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Abstract 
This paper presents a new approach to solve the sta- 

ble inversion problem of nonlinear noiiiiiinimuin phase 
systems. Based on tlhe resent rmults [l], the minimuni- 
energy property is first established for the soluLioiis of t41ie 
stable inversioii probleiii. Theii, an iterative algorithm 
via linearization, discretization and Moore-Penrose gen- 
eralized inverse is constructed. This is followed by siinu- 
lation results to illustrate that the exact output, tracking 
without any transients has been achieved. 

1 Introduction 

The problem of output. tracking control for nonlinear sys- 
tems is of great importance from both the theoretical and 
the practical viewpoints and it has been studied extcn- 
sively for many years. There are two basic approaches 
to attack this problem. Using state feedback i s  one way 
which involves stabilizing the closed-loop system so as t80 
achieve asymptotic tracking of a class of reference input.. 
The second approach is to implement the tracking con- 
troller with feed-forward signals generated by an inverse 
system coupled with a stabilizing feedback loop. 

For the linear multivariable cases, the asymptoLic 
hacking problem was solved by [3, 41 aud subsequently 
crystallizecl as the internal model principle[5]. The ma- 
trix equations defining an asymptotic tracking controller 
for linear systems were translated to nonlinear partial 
differential equations in the nonlinear cases[6]. Although 
noiilinear partial differential equations are only nunier- 
ically tractable for systems of low order, solutions for 
tracking periodic trajectories have been developed based 
on Fourier series[7, $1. However, the transient error phe- 
nomenon is still a fuiidainental limitation of the regula- 
tion approach. 

The transient heha.vior can be precisely controlled by 
using stabiliziiig feedback together with feecl-forward sig- 
nals generated by an inverse system. For linear multi- 
variable systems the inversion problem has been solved 
to a large degree by Brockett and Mesarovic[S] ancl 
Silverman[lO]. However, these inverses are all causal. 
The linear inversion results were extended to  nonlinear 
real-analytic systems and conditions for the invertibility 
of these systems have been derived by Hirschorn[ll, 121. 

Singh[l3], for example, had similar results on nonlinear 
inversion with some modified conditions. All these in- 
version algorithnis prodnce causal inverses for a given 
desired output ydd(t) and a fixed initial condition z.(to). 
IJnbounded u( t )  and z(t) were produced for nonmini- 
muin phase syst,eins. This fundaniental difficulty has 
been noted for a long h i e .  

Motivated by the success of the noncausal inverse dy- 
namics approach [14], the notion of stable inversion has 
recently been developed [l] in an effort to find feed- 
forward signals for the tracking controller. The prob- 
lem has been solved for a class of nonlinear nonmini- 
iniim phase systems with well defined relative degree and 
hyperbolic zero dynamics. In this paper, we derive a 
numerical procedure for the constructing of the stable 
inverses. The remainder of this paper is organized as 
follows. In section 2 we state the problem of stable in- 
version of nonlinear systems and review previous results. 
Section 3 shows that the system states and control input 
obtained by the solutions of the corresponding equiva- 
lent two-point boundary value problem are of miniinum 
2-norm. Then, a numerical procedure aimed a t  find- 
ing the niinimum-energy control input via the Moore- 
Penrose generalized inverse is constructed at the begin- 
ning of section 4. This is followed by the simulation re- 
sults of an example which is a fourth order nonminimum 
phase nonlinear system. Finally, some remarks are given 
in section 5 .  

2 Stable Inversion Problem 
Consider t,he multivariable nonlinear control systems of 
the form 

i = f(z) + g(x)u, (1) 

y = h ( x ) ,  (2) 

where the system &ate c is defined on a neighborhood 
A- of the origin of Rtb and input U E R" and output 
y E Rm. f ( z )  and gj(z) (the ith column of g ( 2 ) )  for 
i = 1,2 , .  . . ,VI are smooth vector fields and h;(zc) for 
a' = 1,P,.  . . , m are smooth functions on X, with f(0) = 0 
and h(0)  = 0. For such syst,eins, the stable inversion 
problem is stated as follows[l]: 

Stable Iiiversion Problem: Given a smooth reference 
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general. 
For referenw trajectories n-i-ith compact supporh, t,hc 

referelice clynainics 1 lecoine aiitononious zero dyiiaiirrcs 
for 2 out,side tjlie compact interval [ t o ,  t f ] .  Assume that 
the zcro dynainics has a liypchrbolic equilibriuiii point at 
the origin. It has heen shown that the stable inversion 
problem is equivalent to  the following two-point bound- 

h(2'd(f))  = Y d ( f ) ;  

3) q ( t )  and x d ( t )  ure bounded ui id  

U d ( f )  ---f 0, 2 d ( t )  4 0 = t -Zkm. 

We call z d ( t )  the desired state trajectory and ~ d ( t )  the 
nominal control input. The following notation will be 
used throughout this paper. 

d e f  d e f  With N = { 1 , 2 , .  . .}, 1' = (rl, r z , .  . . , r,)* E Nm 
and y : R" 3 Rm, we define 1 ~ 1  - ~~~1 ri, d e f  

L>Y d e f  = ( L ; ~ Y ~ ,  L ; " Y ~ ,  . . . , L;mym)T- 

Assume t,liat the system has a well-defined relative de- 
gree r E N'" at, t,he equilibrium point a t  the origin. To 
partially linearize the system, we define dg yj'-') for 
all i = 1 , 2 , .  . ., m and k = 1 , 2 , .  . ., r , ;  and denote 

de f t = cc:,t:, . . ., t;JL.. . . . . , €;IT 
( V I - 1 )  ( r  -1y. (3) def  - ( Y l , y ' l ,  - .,Y1 ,U?, . .. . . ,Y" 

Choose V ,  an n - 11-1 dimensional function on Rn such 
that (tT, qT)T = $(2 )  forms a change of coordinate with 
$(O) = 0[15]. In this new coordinate system, the system 
dynamics of equations (1)-(2) becomes 

(4) 

( 5 )  

( . ( E ,  '7) + P(E, 771% p) = 

li = 91(El77) + @ ( E ,  V)'% 
where 

a(€, 77) = L ; w - ' ( € ,  v>), 
P(f ,  V )  = L ; L ; - l w - l ( t >  VI), 

% [ p ( t d > V ) ] - ' ( Y ! )  - a ( c d ,  V ) ) ,  

and a(0,O) = 0 since f(0) = 0. Define 

(6) 

ary value problcni[l]: 

(8) 

(9) 

(1.) li = P ( Y n  . € d ,  a ) ,  

D S ( r l t t o ) )  = 0 
subject t,o 

{ B"(V( t f ) )  = 0, 

where B"(v) = 0 characterizes the unstable manifold de- 
noted W", and l ? " ( ~ )  = 0 the stable manifold W'.  It 
has also been shown tmhatj this two-point boundary value 
problem locally has a unique solution[2]. Once the two- 
point boundary value problem is solved, X d ( f )  and Z l d ( t )  

can be constructcd as Collows: 

l ' d = $ - l  (\dt e I ? ) ,  (10) 

(11) u d  = p ( < d t  ~ ~ ) ] - ' ( L / ~ )  - a ( t d ,  V ) ) .  

The main purpose of this paper is to construct a nu- 
merical procedure to  solve this two-point boundary value 
problem. Now we end this section by recalling the fol- 
lowing theorems from them our  main results of the next 
section are benefited. 

Theorem 1 [IS] Lct W s  and lnVu be the local stable and 
unsfable manifolds of ihe eqtrdzbrium poznt at the oragtn 
of the zero dynamics.  Then the solufions of the zero dy- 
numzcs wath anataal condzlzons z n  W s  (respectzaely W") 
approach the orzgin at an expponea 1m1 raie nsyinptotacally 
as t - +m (respectauely t - -XI). 
Theorem 2 [ l Y ]  Le/  q ( t )  be the solution of the zero dy- 
namics.  Then there is a 51 > 0 (resp. Sa > 0) such that 
i f  (T ,v (T ) )  E R x  B(&) ( w s p .  E RxB(S:!))  f o r  some 
solution v but ( T , Q ( T ) )  # TV' (resp. # W"), fhen q(t)  
must leave the ball B(S1) (resp. B(S2)) at some f ini te  
tame t l  > r (resp. t 2  < r). 

where t,he subscript d refers to the desired output trajec- 
tory. Then, equation (5)  becomes the so-called reference 
dynamics, 3 Minimum Energy Solution 

' j = p ( y & ' ) , < d , V ) ,  V € Rn-'" (7) This section establishes the following statement,: The so- 
lution of the two-point boundary value problem equiv- 
alent to  the stable inversion problem is of minimum 2- 
norm, thus, the corresponding desired state trajectory 
and nominal control input that map to the desired out- 
put trajectory are also of niiniiiiurn 2-norm. 

where p ( y r ' ,  &, 7) is obviously defined. 
It is now clear that a n  integration of the refer- 

ence dynamics gives rise to  a t,rajectory of the origi- 
nal states through the inverse coordinate transforniation 
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For tlw cmivrni(wce of not ,ition ~ we usc t f ( /  ) 1.0 denote 
the so1111 i o i ~  of h o ~ h  rrfcrt:iicc~ dynainics and zero dyiiani- 
ics i n  tlie I'ollowiiig coiitcxt since the rcference dynamics 
hrcnrnes the zei o ciynaiiiich for t outside the coinpart in- 
tc~vai [to. t r ] .  k irbt ahout the solution 71(t), wc h;we the 
EolloMIlIg Il~slllt. 

Tlic>orc>m 3 :tnioug u1l f h e  soluftoits i j ( t )  of fhe iwo- 
point bouitdary wnlue yroblcni (8), thc ouc which salisfie$ 
the hoitndary coiiditaoii (g), q d ( / ) ?  zs of iniicimum 2-norin. 

Due to liniitation of' space, the proof is omitted here. 
1nterest.cn readers can get the report [18] from the author 
by a mail or eiiiail request. 

The following two theorems claim that the 2-norms of 
the state trajectory ancl of the control input, obtained via 
q d ( f )  are niinimum. 

Theorem 4 Amoiig all f h e  stale trajectories z( t )  whrch 
produce the e ,  act oritput tracking of the reference trajec- 
tory, the X d ( 1 )  Computed by 2 6  = I / j - l ( & j , V d ) ,  where 7)d 

is the solulion of (8) subjected t o  (9)? is  of mznimuni 
Z-pt orm.  

Again, the proof is omitted and can be found in [MI. 
For nonlinear control systems of the form (1)-(2), and 

equivalently of the form (4)-(5) in the new coordinate 
syslem, its corresponding unforced dynamics expressed 
ill t.he new coordinate system is described as follows. 

(12) 
ff(t? 71) p) = I li = q1(F,71), 

where th(3 definition of t, follows equation (3). Assume 
that the nonlinear systems under consideration satisfy 
the following condition: 

Condition 1 The unforced dynamics of the iionlinenr 
system has a local property ihat ais states are all zero 
af and only a! iis output as adentacally zero. 

Thus, for i outside the compact interval [ t o , t j ] ,  the 
output and all its derivatives of any orders are identically 
zero, t ha t  ib, < is identically zero. The above condition 
together with a(0,O) = 0 implies that a(0,q)  = 0 if and 
only if r~ = 0. With this in mind, we prove the following 
theorem regarding control input. 

Theorein 5 Assume thaf the nonlinear system (1)-(2) 
satisfies Condition 1 .  Then, among all the control rnputs 
which produce the eaact outppai trackzng of the reference 
f ra jedory ,  the U d  computed b y  u d  = [P(<d, qd)]-'(yf) - 
CY(&, q d ) ) ,  where q d  is the solution of (8) subjected t o  (g), 
i s  of minimum ??-norm. 

The proof is given in [18] 
The results of these theorems allow us to construct a 

new nuiiierical procedure which will be described in the 
next section to solve the equivalent two-point boundary 
value problem, thus solving the stable inversion problem 
of the nonlinear systems. 

4 Algorithm and Simulation 
An iterative iiunierical procedure is constructed here IO 
find the control input proilucing the desired out pnt tra- 
jectory with mininiuiii cwergy. In each iteration. we liii- 

earize the system dynamics (1)-( 2) along thc solutiolis 
obtained in the prcvious step. Then the approximated 
linear time varying system is discretized to give rise t,o a 
linear algebraic system which can be solved by the Moore- 
Penrose generalized inverse to obtain the minimum en- 
ergy solution, thus, the state lrajectory and control input 
with minimum energy are obtained. This process which 
will be described in some detail as follows is continued 
until a convergent criterion is met. 

Let zi-l and ui-' be the solutions obtained in the 
(i-1)th step. Let zi and ui be the new solutions to be 
solved in the current ith step. Linearizing the system 
equations (1)-(2) along 2j-l  and ui-l we get 

ii = f ( z ' - 1 )  + J & f ) ( z y z i  - 2 - 1 )  
+J,(yu)(zi", ? P ) ( X i  - d-1) + g ( x j - l ) u i ,  

= h(2'") + J , ( h ) ( z " - ) ( z ~  - &1), 
where Js(f)(zO) denotes the Jacobian matrix of f wit.h 
respect to  x evaluated at 20. Thus, we have 

ii = Ai(t)z i  + Bi(t)ui + Ei(t), 

gi = C'i( t )z i  + D ' ( t ) ,  

(13) 

(14) 
where 

Ai((t) = J, ( . f ) (x"- ' ( t ) )  + JZ(gu)(x"'( t ) ,  &'( t ) ) ;  

B"t) = & W ( t ) ) ;  
C ' ( t )  = Jz(h)(z"-l( t ) ) ;  

d ( t )  = h ( z y t ) )  - J*(h)(z"-'( t ) )X'- l ( f ) ;  

E"t) = f (x"-'( t ) )  - &(f)(z'-'(t))z'-'(t)- 
J,  ($U)( Z""(f), t 6 i - 1 ( t ) ) Z i - 1  (t ) . 

The discretization in time of the above linear time vary- 
ing system via. the standard approach will give us a sam- 
pled data system. For the sake of convenience, we drop 
the superscript i in the followings. Using the Variation of 
Constant Forinula, we immediately get the sampled data 
system: 

X k - 1  = FkXk + GkUk + ek ,  

$In. = H k X k  + dk, 
Fk = @((k + 1)T, LT); 

(15) 

(16) 
where 

O( ( k  + 1)T, t ) B ( t )  dt;  
Gk = L + l l T  

el: = i:+l)T e(() + 1)T, t ) E ( t )  d t ;  

Hk = c(kT); dk = D(hT). 
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Notice tliat tlie abote nlalricw can he prrtonipiited 
for all integer A: o n c ~  the origiiial continuous linie linear 
systcni is kiiown. Now, take ail envelop(, inter\al [ t j ,  I?]  
sricli ! h a t  f 1  << f o  ancl f z  >> f J ,  and pt~rfnim (lie siiiii- 

pling over the ciit ire cnlarg(d interval Outpiit !I,,. at cacli 
sampling t,inic, LT can t,licn be evaluated as linear coin- 

bination of "6's and cg's wit<h < R via the sainplcd data 
systcni (15)-(16), that is, 

& = H k ( G k - l u k - 1  + F k - l G k - 2 t l k - ?  + . . -+ 

where yko is the effect of initial condition ro = ~ ( t l ) .  

To simplify the calculation, we try to get rid of the 
involvement of xo as follows. Assuming that, the for- 
ward system is controllable, the any desired initial coil- 
clition $0 can be set up by using appropriate control input 
U - 1 ,  U - 2 , .  . . , U - ,  starting from zero initial stat,e, where 
n is the order of the system. To avoid the potent,ial use 
of large such control inputs, we allow more time than re- 
quired to set up the correct initial condition, that is, we 
will use U - 1 ,  U - 2 , .  . . ,U-M with M >> 71. Then, equa- 
tion (17) becomes 

y k  = H k ( G k - l U k - l +  F k - l G k - a ~ k - 2  + * .  -+ 
F k - l F k - 2 . .  . F - M + I G - M ~ - ~ ~ )  + H k ( e k - i  + F k - l e L - 2  

+ . . . + F k -  1 F k - 2  . . . F - M + ~  e -h f )  + d k .  (18) 
There will be N such equations, where hr is the number 

of total samples in [ f l , t 2 ] .  Let Y be the column vector 
formed by st,acking yk's together, that is, yk is the kth 
block row of Y .  Similarly, let U be the column vector by 
stacking ut 's  together. Then, the set of N equations of 
the form (18) can be written as a compact. linear algebraic 
matrix equation 

Y = MaU + A f p  , (19) 

where M a ,  the coefficient. matrix, and A f p  are defined in 
an obvious fashion. The above equation (19) defines U 
as a function of Y in a loose sense. Once I' is given, 
there are infinitely many U which will solve the equation 
since there are more unknowns in U(= ( N  + M ) m )  than 
the number of equations(= N m ) .  Invoking the Moore- 
Penrose generalized inverse, we get 

U = h&E' - Mp). (20) 

This U will have minimuin 2-norm among all the solu- 
tions of equation (19), hence the corresponding u( t )  will 
have minimum energy. Then, forward time simulation on 
the linearized time varying system using the computed 
input U ,  equivalently w as a function of time, will 8' rive us 
the approximated state z of the current stBep. The sim- 
ulation stops when the stmates computed i n  the adjacent 
two steps are sufficiently close. By the theorems proved 

in i l i e  prvvious sect,ioii, the coiitrol a.nd st.ate t,r.ajeci,ories 
calcula.tecl t,liis way are solut.ions t,o the st,able illversion 
probltwi  siitce bot.11 lia,ve miiiinnini energy. 

Not,ice I hat. siiicc. t,lie stable i tiversion nic~t,hrvl to im- 
l)leiiienf, the ou t.put. t,raclting is always arcompanicd by 
t.hc sbahilixing feedback, we inay a.ssunie h t .  Ihc lin- 
earized time varying system is asymptot,ically sta.hle a t  
(.very st,ep. This is to gua.ra.ntee the coilvergelice of irsing 
of Va,ria,t.ioii of (:lonst,ant Formula in forming t,lie linear 
algebraic syst.em. 

Besides, when the sa.mpling period T is take11 to he suf- 
ficienbly small, the linear time varying system can then be 
viewed as a time invariant system within any one sa.in- 
pling period. Thus, the computation of the t,ransition 
mat.rices @ will be much easier, leading to large reduc- 
tion of t,ime needed for discret,ization in each step. 

The algorit,hm described a.bove is illustrated by the fol- 
lowing example of a. slightly non1inea.r single-inpiit single- 
output system: 

y = 51 - 3 2 3 .  

The reference output trajectory is given by: 

(23) 
2 ( l  - cos@)) f E [O, 2.1, 

?Jd = otherwise. 

It cat1 be easily verified that this system has a well- 
defined relative degree 1' = 2 and ils zero dynamics has 
one diiiietisioiial stable manifold and one dimensional 1111- 

stable inanifold. The corresponding unforced system sat- 
isfies the Coiidition 1 in a certain neighhorhoocl of the 
origin. IIere only z1, 23 and $3 need to be considered 
since 2 4  never appears in the output. 

The equi\alent two-point boundary value problem can 
he found as follows[l] 

subject to 

Since the reference dynamics are in a triangular forin, 
the exact solution of the two point boundary value prob- 
lem can be solved analytically. The simulated results via 
the iterative algorithm constructed above are shown in 
Figure 1, Figure 2 and Figure 4. Figure 1 indicat(es that  
almost perfect, output tracking has been obtained except 
that the simulated tmjectory is half sampling period be- 
hind the desired one. This error will be reduced if the 
sampling time is reduced. It can also be verified that the 
simulated sate trajectories in Figure 2 and control tra- 
jectory in Figure 3 are almost identical to the analytic 
solution. Hence, the algorithm has converged 
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5 Conclusion 
bor nonlinear systenis of the lorin (1)-(2) willi a wcll- 
ddinetl relative degree wid tlicir wro dynamics has a hy- 
pcrlwlic cyuilibriiim point a t  t h e  origin, thv stable inver- 
i o ]  t problem i s  (.quivnlent to a two-poiiit boundary value 
problem (8) -  (9). In this paper, we have presented an it-  
erative dgont hm for the construction of desired state tra- 
jectory and nominal control input, under t,he results that 
the solution or the two-point boundary value prohlein is 
of niininiuin 2-nor111 when the nonlinear system satisfies 
the Condition 1. The solutions produced by our method 
are bounded and causal. Tracking controllers using the 
signals generated by the stable inversion together with 
the stabilizing feedback will offer an exact output track- 
ing without any transients. The key assumptions here on 
the nonlinear systems, when using the minimum-energy 
approach, are the well-defined relative degree, hyperhol- 
icity of the fixed point of the zero dynamics and Condi- 
tion 1 mentioned above. Even though this already covers 
a large number of physical systems in many engineering 
applications, systems without these assumptions or with 
any other forms will still be of great interest. 
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