for successive con-
versions. In both cases, the local codes of all the stages are
combined to form the digital conversion result (CR), according
to equation (2). The last term expresses the inherent quanti-
zation error.

Minimal Converters

A minimal (as opposed to redundant) converter has an integer
nominal gain value A and reference levels V"¢/ chosen so as
to divide the input range (assumed to be between 0 and R)
in as many equal parts as the absolute value of the gain, |A|.
The number of comparators, M, is |A| — 1. Fig. 2 shows the
minimal designs for stages with nominal gains of 2, -2, -3 and
4 and their transfer function. As long as the input signal is
within the input range, 0--- R, its residue is within the same
range. The last residue will also be limited to 0:-- R, and the
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resulting conversion error (further called quantization error),
€7, will be limited.
R R
0<e™ < " —— 3
< S T Y A @
We will define the range of the quantization error (inherent

uncertainty of the conversion), as 1 lsb = HRP' . Similarly,

the relationship between the input range, R, and the range of
the quantization error (1 Isb) can be expressed as the effective
number of bits, Nss (overall) or nesy (per stage).

R
Negs = Ing(l—Z;b) = L log,(|Al) and nes; =logy(|Al) (4)

Obtaining the conversion result is simplified when the converter
is based on a radix of 2, i.e. when the inter-stage gain A = 2"
, with n (number of bits per stage) integer. It is then sufficient
to convert the thermometer codes cd to n-bit binary and to
combine the bits.

Redundancy

Parasitic variations in the reference levels V"¢f (comparator
offsets) will cause non-linearities in the overall transfer curve
of a minimal converter [1]. The errors are not caused directly
by the V"¢f’s (since these do not appear in equation (2)), but
because the residue of one stage exceeds the input range of the
next stage, which in turn causes the next residue to be even
further out of range. The last residue can get so large that
equation (3) becomes invalid. The quantization error becomes
significant. In practice, some of the amplifiers may also clip,
which makes matters even worse.

The problem can be avoided by increasing the input range of
each stage, beyond the nominal output range of the previous
stage. This guarantees that the residues would remain limited,
as well as the overall quantization error (within 1 Isb). The
input range can be increased using a design where M > |4|—1.
Either the number of comparators is increased, or the inter-
stage gain is decreased with respect to the minimal design.
Two possible of redundant stages with nominal gain of 4 are
shown in fig. 3, as well as their transfer curves.

Design A uses two extra (redundant) comparators compared to
the minimal case, at the top and bottom of the range [2]. One
can verify that this provides an overrange capability of +R/|A|
(25 % in this case). We will call this arrangement ”minimal
+ 2”. Design B uses one redundant comparator compared
to the minimal case and offsets both the V"¢f and the VPAC
by R/2|A] [3. We will call it "minimal + 1”. It provides
an overrange capability of +R/(2 |A]) (here 12.5 %). Either
redundant scheme requires some additional logic to derive the
conversion result in base-2 converters. This has conventionally
been called "digital error correction” [2].

Generalized Digital Error correction

Based on equation (2), a digital error correcting scheme that
also compensates for DAC and gain errors can be derived.
Equation (2) will provide a correct approximation for the input
voltage, as long as its terms are computed using the actual
values of all converter components. Error correction can be
performed by associating small digital look-up tables with each




stage of the converter. Each table is addressed by the local
code of the stage, and generates one term of equation (2). The
terms are summed in a pipelined fashion to form the conversion
result. No tuning of analog components is necessary. To fit the
model of fig. 1 and keep the quantization error within bounds
despite the presence of component errors, enough redundancy
must be built into each stage. For a "minimal + 1" pipeline,
correct operation is guaranteed when

(e4PC 4 PACY R A+ et R< R

54 (5)

With e4P€ the worst-case flash error, ePA€ the DAC error
(both relative to R) and ¢# the worst-case relative gain error.
The straight table values would be nominally different for each
stage. (Successive terms of equation (2) decrease in absolute
value). This is a draw-back: the digital hardware cannot simply
be duplicated from stage to stage. The structure of figure 4 uses
digital multiplication to improve regularity. The table values of
each stage are now nominally identical, and nominally equal to
the ideal VPAC values. We will call these the weights, Wi[cd).
Equation (2) now reads:

Wi Wp-2 Wi_s Wo
CR=[[{ 1D A+ D | A+ 40D A+ A+ W] A
(6)
With the W;’s defined as:
AL-1-1)
Wili) = VP4l ————— 7
] = VAl )

If A is chosen as a power of 2, the extra divisions by AD)
and multiplications by A can be performed by a shifting of
bit lines, without additional hardware. The weights are not
necessarily fractional values; they must be represented by a
sufficient number of bits, to keep any truncation error well
below 1 Isb.

The ” Accuracy Bootstrapping” Algorithm

Equation (7) can only be used to compute the weights if all
actual component values are known. This limitation is removed
by the “accuracy bootstrapping” algorithm. It measures the
converter and calculates the weights in an iterative fashion
(hence the name). It uses the data path already present to
calculate the conversion result. The basic idea i3 to sndividually
measure all the DAC levels of each converter stage, using the
remaining stages of the pipeline. The measurements are used
to update the look-up tables of that stage, and the process is
repeated until each stage has been calibrated. It may seem
unlikely that any accuracy could be gained this way. However,
for specific configurations, the procedure results in an very
stable, fast-converging, iterative numerical problem.

The algorithm requires rearranging of converter stages into a
circular structure, (all stages are identical). The residue of
the last stage (stage 0) is fed back to the first stage (L — 1),
and so is the digital bus with the conversion result. It is now
possible to inject an analog signal at the input of any stage,
and use the circular sequence of stages back to that same point
to perform the analog to digital conversion. Within each stage,
the possibility is added to by-pass the flash comparators and
control the reconstructing DAC externally rather than through
the local codes e¢d. It is also possible to replace the analog
input signal by a fixed potential, Vf'*. The algorithm uses
a DAC/subtractor combination like shown on fig. 5. The
DAC is composed of a fixed voltage, used to bias the gain
stage, and a number of voltages ("DAC increments”), which
are selectively enabled and subtracted from the input voltage.
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The more comparators turn on (the larger the input signal).
the more increments are subtracted. The depicted stage is of
type “minimal + 1", with an input range between 0 and 1, and
a gain of 2. The two increments of 0.5 each, result in nominal
VDAC yalues of -.25, .25 and .75 .

The accuracy bootstrapping algorithm proceeds as follows:
1) The weights of all stages are initialized to their nominal
values: Wi(i] = V,DAC‘"Dm[i] .
2) The last stage (stage 0) is calibrated first. The analog
input of that stage is held at the fixed potential, Vi,

while none of the DAC increments are enabled. The
remaining L stages of the circular structure (L—1, L —2,

-+ 1), as well as the flash section of stage 0, are used
to determine the conversion result, Cp[0]. This zero-level
measurement will be used to cancel any systematic offset
in the stage, as well as the unpredictability of Vfiz,

The analog input of the last stage is held at V/i* while
only the first DAC increment is enabled. The same L
stages of the circular structure (L—1, L—2. --- 1, and flash
section of 0) are used to determine the new conversion
result, Co[1]. The second DAC increment is then enabled
by itself and the same procedure is followed to determine
Co[2]. The procedure is repeated until the M DAC
increments have been measured (Cy(1]- - Cy[M]). Each
Cy[7] value is a measurement of 49 AVPAC[] (AVPAC
represents one DAC increment, V,?AC — VPAC) since
each increment was multiplied by the gain of stage 0
before being converted by the sequence of stages starting
from stage L — 1 .

The value Dg[1] = (Cy[1]—Cp[0])/A is used as an estimate
for AV,PAC[1).  Similarly, Dy[2] = (Cy[2] — Co[0])/4
is an estimate for AVP4C[2]. In general, AV,PAC[i] is
estimated as Dy[i] = (Colz] — Co[0])/A, fori=1--- M.
The Dy values are now used to estimate the new weights
for stage 0 (Wy(i]). Wy[0] is arbitrarily kept equal to its
nominal value. The other weights are computed by adding
the previously obtained Dqg[z]. Wo[l] = Wo[0] + Do[1] ,
Wo[2] = Wy[l] + Do[2], or in general: Wy[:] = W[t —
1] + Dq[z] , for ¢ = 1--- M. All original W;(z] values of
stage 0 are now replaced. Correct calibration can still
be obtained when the analog components are noisy, by
averaging a number of successive measurements for each
Dy[i] value.

Next, the procedure used on stage 0 is repeated to cali-
brate stage 1. The DAC increments of stage 1 are mea-
sured, using the converter formed by stages 0, L—1, L—2,
-+ 2, and the comparator section of stage 1.

4) The same procedure is repeated to calibrate the stages
! = 2.--L — 1. The DAC increments of stage ! are
measured, using the converter formed by stages [ -1, -2,
+++0,L—1"---1. The previously calibrated stage is always
the first (most significant) stage in the converter used to
calibrate the next one. Whenever the weights of stage
L — 1 have been updated, the first step of the calibration
is complete.

5) After one iterative calibration cycle through all the stages,
one could repeat the procedure starting from step 2), to
further refine the estimates of the weights. However, in
most cases one cycle is sufficient.

The resulting overall transfer characteristic may still be
subject to a residual offset or gain error. This can be
eliminated by appropriate linear scaling of all weights,



based on a two-point measurement of a reference signal.
Adding a fixed value to all weights associated with one
stage, results in an offset (vertical shifting) of the transfer
curve. Multiplying all weights associated with all stages
by a fixed value, changes the slope (gain) of the transfer
curve.

The convergence of the procedure can be explained by the fact
that when the DAC increments are estimated, most terms in
the measurement for V/** and for V /2 — AV;PAC are common,
and cancel out when the difference is made. The first term is
different and reflects the range between the largest and smallest
DAC level in the following stage, scaled by the interstage gain.
When additional stages are calibrated, any mismatches are
carried forward, resulting in linearization. A detailed analysis is
not within the scope of this text. Fig. 6 shows a possible block
diagram of a monolithic 16-bit pipelined converter, including
look-up tables and pipelined digital data path for real-time
operation. A simple controller and an arithmetic unit are
needed for on-chip calibration. Obviously, calibration and
correction can also be performed off-chip, with dedicated logic
or a general-purpose computer.

Simulations
Accuracy bootstrapping was tested through high-level Monte-

Carlo simulations of converters with random errors. For a
particular run, the residual worst-case non-linearity figures (in

Isb) after calibration were tallied. Their mean and standard
deviation were used to evaluate each archtecture. As a metric
for non-linearity, worst-case INL (integral non-linearity) [4]
can be used. However, a digitally corrected N-bit converter
can have more than N output bits, more than 2V transition
levels and small non-monotonicities (below 1 Isb). Therefore,
the definition of INL is generalized. INL is the amount by
which the range of the total approximation error ezceeds 1 Isb
(inherent quantization error). Similarly, DNL (differential non-
linearity) can be defined as: the amount by which the maximum
difference between two consecutive digital outputs ezceeds 1 Isb.
Total harmonic distortion or total noise can also be used as a
measure of non-linearity.

For the simulations presented below, the worst-case residual
non-linearity was determined directly from a comparison be-
tween actual (found through calibration) and ideal (based on
equation (7)) weights. The worst-case differences were calcu-
lated on a term-by-term basis, after correction for a possible
residual gain or offset error. Although a detailed discussion of
the method is beyond the scope of this text, the values are more
pessimistic than the worst-case INL.

Some results are summarized in table 1. All runs used "min-
imal+1” architectures, on which accuracy bootstrapping was
found to perform most reliably. The table lists the number of
stages (L), nominal gain (A), gain error in % (eA), reference
level errors (V) and DAC errors (eD) in % of the range, input-
referred noise of each stage (in Isb), the number of averages used
during the measurements (Nav), the number of iterations (Nit)
and the nominal number of bits (bits). Each batch contained
1000 runs. The table shows the mean and standard deviation
of the residual non-linearity (in Isb).

Calibration also appears to work on ”minimal+2” architec-
tures, but results in larger residual errors and less reliability
(larger sigma). A pipelined converter that seems to use a some-
what similar calibration technique with one comparator per
stage and a gain smaller than 2, has also been reported [5].
Few details are presently available.

Fig. 7 shows the linearity for a number of 16-bit (16 stages with
gain of 2) "minimal+1” converters, expressed in effective bits.
Each of them had initial relative errors of 1% on all components.
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The figure shows the linearity before calibration, then each time
after a stage has been calibrated (the newly calibrated stage
being first in the pipeline). This is repeated for two passes of
the algorithm.

Conclusion

State-of-the-art CMOS technology allows the design of fully dif-
ferential switched-capacitor amplifiers with linearity and noise
performance to the 14 to 16-bit level or beyond at a S/H rate
of several Mhz. So far however, the inability to control com-
ponent matching to the same level, has limited their applica-
tion to over-sampled converters [6]. The high over-sampling
ratios used (usually above 100) limit the over-all performance
to audio-frequency conversion rates, where a digitally corrected
pipeline could reach the same accuracy at MHz rates.
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Fig. 6. Calibration Hardware
Fig. 5. Stage, Modified for Calibration
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Table 1. Simulation Results

231



