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Control of Free-Flying Underactuated Space
Manipulators to Equilibrium Manifolds

Ranjan Mukherjee, Member, IEEE, and Degang Chen, Member, IEEE

Abstract— Underactuated mechanisms will provide low cost
automation and will easily overcome actuator failures. These
mechanisms will be particularly useful for space applications
because of their reduced mass and lower power consumption.
In space underactuation can be effectively introduced in robot
manipulators. Such mechanisms will however be difficult to
control because of the fewer number of actuators in the system.
Of theoretical interest to us, is the problem where the unactuated
joints do not have brakes. It is shown that in such a situation it
is possible to bring the system to a complete rest and converge
the actuated joints to their desired values, provided the system
maintains zero momentum and none of the unactuated joints
are cyclic coordinates. Qur main interest is to converge both
the actuated and the unactuated joints to their desired set of
values. For this purpose, we assume that the number of actuated
joints are more than the number of unactuated joints, and the
unactuated joints have brakes. It is shown that if there exists
sufficient dynamical coupling between the set of actuated and
unactuated joints it is possible to converge all the manipulator
joints to their desired values. In the paper, the orientation of
the space vehicle is not controlled because this task can be
accomplished after the manipulator has been reconfigured, using
methods already developed.

I. INTRODUCTION

SPACE ROBOT mounted on a space vehicle is equipped
Awith both internal-force actuators such as reaction wheels
or control momentum gyroscopes, and external-force actuators
such as jet thrusters to compensate for various disturbances.
It is pragmatic to minimize the usage of the external-force
actuators to maximize the useful life-span of the space robot. In
situations where the space robot maintains zero momentum, it
is possible to plan the motion of the system using the motion of
the robot and without using the vehicle actuators [14], [22], or
by using only two reaction wheels [7]. While vehicle actuators
may be sparingly used, they cannot be eliminated from the
design of space robotic systems for very practical reasons.
Some of the joint actuators of a multilink space robotic system
can however be eliminated for numerous advantages that we
will discuss shortly.

We define an underactuated space robotic system as one
that has fewer number of joint actuators than the number of
its joints. Underactuation imposes second order nonholonomic
constraints on the motion of the system. Only in particular
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situations, these second order differential constraints may be
integrable into first order constraints [16]. Though under-
actuated dynamical systems are unconventional and will be
difficult to control, such systems will have a number of ad-
vantages over completely actuated systems. Since the actuators
of any dynamical system contribute largely to the cost of
the system, underactuated mechanisms like robot manipulators
will provide low cost automation. With fewer number of
actuators, an underactuated mechanism will also be easier
to design. The concept of underactuation can be extended
to completely actuated mechanisms with actuator failures.
Control strategies developed for underactuated systems will
be useful in the event of actuator failures for robots on
earth (limited to planar configurations) and more importantly
in space where the repair or replacement of actuators will
be a difficult task. These advantages have prompted us to
investigate into the control of underactuated systems.

In 1991, the position control of a terrestrial manipulator
composed of active and passive joints was discussed in [2].
The passive joints were assumed to have brakes instead
of actuators. When the brakes were engaged, the passive
joints were fixed and the active joints were controlled. When
the brakes were released, the passive joints were indirectly
controlled by the coupling characteristics of the manipulator
dynamics. The position of the manipulator was controlled
by engaging and disengaging the brakes. The kinematics and
dynamics of underactuated manipulators was also studied in
[6] where the spatial operator algebra was used to develop
an algorithm for the inverse dynamics. The failure recovery
control of space robotic systems was studied in [17].

A space vehicle that houses a completely actuated manipu-
lator can be reoriented arbitrarily by using internal motion of
the manipulator joints. It has been shown that in the planar
case, the manipulator requires two actuated joints to achieve
this task [12]. In the three dimensional case, the manipulator
can perform this task with three actuated joints [4], [12],
or two reaction wheels [7]. Using the same methods, an
underactuated space manipulator can reorient its space vehicle,
if it engages its brakes to fix the configuration of the actuated
joints. Consequently, it is of practical importance to develop
control strategies for the reconfiguration of all the joints of
an underactuated manipulator. We discuss this problem in
Section V-B. But first, we consider a problem that is of
theoretical importance to us. We show in Section V-A that in
the absence of brakes, it is possible to converge the actuated
joints to their desired values and bring the system to a rest
provided the system maintains zero momentum and none of the
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unactuated joints are cyclic coordinates. To prepare ourselves
for discussion, we formulate the dynamics of underactuated
space manipulators in Section II. In Section III, we discuss
some of the issues related to the stability and controllability
of our system, and in Section IV we discuss an asymptotic
stability theorem that we use in Section V for developing
control laws. Simulations are performed in Section VI to verify
the efficacy of our control strategies developed in Section V.

II. DYNAMICS OF FREE-FLYING UNDER-ACTUATED
SYSTEMS—A HAMILTONIAN FORMULATION

In this section we formulate the dynamical equations of
free-flying underactuated multibody systems in space. Without
any loss of generality, the system is assumed to be an open
chain of (m + n) concatenated rigid bodies mounted on a
space vehicle as shown in Fig. 1. We assume that out of
these total (m + n) joints, n are actuated. The generalized
coordinates of the system consist of q; € RS representing the
position and orientation (Euler angles) of the space vehicle,
q, € R™ representing the unactuated joint variables, and
¢; € R™ representing the actuated joint variables. In space,
the Lagrangian Lo(q,§) is equivalent to the kinetic energy of
the system, and is given as

. 1. .
Lo(g,9) = §qTMq (1
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where M € R(E+m+n)x(6+m+n) is the inertia matrix of the
system and is a function of ¢. Consequently, the dynamics
of the system can be represented by the following vector

equations:
i(oi)-(G)=o o
i(3ir) - () = ®
HE) ()

where 7 € R™ represents the vector of the joint torques at the
actuated joints. The right hand side of (2) is zero because we
do not use the reaction jets or the momentum wheels of the
space vehicle to control the system.

An alternative way of depicting the motion of the space
vehicle would be to consider the conservation of linear and
angular momentum. Then, if the system maintains zero mo-
mentum, we can write instead of (2):

q‘,zﬂ(gz)éﬂmzmzqs
3

(5

where the expression for H can be found in {14]. The above
equation represents six first order differential constraints; three
of these are integrable while the other three are nonholonomic

O  Unactuated joints

® Actuated joints

iSpace Vehiclef

q,: Position and orientation of the space vehicle
q,: Unactuated joint variables
q,: Actuated joint variables

Fig. 1. A free-flying underactuated robot mechanism in space.

[14]. Equation (3) represents m differential constraints that in-

clude second order derivatives of the generalized coordinates,

and are therefore second order nonholonomic constraints.
We use the transformation

L(a,4,7) = Lo(q,4) + 6> 7 (6)

to define the input dependent Lagrangian function L(q,q,T)
[15]. Under this transformation, we have the following rela-
tions:

JL dLg > ( oL ) (aLO ) T
= =\5 ) — =\ )+7. (7
(3413 ) ( 043 dg; a5 ) " @

By substituting (6) and (7) into (2), (3), and (4), we obtain the
homogeneous dynamical equations

d (LY _(OLY _,
dt \ 9q aq)
The generalized momentum p € R(6+™+7) corresponding

to the generalized coordinates ¢ € R6+™+7) is defined by
the relation

. T - T
p= d—L = d—‘L.—O =Mg. pe RS (9)
g oq

(8)

The input dependent Hamiltonian function H(gq,p,7) is next
defined with the help of a Legendre transformation [5], as
follows

H(g,p,7) =p"¢— L(g.4.7). (10)
Using this transformation, we obtain from (8) the canonical

equations
OH\T oH\T
1= — . p = — | — 11
1 (010) P (011) (an
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Additionally, by substituting (6) in (10) we get the relation

H(q,p,7) = Ho(¢,p) ~ g3 7. Hol(g,p) = "4~ Lo(g,d)
(12)
which yields on differentiation

H(q,p,‘r) = HO(!],P) - qu - qu

DH\. (0HY. (0H\. . .0 .
<a—q)q+<ap)P+<0T>T—H0 437 —q37 (13)

or

By substituting the relation (9H/61)T = —q, from (12), and
the canonical expressions of (11) in the above equation, we
finally get

Ho(q.p) = 3. (14)

To understand the physical significance of the previous equa-
tion, we take a look at the function Hy. Using (12), (1), and
(9) we can show that

Ho(g.p) = 30" M'p = 3i' Mg = Lo(a.d)  (19)
where M ™! always exists because M is a positive definite
matrix. The Hamiltonian function Hy represents the kinetic
energy or equivalently the total internal energy of the system.
The physical significance of (14) is now clear. It implies that
the rate of change of the internal energy of the system is equal
to the external work done.

The Hamiltonian formulation of the dynamics has at least
two advantages: 1) Since Hj represents the total energy of
the system, it can be used as a basis to construct Lyapunov
functions. 2) The use of (14) helps us to plan the motion of
the system in terms of the control input 7, thus eliminating the
necessity of inverse dynamics computation.

III. ISSUES RELATED TO STABILITY AND CONTROLLABILITY

The simplest approach to study the controllability of a non-
linear system is to consider its linearization. If the linearized
system is found to be controllable, the nonlinear system is
controllable in the neighborhood of the equilibrium point.
However the linearization approach is often unsatisfactory. In
the process of linearization the nonlinear system may loose
much of its structure. Therefore a nonlinear system may be
controllable though its linearization may not. In our case, it is
straightforward to show that the linearization of our system is
not completely controllable.

The control of the wheeled mobile robot system was studied
in [1]. The dynamic model was developed using a Lagrangian
formalism and it was shown that static state feedback allows
to reduce the dynamics of the system to a form where input-
output linearizing control is possible. Such an analysis is
particularly useful for simple nonholonomic systems.

The controllability of the rolling contact [10] and the single
and multibody car systems [9] have been individually studied
by constructing the control Lie algebra. For these systems
the local controllability was ascertained by showing that the
rank of the control Lie algebra is equal to the dimension of
the state space at every point in the state space. Asymptotic

stabilization using time-varying feedback was proposed in
[21], and exponentially converging control laws were proposed
in {20]. It should be emphasized that unlike most of these
nonholonomic systems our system has a drift term. This
is because of the presence of second order nonholonomic
constraints that require the formulation of the problem at
a dynamical level. Consequently, the analysis based on the
control Lie algebra cannot be performed on our system.

In general our system may be asymptotically stabilizable
by means of a linear or a nonlinear feedback. However, some
necessary conditions was established in [3] for the existence
of smooth (infinitely continuously differentiable) stabilizing
feedback laws for the general nonlinear system

i=f(z,u), =z€RY weRM f(z.,00=0 (16)
with f(.,.) continuously differentiable in the neighborhood
of the equilibrium point (z.,0). One of the three conditions
require the mapping
v: RNxRM — RN defined by  v: (z,u,) — f(z,u)
to be onto an open set containing the origin, where = 0. For
our system, it can be shown that the mapping ~y is not onto
an open set containing the origin. Hence, there cannot exist a
smooth feedback law that will stabilize the system to an equi-
librium point. The objective of asymptotic stabilization might
still be achievable by giving up the smoothness requirement
for the feedback, or by stabilizing the system to an equilibrium
manifold. In this paper we stabilize our system to equilibrium
manifolds, instead of stabilizing it to an equilibrium point.
Other examples of stabilization to equilibrium manifolds are
(71, [14].

IV. SUFFICIENT CONDITIONS FOR ASYMPTOTIC STABILITY

The Lyapunov stability theorems provide sufficient condi-
tions for proving the asymptotic stability of equilibrium points
of dynamical systems. For autonomous systems these theorems
are easy to apply when we can show that the derivative of the
Lyapunov function is negative definite. When the derivative
of the Lyapunov function is negative semidefinite, it may be
possible to conclude the asymptotic stability of the equilibrium
point using LaSalle’s theorem [8], provided we can show that
the maximum invariant set contains only the equilibrium point.
It is straightforward to identify the set of points where the
derivative of the Lyapunov function vanishes but the maximum
invariant set is only a subset of this set. The main challenge
of LaSalle’s theorem is therefore to sort out the maximum
invariant set.

In this section we discuss an asymptotic stability theorem
[13] that provides us with sufficient conditions for proving
the asymptotic stability of equilibrium points of autonomous
systems when the first derivative of the Lyapunov function,
which we assume to be analytic, is negative semidefinite.
These sufficient conditions involve higher order derivatives of
the Lyapunov function that contain the complete information
of the dynamics of the system. Consequently, it becomes easier
to identify the maximum invariant set.
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Consider the nonautonomous system
i = f(t,z)

where f : Ry x D — R"™ is a smooth vector field on
R, x D,D C R" is a neighborhood of the origin z = 0.
Let £ = 0 be an equilibrium point for the system described
by (17). We then have

f(t,0) =0,

an

vt >0 (18)

Theorem: a) A necessary condition for stable nonau-
tonomous systems

Let V(t,z) : Ry x D — R, be locally positive definite
and analytic on Ry x D, such that

V(t.z) £ 9V/ot + (0V/dx)f(t.z) (19)

is locally negative semidefinite. Then whenever an odd deriva-
tive of V vanishes, the next derivative necessarily vanishes and
the second next derivative is necessarily negative semidefinite.

b) A sufficient condition for asymptotically stable au-
tonomous systems.

Let V(z) : D — R, be locally positive definite and analytic
on D, such that 1% < 0. If there exists a positive integer k
such that

(2k+1) Y _
{V +1(:v:)<0 Ve #£0:V(z)=0 (20)

V(i)(z)z() fori=2,3,---,2k

where V()(z) denotes the (*)th time derivative of V with
respect to time, then the equilibrium point is asymptotically
stable. However, if VW (z) = 0,Vj = 1,2,---,00, then
the sufficient condition for the equilibrium point of the au-
tonomous system to be asymptotically stable is that the set

S:{I‘/(])(I):OV‘]:12Q€}

contains only the trivial trajectory £ = 0.
The proof of this theorem has been provided in the Appen-
dix for reference.

V. STABILIZATION TO EQUILIBRIUM MANIFOLDS

In Section III we referred to a theorem [3], and showed that
for our underactuated space manipulator there does not exist
any smooth control law for feedback stabilization. In the next
two subsections we discuss the asymptotic stabilization of our
system to equilibrium manifolds.

A. Controlling the Actuated Joints Only

The state variables of our underactuated mechanism in space
are denoted by z 2 (7 pT)7T, where ¢ = (¢ ¢F ¢3)7 €
RS+™+7 denote the generalized coordinates and p € R6T™+7
denote the corresponding generalized momenta. In this section
we control the system such that p — 0, or equivalently
g — 0 from (9), and g3 — g, at the final point of time; g5,
denotes the desired configuration of the actuated joints of the
system. If such control can be established, the underactuated

system would come to a complete rest with the actuated joints

converging to their desired values simultaneously. We define

a Lyapunov function [11] v as

— L7 a

v = Ho(q,p) + 5Aq; Agy. Agy = (g3 —q3) (2D

where Hy(q,p) is the Hamiltonian of the system defined

by (15). Clearly, v = 0 only on the equilibrium manifold

MEg1 = {z : ¢ = g34.p = 0}, and positive everywhere else.
The derivative of v is computed as

U= H() - Aqu&
=457~ Agigy =5 (1 — Agy) (22)

where Ho = cjg'r was substituted from (14). We choose 7 in
(22) as

T = Aqd - Hd;;- (23)

where 3 is a positive constant. This results in
0= =44l 24)

Clearly, @ is negative semidefinite and is equal to zero if and
only if g5 = 0. At this point we can use LaSalle’s theorem [8]
to conclude the asymptotic stability of the equilibrium point
only if we can show that the maximum invariant set of the
superset {z : g3 = 0} comprises only of the equilibrium
manifold Mg;. However, there is no systematic way to sort
out the maximum invariant set and therefore LaSalle’s theorem
will not be useful. In this situation we refer to the asymptotic
stability theorem that was stated in the last section.

We begin by computing the higher order derivatives of the
analytic Lyapunov function v defined by (21). We realize that
when © = 0, or equivalently ¢, = 0, we have © 2., =9
and v® = —20||¢,]|> < 0. Now if additionally v(3 = 0,
then we have ¢; = ¢y = 0. This implies v*) = 0 and v©®) =
—6[)‘Hq§3)||2 < 0, where q.(s) is the third derivative of g, with
respect to time. In other words, whenever an odd derivative
of the Lyapunov function v vanishes the next derivative also
vanishes and the second next derivative is found to be negative
semidefinite. This is in complete agreement with the necessary
conditions of our asymptotic stability theorem.

From the above discussion it easily follows that the choice
of the control vector T in (23) results in

1)(2k+1) — _/jk‘|q;<5k+l)“2 for
B >0 fork=1.2.---.5¢ (25)
when v = 0 fori = 1,2. ---.2k. Therefore, when © = 0 or

equivalently ¢; = 0, if qé"'“) # 0 for some positive integer
k, then the sufficient conditions of our theorem given by (20)
are satisfied and we can conclude asymptotic stability of the
equilibrium manifold Mgy of our system.

Let us now investigate the situation where p(j) =0.Yy =
1.2.---.0c. This implies from (25) that g5’ = 0.¥j =
1,2.-- -, 0c, and therefore g5 will remain constant for all future
times. Let this constant value of ¢, be given as

93 = q3.- (26)
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Equation (26) implies ¢; = 0, which on substitution in (5)
results in

d] = qu.2- (27)

Expanding (2), and then substituting (26) and (27), we get
Mg, + My2q, + Ni(g,) =0

where N is the sum of all the centrifugal and coriolis terms.
Since M; is positive definite, we have

G = —~M {Mi2§, + N} = 0. (28)

Expanding (3), and then substituting (26) and (27), we get
MG, + Masgy + No(g2) =0

where N is the sum of all the centrifugal and coriolis terms.
By substituting (28) in the above equation we get

M?Z(b - M21M1_11N1 +N2 = (]
My & (Myy — M21Mf11M12)-

Since the (6 + m) x (6 + m) upper left sub-matrix of the
matrix M in (1) is positive definite, the matrix MZQ in the
above equation is always nonsingular. Hence, the motion of
the unactuated joints can be expressed as

62:M221{M21Mf11N1 - N>} (29
Equation (29) is a set of mn second order differential constraint
on g,. Equation (4) tells us that the torque 7, as given by (23),
maintains all the actuated joint angles g, at the constant value
q5.- Expanding (4) and then substituting (23), (26), (27), we
get the following n equations

M31G, + M32G, + N3(¢y) = (¢34 — q3.)

where N is the sum of all the centrifugal and coriolis terms.
By substituting (28) into the above equation we get

<M32 - M31M12)§2 — M3 N, + N3y = (g3 — q3.).

My 2 M M7 (30)

By substituting (29) into (30) we finally get
~ 1
(M:ﬂ - M:an)Mgg {M21M1-11N1(d2)
~Na(dy) MaiN1(d) + Nalda) = (g0 — 4s)- BD)

Equation (31) represents n first order differential constraints
on ¢s.

Since the actuated joints are stationary at the configuration
g¢; = ¢j.. the motion of the system can be completely
described by (27) and (29). The six first order differential con-
straints of (27) describe the motion of the space vehicle, and
the m second order differential constraints of (29) describe the
motion of the unactuated joints. Additionally, the n first order
differential constraints given by (31) also describe the motion
of the unactuated joints. When the number of unactuated joints
are less than the number of actuated joints (rn < n), this
implies that the 1n second order differential constraints of (29)

and the n first order differential constraints given by (31) have
the same solution. Of course, then the n first order differential
constraints of (31) are not all independent.

The constraint equations given by (29) and (31) can have
the same solution if and only if (29) is partially integrable into
equations that are linear combinations of (31) or they both
have the same trivial solution ¢, = ¢, = 0. The necessary
and sufficient condition for the partial integrability [16] of a
second order differential constraint into a first order differential
constraint is that the corresponding joint should be a cyclic
coordinate [5], i.e., the inertia matrix M should not be a
function of the particular joint angle. If some of the unactuated
joints are cyclic, then the motion of the unactuated joints are
at least partially represented by linear combinations of (31). In
such a situation we cannot conclude ¢, = 0 since g3 # q3,-
Therefore, the maximum invariant set S = {z : v\)(z) =
0.Vj = 1,2.---,00} would contain other trajectories along
with the trivial trajectory z = (Ag] p”)” = 0. Then the
asymptotic stability of the equilibrium manifold Mg; of our
underactuated system cannot be guaranteed.

We now assume that none of the unactuated joints are
cyclic coordinates and the number of actuated joints are greater
than the number of unactuated joints (n < m). In that case,
the m second order homogeneous nonintegrable differential
constraints given by (29) and the m linearly independent
equations among the n first order nonhomogeneous differential
equations given by (31) would have the same solution if
and only if §, = ¢, = 0. This would imply that g;. =
g4 and ¢; = O from (31) and (27) respectively. It would
logically follow that the maximum invariant set S = {z :
vU)(z) =0,VYj = 1,2.---,0c} would contain only the trivial
trajectory z 2 (Aql pT)T = 0. Hence our system would
asymptotically stabilize to the equilibrium manifold Mg.
We summarize the results obtained so far in the form of a
proposition.

Proposition: The underactuated space manipulator system
described in Section II can always be stabilized to the equilib-
rium manifold Mg, = {z : g3 = ¢34.p = 0} using a control
of the form as in (23), provided the number of actuated joints
are greater then the number of unactuated joints, the initial
momentum of the system is zero, and none of the unactuated
joints are cyclic coordinates.

At this point it becomes necessary to mention that if the
system contains no unactuated joints, or if the unactuated joints
are held fixed using brakes, the control in (23) can still be
used to converge the actuated joints to their desired values
and bring the system to a rest.

B. Controlling All the Joints of the Manipulator

In this section we converge all the joints of the manipulator
to their desired configuration and simultaneously bring the
system to a rest. In other words, we control the system
such that the system stabilizes to the equilibrium manifold
Mg = {Z : ¢, = ¢oq.935 = g34.p = 0}. We assume that
the unactuated joints are provided with brakes, the number
of actuated joints is greater than the number of unactuated
joints, there exists sufficient dynamical coupling between the



566

TABLE 1
KINEMATIC AND DYNAMIC PARAMETERS OF SPACE ROBOT USED IN SIMULATION
Mass Inertia Length
Vehicle 10.14 0.208200 r =020
Link-1 1.55 0.013690 1, =0.32
Link-2 1.35 0.009225 19=0.28
Link-3 1.21 0.006665 13 =0.25

actuated and the unactuated joints, and the system maintains
zero momentum. We achieve our goal by first converging
the unactuated joints to their desired values by exploiting the
dynamical coupling between the actuated and the unactuated
joints. The brakes of the unactuated joints are then engaged
and the underactuated manipulator behaves as a completely
actuated system. Subsequently, the convergence of the actuated
joints to their desired values and the dissipation of the kinetic
energy of the system can be achieved by using the control law
developed in Section V-A under zero momentum conditions.

To first converge the unactuated joints to their desired
values, we define the vector s

(32)

5= Agy +k Agy + Aqy, Agy = (g2 — 02)

where k is a positive constant and ¢, is the desired config-
uration of the unactuated joints. The elements of the vector s
are s, and s = 0 denotes a sliding surface! [19] corresponding
to a particular unactuated joint. Each sliding surface s = 0 can
be seen to have the globally asymptotically stable equilibrium
point go = go4. If the condition 8 = 0 can be maintained, then
the convergence of all the unactuated joints to their desired
values will be guaranteed.
Since g,, is constant, we have from the definition of s

8=~y — kgy + Ags. (33)
Equation (3) can be expanded into the form
MG, = —(M21G, + M2gs; + Nu) (34)

where Ny is the sum of all the centrifugal and coriolis forces
at the unactuated joint. Multiplying (33) by the positive definite
matrix Mo and then substituting the expression for M32§,
from (34) we have

M8 = M21§, + Moz + Ny — Ma2(k g, — Agy). (35)
In this equation, if we choose 3 of the form

3 = ~M$(M21d, — Ma2(kdy — Agy) + Ny)  (36)

where M ;’Z is the pseudoinverse of M3, we have

Mays = (E, — MasM%,)(Mo1d; — Maa(k g, — Agy) + Ny)
= (Em — MosM%)(Ma21d;, — Mo (k g, — Agy)
+ M23d; + Nvu)
= (Em — MasM;) Moz (—G, — kdy + Agy)
= (Em — M23sM%)M3)s 37

' A sliding surface is defined as a surface such that all trajectories on this
surface converge to the globally asymptotically stable equilibrium point on
the surface.
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where we used the identity (E,, — M23M§§)M23 =0, and
substituted (33) and (34). This equation implies that the choice
of gy as given in (36) results in

Mng%Mgzs =0. (38)

We assume that there exists sufficient dynamical coupling
between the actuated and the unactuated joints such that
M,3 € R™*™ is full rank everywhere except possibly at
a few discrete singular points in the workspace. Then (38)
implies s = O except at the singularities. This is true because,
a) when M3 € R™*™ is full rank, and m < n,Mng%
is equal to the identity matrix of size m, and b) My3 is
always nonsingular. Since s = 0 implies global asymptotic
convergence of all the unactuated joints to their desired values,
we conclude that it is possible to converge the unactuated
joints to their desired values if the inertial coupling matrix
between the actuated and the unactuated joints is full rank.

Ideally, we would carry out the inverse dynamics compu-
tation to obtain the torque 7 that produces the acceleration
as given by (36). This would require significant amount of
computation. Since the torque 7 has a direct causal relationship
with §3, we choose the torque 7 simply proportional to the
acceleration ¢, i.e.,

c>0

(39)
where C is a constant of proportionality. In the above equation
we need to use acceleration feedback, which is rather uncon-
ventional. Since the inertia terms of the space vehicle is larger
than that of the robot manipulator, the acceleration §¢; will
be quite small as compared to g5 in (36). Consequently, we
simplify (39) as

T = —CM$E[Mo1Gi — Moz (k gy — Agy) + Ny,

= CM$[Ma(k > — Agy) - Nul. (40)
We are not tracking any particular trajectory of g5, instead,
our goal is to converge the unactuated joints to their desired
values. Hence, the modified feedback law in (40) is expected
to work as efficiently as (39). In the next section we show that
our expectations are fulfilled.

To converge all the joints to their desired configuration,
we will first use the control input given by (40). This will
take the unactuated joints to their desired values and the
unactuated joint velocities to zero. The brakes at the unactuated
joints will then be engaged and the system will behave as a
completely actuated system. Consequently, the control input
given by (23) can be used to converge the actuated joints to
their desired values and simultaneously dissipate the energy
from the system. Based on our discussion in Section V-A, we
know that the control input in (23) asymptotically converges
the system to the manifold Mg;. But since we have ¢, = gy,
we actually converge to the manifold Mg, which is a sub-
manifold of MEg;.

VI. SIMULATIONS

Simulations were done with a planar 3-DOF space robot
having revolute joints, as shown in Fig. 2. One of the joints of
the robot was left unactuated. The kinematic and the dynamic
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Fig. 2. A planar three-link underactuated space manipulator system.

parameters of the robot, assumed to be made of aluminum,
were chosen according to Table I, where S.I. units were used.
The inertia of the vehicle and the links of the robot were
measured about reference frames located at their individual
center of the masses. The parameters r, I;, I, and [3 are
defined in Fig. 2.

Controlling the Actuated Joints Only: It can be easily
shown by constructing the inertia matrix of the system that
none of the three joint angles of the manipulator are cyclic
coordinates. We opted to leave the first joint of the manipulator
unactuated. For this planar case, ¢, € R represents the two
Cartesian coordinates of the center of mass of the vehicle
and the orientation of the vehicle in the plane, and g2 € R
and g5 € R? represent the unactuated and the actuated joint
angles respectively. The initial system configuration (refer to
Fig. 2) was assumed to be

Q2 & i@ @)
=(0 6 63 6, 6> 63)
— (=150 0.0 100 0.0 0.0 0.0)

where the joint angles are in degrees, the joint velocities in
degrees/sec, and the Cartesian position in meters.

The desired configuration of the actuated joints in degrees
were ¢;; = (0.0 0.0)7. The control law in (23) was used
with # = 1.75. The computation was terminated as the
value of the Lyapunov function reduced below 1 x 1076,
The convergence time was noted to be 9.65 s. Fig. 3 shows
the variation of the Lyapunov function with time. From
the figure, it is understood that at around ¢ = 0.2 s, the
derivative of the Lyapunov function momentarily goes to zero.
It subsequently becomes negative and guarantees asymptotic
stability as predicted by the Theorem discussed in Section IV.
Fig. 4 shows the trajectory of all the joints of the manipulator.
At the final point of time, both the actuated joints converge
to their desired configuration. The unactuated joint is not
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=
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Fig. 3. Variation of the Lyapunov function with time for the simulation

in Section V-A.

controlled in this situation. From Fig. 4 it is clear that the
velocity of all the joints approach zero at the final time and
the system comes to a complete rest.

Controlling All the Joints of the Manipulator: In this par-
ticular simulation we assumed that the second joint of the
manipulator was unactuated. The initial and desired config-
urations of the system (refer to Fig. 2) were assumed to
be

Qié(‘h qu 42 dg)

26, 6. 6 6 6, 63)

= (00 150 450 0.0 0.0 0.0)
Q;=(0.0 150 450 300 150 450).

where the joint angles are in degrees, the joint velocities in
degrees/sec, and the Cartesian position in meters.

We used a value of £ = 2.0 to define the vector of the sliding
surfaces s in (32). The value of C in (39) was chosen to be
1.0, and we used a convergence criterion of 0.001 radians
for the unactuated joint. In Fig. 5, where the trajectories of
all the joints of the manipulator have been plotted, at around
t = 12.37 seconds, this criterion was satisfied. Subsequently,
the brake at the unactuated joint was engaged. The control
law was changed from (40) to (23), and the computation was
terminated at ¢ = 19.45 seconds when the Lyapunov function
reduced below 0.000025.

VII. CONCLUSION

An underactuated manipulator is one that has fewer number
of joint actuators than the number of links of the manipulator.
If such a manipulator is properly controllable, it will have
a number of advantages over a similar completely actuated
system. Such systems are more feasible for space applications
due to the absence of gravity. Also, they prove to be more
useful for space applications. In this paper we discussed the
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Fig. 5. Trajectories of all the joints of the manipulator for the simulation

in Section V-B.

problem of reconfiguring the joints of an underactuated space
manipulator system. We analytically proved that if the system
maintains zero momentum and if none of the unactuated
joints are cyclic coordinates, it will be possible to dissipate
the energy of the system and reconfigure the actuated joints
in the absence of brakes. We then considered the problem
of reconfiguration of all the joints of the manipulator. We
showed that if the number of actuated joints are higher than
the number of unactuated joints, if there exists sufficient
dynamical coupling between the set of actuated and unactuated
joints, and if the unactuated joints have brakes, it is possible

to control all the joints of the manipulator. Control laws were
developed for reconfiguration, and computer simulations were
used to verify the efficacy of these control laws. In both the
problems that we discussed, we did not control the orientation
of the space vehicle. In other words, we controlled the system
to equilibrium manifolds.

VIII. APPENDIX

Lemma 1: A real function f(t) € C? defined in (a, b) is
concave iff f(t)” < 0,Vz € (a,b).
Proof: (a) Necessity
Let z € (a,b). Then for h small enough, z—h, z+h € (a,b).
From the definition of concavity [18], f(z) > 3(f(z — h) +
f(z + h)). Therefore, since f € C2,

() = tim LEZ W S@+h) ~2f(z)

h—0 h?

<0. @D
(b) Sufficiency

Let z,y € (a,b), and z < y. For A € [0,1], and ¢t =
Az + (1 — Ay, the first order Taylor’s series approximation of
f(z) and f(y) are respectively

flz) = f@t) + f'(t)(z — 1)

+ (&)@ —t)? &€z, (42)
f)=f+fMy-1)
+ f”(£2)(y - t)zv 52 € [tvy]‘ (43)

It follows that

Af(2) + (1 =N f(y) = F(t) + Af" (&) (@ — t)?
+ (A =Ny -t}
< f(@) since f”(&) <0,
fr(&) <0. 44)

Therefore the function is concave by definition.

Lemma 2: Let f(t) be a nonpositive function such that
f(te) = 0 and f(t) < O for some values of t. If the
function f(t) is analytic, then f(¢) is concave in some open
neighborhood of .

Proof: Since the function f(¢) is analytic, all derivatives
of the function exist and the function can be expanded using
Taylor’s series as

2, f)
JOED PERLING 4s)
n=0 :

Let us next assume that our function f(¢) is not concave
in any open neighbothoof of ty. This implies from Lemma
1 that the condition f”(¢) < 0 does not hold good in any
open neighborhood of t. Therefore eiether f”(¢) > 0, or
f"(t) changes sign in every open neighborhood of to. If
f”(t) > 0 in every open neighborhood of to then we can
show from the corollary of Lemma 1 that f(¢) is convex
evrywhere. This is not true because f(t) is nonpositive and
has a maximum value at ¢ = {o. The other possibility is
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that f”(¢) changes sign in every open neighborhood of tg.
Then f(*)(t) for n = 2,3,---,00 changes sign in every
open neighborhood of ¢o. This implies that F™(to) = 0 for
n = 2,3,---,00. Additionally, since f(t) is nonpositive and
f(to) = 0, f(t) achieves a local maximum at to. Therefore
f'(to) = 0. Substuting these results in (45), we have f(t) = 0.
This cannot be true because f(t) is strictly negative for some
values of . We have therefore proved by contradiction that
f(t) is concave in some open neighborhood of ¢¢.

Proof of the Theorem: Part (a) of the theorem can
be proven very easily with the help of Lemmas 1 and 2.

To prove part (b), we first realize that £ = O is stable
by standard argument since V is locally positive definite and
vV <o

Next, since V is bounded from below by zero and V is
nonincreasing (V < 0),V — a,a > 0 as t — oc.

Since V is analytic and therefore smooth, V is uniformly
continuous. Hence when V. — o,V — 0 as t — oo, by
Barbalat’s lemma [19]. Barbalat’s lemma [19].

Since V is locally positive definite, V — 0 = z — 0 as
t — oc. Therefore if we can show that & = 0 we can conclude
asymptotic stability. We prove o = 0 by contradiction. Since
V — a # 0 and V is locally positive definite, 3 an open
neighborhood N of £ = 0 such that the trajectory of z(t) lies
outside NVt > T, and for some T > 0.

Let Q = {z : V(z) = 0}. Since z(t) converges to Q but
lies outside N for large ¢, the set W = ) — N is nonempty
and is the limit set for z(t). If the conditions given by (20)
hold then

Vvi(z)=0 Vi=1.2,---,2k, Yz e W

max Ve (g) = —y < 0. (46)
reW

Pick an ¢ arbitrarily small. Since V' is analytic and therefore
all its derivatives are continuouss, 3 an open neighborhood U
of W whose closure UC does not contain z = 0 and Vz € U®

VO(@) <e, Vi=1.2,---,2k

VE*D(g) < —y +e. (47)
Since z(T) — W as t — oc,3 T; such that x(t) € U vt >

T:. Now integrating V (2*+1)(t) with respect to time to get
V, we have

t t
V(t)—V(Tl)z/ / VD (1) di
T; Ty
(2k+1)
t t
<[ —a-aa
T T
N —’
(2k+1)
_ _ (t _ T1)2k+1
== Gy
(t—Ty)* (t —Tp)%*
T TR T Y
o te(t—TI1)
2501). (48)

Hence V(t) < V(T1) + 6(t), where 6(t) — —oo as t — oo,
since v > 0 and ¢ is arbitrarily small. Since V(T1) < V(t = 0)
and is therefore bounded, V(t) — —oo as t — oc. This
contradicts the fact that V' > 0. Hence a = 0 and that implies
that the equilibrium point is asymptotically stable.

If all the derivatives of V =zero simultaneously, i.e.,
VU)X(z) = 0,Vj = 1,2,---,00 then the set S is obviously
an invariant set. Therefore if S contains only the trivial
trajectory, the equilibrium point of the autonomous system
will be asymptotically stable from LaSalle’s theorem.
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