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Abstract

In this paper, the recently developed stable inver-
sion theory for nonlinear nonminimum phase systems
is applied to output tracking for multi-link flexible
robot manipulators. First a mathematical model is
developed for a two-link flexible manipulator using
assumed mode technique with tip position as out-
put. Then an inverse model is derived and a two-
point boundary value problem is set up to guarantee
that the inverse obtained is a stable one regardless of
the fact that a flexible manipulator is a nonminimum
phase system. The eigenvalues of the Jacobian ma-
trix of the inverse system are calculated to verify the
hyperbolicity of the fixed point. Following a recent
general result, an iterative procedure is presented to
numerically construct the stable inverse for a given
desired tip trajectory. This inverse is used as a feed
forward together with joint angle feedback to control
the tip position. Excellent output tracking is achieved
with no transient or steady state errors and no in-
ternal vibration builds up. This is contrasted with
the performance of the well known computed torque
method where large tracking errors such as under-
shoot, overshoot, and oscillation exist.

1 Introduction

Research interest in the control of articulated flexible
structures has considerably increased in the past few
yeats, as evidenced by the large number of such pa-
pers at recent CDC’s and ACC’s. This is motivated by
the need for space-based manipulators which are nec-
essarily lightweight and therefore flexible, due to the
high transportation cost. The expense of large motors
and amplifiers required to drive massive earth-bound
industrial manipulators is additional motivation for
the design and control of lightweight manipulators.
Furthermore, even for robot manipulators normally
considered to be rigid, link flexibility cannot be ne-
glected during fast speed motion control.
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The study of flexible manipulator control was pi-
oneered by Cannon and Schmitz[3] where a linear
quadratic optimal control approach was successfully
applied to the end-effector tracking control of a one-
link flexible robot arm in which the nonminimum
phase effect was first demonstrated. After that, many
researchers have considered different approaches to
the control of one-link flexible arm which is a linear
system for small deflections. Among those, Siciliano
and Book[9] used a singular perturbation approach
to deal with the flexible modes and Bayo[l] applied
Fourier transform to obtain stable but noncausal con-
trol input.

Nonlinear control of multi-link flexible manipula-
tors is recent and limited. Lucibello Di Benedetto[8]
applied the recently developed nonlinear regulation
theory to the control of nonlinear flexible arms and
the asymptotic tracking of periodic output trajecto-
ries 'was achieved . In a similar approach by De Luca,
et al[6], simulation results demonstrated asymptotic
tracking of a finite trajectory with transient errors
existing at the beginning and at the end of the ma-
neuver. This transient error phenomenon is a funda-
mental limitation of the regulation approach.

Another approach to output tracking is based on
inversion which was first studied by Brockett and
Mesarovic[2]. Later on, Silverman(10] developed an
easy-to-follow step-by-step procedure for the inversion
of multivariable linear systems. The linear inversion
results were extended by Hirschorn{7] to real analytic
nonlinear systems. Singh[11], for example, had similar
results on nonlinear inversion with some modified con-
ditions. All these inversion algorithms produce causal
inverses for a given desired output ya(t) and a fixed
initial condition z(tp), and unbounded u(t) and z(t)
were produced for nonminimum phase systems . This
fundamental difficulty has been noted for a long time.

Motivated by the success of the noncausal inverse
dynamics approach and the difficulties in both classi-
cal inversion and recent nonlinear regulation, the no-
tion of stable inversion has recently been developed(5]



and the problem has been solved for a class of non-
linear nonminimum phase systems with well defined
relative degree whose zero dynamics has a hyper-
bolic fixed point. A numerical procedure is also
developed[4] for constructing stable inverses based
on iterative linearization and decomposition of the
stable/unstable subspaces. This approach to output
tracking avoids difficulties in both regulation and clas-
sical inversion while preserves the advantages of both
and is applied to achieve exact tip trajectory tracking
for multi-link flexible manipulators in this paper.

2 Solution of Stable Inversion

Consider a nonlinear system of the form
z = f(z) +9(z)u (1)

y = h(=), 2

defined on a neighborhood X of the origin of R™, with
input u € R™ and output y € R™. f(z) and g;(z)
(the ith column of g(x)) fori = 1,2, ... , m are smooth
vector fields and h;(z) for i = 1,2,..., m are smooth
functions on X with f(0) = 0 and A(0) = 0. For such
a system, the stable inversion problem[4] is stated as
follows: Given a smooth reference output trajectory
ya(t) with compact support, find a bounded control
input u4(t) and a bounded state trajectory z4(t) with
ug(t) = 0 and z4(t) — 0 as ¢ — 00 such that z4(t)
and ug4(t) satisfy the system equations (1) and (2).
For systems with well defined relative degree whose
zero dynamics has a hyperbolic fixed point, it has
been shown([5] that the stable inversion problem has
a unique solution and an iterative linearization ap-
proach can be followed. Let the system in (1) and
(2) has relative degree r = (r1,72,...,rm)T € N™
at the equilibrium point 0. Define & = y{*~V for
i=1,...,mand k=1,...,r; and denote

£ = (E1.6&,...8,.8,...... )

(yl)gl,"‘,ygn_l)yerr """ 1y£;m—1))T'

i

Choose 7, an n — 3" r; dimensional function on
R” such that (¢7,77)T = ¥(z) forms a change of
coordinates with ¢(0) = 0. In this new coordinate
system, the stable inversion problem is shown to be
equivalent to the following two point boundary value
(TPBV) problem

=05, €a,m), 3)

subject to

B'(n(t)) =0, B“(n(ty)) =0, (4
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where (3) is the so-called reference dynamics, B*(n) =
0 characterizes the unstable manifold and B%(n) =
0 the stable manifold. Once the TPBV problem is
solved, z4 and u4 can be constructed as follows

Ty = "/)_l(fdr 77)’

ua = (LgL}  h(y2 (€2, ) (00— L3 h(¥~ (€, 1))

The iterative linearization approach to the solution
of the TPBV problem is as follows. In each itera-
tion, equations (3) and (4) are linearized along the
solution from the previous step to obtain a new lin-
ear time varying two point boundary value problem.
This linear problem is solved by decoupling the sta-
ble and unstable subspaces and integrating the stable
part forward in time and the unstable part backward
in time. The iteration continues until some conver-
gence criterion is met.

To initialize, we take 7o() = 0 for all ¢. Let n(t)
be the solution from the previous step. Linearizing
the right hand sides of equation (3) and equation (4)
along n(t), we have a linear TPBV problem

1= A(t)n +b(t), (8)
subject to

Cs’)(tﬂ) =a, Cun(tf) = ﬂ) (6)

for some appropriate matrices A, b, C,, Cy, a and
B. To decouple the stable and unstable subspaces, we
apply a change of coordinates:

_| = Jaes | C,
=[a][&]
where 2, is, roughly speaking, the stable part of 9, zp
the unstable part, and they satisfy

7 = Au(t)zl + Alz(t)z'z + bl(t), (7)
z2 = Aa1(t)21 + Aza(t)za + ba(2), (8)

with initial and final conditions specified, respectively,
as z1(to) = @ and z3(t;) = B. The key to the decou-
pling is to recognize that the solutions 21 and z; are
linearly related as follows

za2(t) = S()z1 () + 9(2), 9

with suitable final value conditions S(t ) = 0 and
9(ty) = B. It can be further shown that S and g
satisfy

S= Ag1 + A28 — SAy, — SA1,S, (10)
9 = (A22 — SAi12)g + (b2 — Sby). (11)

Since equation (10) contains only known functions
except S, it can be integrated backward in time to



get S(1). Once this is done, equation (11) can also be
integrated backward in time to solve for g(t). With S
and g as known functions, equation (7) can be rewrit-
ten as

71 = (An(t)+A12(t)S(t)) 1 +b1(t)+A12()g(?), (12)

which can be integrated forward in time to obtain
z1(t). Finally, the algebraic equation (9) is used to
obtain z5(t).

3 Forward Dynamics

A robot can be considered as the assembly of many
flexible links. For simplicity, we consider a robot arm
with two flexible links. Both joints are revolute and
input torques are applied at these points. Each link
i has total length l;, mass per unit length p;, area
moment of inertia I;, Young’s modulus E;. Attached
at one end of link i is a tip mass m,,, and at the
other end a hub of inertia I;,. We assume that the
links are maneuvered in the horizontal plane and that
the out-of-plane deflections are negligible.

By the assumed modes method we may approxi-
mate the continuous deflection of a flexible link by
a set of assumed shape functions and their time-
dependent generalized coordinates. Let the flexible
displacements of link 1 and link 2 be &;(h1,t) and
62(h3,t) respectively. Also, let ¢1j(h1) and ¢2;(h2)
be the jth necessary admissible shape functions of
link 1 and link 2 respectively, g1;(t) and g2;(t) be the
corresponding generalized coordinates. Then the dis-
tributed deflections of the two links are approximated
by

(i) = 30 duy(hn)as() = ¢Tas. Yi= 1,2 (19)

j=1

In this paper, we take n; = nz = 2.

By using the extended Hamilton’s Principle in the
form of Lagrange’s equations, the equations of motion
can be expressed as

doL oL _

E'a—d)-a—w—f, (14)

where ¥ = (61,02, 411,412, 421, ¢22)" is a set of gener-
alized coordinates for the system; L, the Lagrangian,
is the difference between the kinetic energy T' and the
potential energy P; and 7 is the generalized force act-
ing the generalized coordinates. In the case of robot
arm

P= %¢TK111, and T= %z&"M(ab)ain (15)

where M(¢) is a positive definite symmetric inertia
matrix and is a nonlinear function of ¢, and K is the
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stiffness matrix composed of the stiffness matrices of
the flexible links. Substituting (15) into (14) we get

1847 M)

M¢+M1j;-2 3 + K¢ =Bu—d, (16)

where u = (uy, u2)T is the input torque vector applied
at the joints, B = [I3x2 03x4]T determines how joint
torques affect the generalized coordinates, and d is the
Rayleigh dissipation force due to structural damping
of the flexible links which has the form:
d=Cy, (17)
where C is the damping matrix taken to be a pro-
portion of the stiffness matrix as a common practice.
Hence, equation (16) can be written as
My+ H(p,¢)+ C¥+ K¢ = Bu. (18)
There are many ways to choose the system out-
put. Depending on which point along the links the
output point is located, the whole system can be ei-
ther minimum or nonminimum phase. If the output
is selected to be the joint angles, i.e. the sensors and
actuators are collocated, the system is known to be
minimum phase. A more meaningful choice of output,
as is our choice, is the tip position. But this choice
renders the system nonminimum phase which will be
demonstrated later on by the eigenvalues of inverse
system. Both the Cartesian coordinates and angular
coordinates can be used for tip positions. Here for
simplicity, we choose the tip angular positions as the
system output, which is given by

T
y=60+ [arcta.n(é-l%—tl),arctan(é—z(;:—’t-)-)] , (19)

where 8 = (01,02)T, y = (%1,%2)7. For small elas-
tic deformations arctan(-) can be approximated by (-)
and by substituting (13) into equation (19) we obtain

y= Dy,
where D = [D1 D), Dy = I3x2, and

(20)

1l 13(lh
R S 0
2= 0 0 Qn’(lz) 2221!1:[ .
2 2

To summarize, we have the forward dynamic equa-
tions of the two-link flexible arm described by

M) + H(,¥) + Co + K9 = Bu,

y = Dy,

where all matrices are defined as above.

(21)
(22)



T1

4 Inverse Dynamics

Based on the above forward dynamic equations, we
here derive the linearized inverse dynamic equations.
Equation (21) can be written in two parts:

My ()8 + Mi2(¥)§ + Hi(%,4) = Byu,
M31 ()0 + Ma2(¥)§ + Ha(, %) + Mg + Mag = 0.

Given a reference output trajectory y4(t), equation
(22) can be written as

6= Dl—lyd — D1—1D2‘1-

Substituting this into the second part of equa-
tion (21), we obtain the nonlinear inverse dynamic
equation

Mig+ Mg + Maq + Ha(ya, Ya, 9, 4) = Maia, (23)

where

My = Ma(ya(t), 9(t)) — M21(ya(t), g(t)) D71 Ds,

My = — M (ya(t), 9(8)) D7

In order to carry out the iterative algorithm to do
the inversion, we need to linearize the inverse dynamic
equation (23). Let us do it term by term at point
defined as (g7, 47)T. For convenience, we write terms
only as functions of ¢’s instead of both ¢’s and yg’s.

Let M(z) be a k x I matrix function of z € R® and
y € R" be a column vector. The derivative of M at
a point zg in the direction of y is defined as

Using this notation and neglecting higher order terms,

the first term M;(¢)¢ in equation (23) can be lin-
earized as

Mi(q)§

[M? + DIM: [q — o] ldo + [G — do]]
M{§ + [DJ(Miq)]do — [D2(M140))do,

where the superscript 0 stands for evaluation along go
or go no matter whichever is applicable. Since it can
be easily verified that

[Dz(My)] z = [Dy(Mz)] y,

where z is an appropriately dimensioned vector or ma-
trix, we obtain '

My(g)§ = MG+ DY(M1do)q — D2 (M1o)go.

M; and M3 both are constant matrices. For the term
Hy(q, ), we have

H, H3 + DJH3 (g — qo] + DYH> [§ — o]

H) - DYHjq® D2H2d0+ DYHaq + D2qu'-
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Similar to the derivation for the first term, we can get
the linearized form of M,y as

Majja = M{ja — Dy(Maiia)q + D9 (Maiia)q.

Thus the linearized inverse dynamics can be expressed
as:

Al(q0)6+A2(q01 q'o)q'+A3(QOy do; ‘10)11 = A4(‘IU) q.01 60)7

where
A = MY
Ay = M2+D2Hz;

As = Dj(Migo)+ Ms + DY Hy — DY (Maiia);
Ay = Myga-— D?(M4§d)40 + Dg(Mliiu)QO +
+DJ Haqo + D§ Hago — H3.

The state space form of the inverse dynamics can thus
be written as

i(t) = A(t)z(t) + b(t),
7, ¢")T

(24)

where z = ( , and

A(t)=[_ Alf’l PR Az] b(t)=[A1'?A4]'

It is a generally accepted fact that a flexible link
manipulator with tip position as output is a nonmini-
mum phase system. Thus its inverse system has eigen-
values in both left and right half planes. In addition,
since sustained oscillation without any tip movement
is physically impossible, the inverse system has no
eigenvalues on the jw-axis and thus must have a hy-
perbolic fixed point. These properties are verified in
the next section when the eigenvalues of the inverse
system are actually computed.

Let us now form the matrix X, by taking as
columns the eigenvectors and the generalized eigen-
vectors of A(t) at some fixed time ¢ corresponding
to eigenvalues having negative real parts, and X,,
those corresponding to eigenvalues having positive
real parts. Then, we have

AB[ X, X.]=[X, xu][’}; /?u],(25)

where A, and A, are the corresponding Jordan forms.

Denote v
-1
[Y:]=[X, Xu ]

From (25) we obtain

Y, A(t)Xy =0, and Y,A()X,=0.  (26)

Since we know that z(t) belongs to the unstable
manifold for all ¢ < ¢y and z(¢) belongs to the sta-
ble manifold for all ¢ > t;, therefore z(to) (resp.



z(t;)) can be written as the linear combination of the
columns of X, (resp. X,):

z(to) = XuZu, ond z(ty) = X,Z,. (27)

Combining equations (26) and (27), we have
Y,A(to)z(to) = Y,A(to)Xu Zy =0,
Y..A(t,)z(tf) = YuA(tf)X,23 =0.

Denoting C, = Y, A(to) and Cy = Y, A(t;) we obtain

the linear time varying TPBV problem

#(t) = A(t)z(t) + b(2) (28)

subject to

Coz(to) =0, Caz(ty) =0, (29)

where all matrices are defined as above.

5 Simulation Analysis

In this section, we present the digital simulation re-
sults to illustrate the performance of the inverse dy-
namics method. The simulation goes through the fol-
lowing iterative procedure:

e Step 1: Set go(t) = 0 for all ¢.

e Step 2: Linearize (23) along go(t) to get (28) and
(1-(12).

e Step 3: Integrate equation (10) backward in time
to get S(2).

o Step 4: Integrate equation (11) backward in time
to get g(t).

e Step 5: Integrate equation (12) forward in time
to get 21(t) and get 25(t) by (9).

-1
o Step 6: Compute g(f) = [ g’ ] [ 2 ]

e Step 7: If ||g— gol| is greater than threshold, then
go = ¢ and go to step 2, else continue.

e Step 8: Compute nominal input u4(t) from the
firsr part of equation (21).

The two-link flexible arm with the properties listed
in Table 1 is utilized as the physical model. The eigen-
values of the forward dynamic equations and the in-
verse dynamic equations are shown in Table 2 from
which it can be seen that the system is nonminimum
phase and the inverse dynamic system is hyperbolic.

Using the iterative algorithm from step 1 to step 7
we first compute the flexible modes corresponding to
the tip trajectories. Then, we compute the required
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Parameter | Link One | Link Two
I(m) 1.0 1.0
p(kg/m?) 0.3 0.1
EI(Nm?) 15.75 1.75
m,.(kg) 0.15 0.10
Ib(kgmz) 0.2 0.067

Table 1: Two-Flexible-Link Arm Properties

Forward Dynamics | Inverse Dynamics

0 167.66

0 6.27+10.481

0 -62.64

0 -6.80+9.19i

-0.62+11.13i -45.77484.02i
-1.78+18.771
-45.61+83.91i
-119.49+98.081

Table 2: Eigenvalues at §; = 90°

torques by step 8. Fig. 1 shows the joint torques
needed to produce the desired tip trajectories. As
expected, the torques needs to be applied to preshape
the links some time before the tip starts moving.

The calculated torque was applied to the forward
dynamic equations. Since we will compare our simu-
lated results with those of computed torque technique,
we use the same control structure as that of the com-
puted torque technique. As the results shown in Fig. 2
the tips follow the desired trajectories exactly without
any undershoot or overshoot.

Consider a typical method called computed torque
technique using only the rigid modes for feedback
since flexible modes are assumed not to be measur-
able. The input torque to the system can be expressed
as

™= M(od)54+H1(od,éd)+ Kd(éd —é)-|- K,,(ed —-9).

In requiring the same tip trajectories, as we can
expect, the generated output profiles by the computed
torque technique exhibit some significant error which
includes the obvious undershoot and the overshoot.
The simulation results are also shown in Fig. 3.

6 Conclusion

The iterative approach to stable inversion of nonlinear
nonminimum phase systems is successfully applied to
the tip trajectory tracking for a two-flexible-link robot
manipulator. The key assumptions on well defined



relative degree and hyperbolicity of the fixed point
of the zero dynamics are satisfied. Simulation results
demonstrate that the stable inversion approach is very
effective for obtaining exact output tracking for flex-
ible manipulators. This approach is expected to per-
form equivalently well for other realistic nonminimum
phase systems. Future work will be on efficient numer-
ical algorithms for constructing stable inverses and on
new applications of stable inversion.
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