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Abstract

This paper presents a new approach to solve the sta-
ble inversion problem of nonlinear nonminimum phase
systems. Based on the resent results [1], the minimum-
energy property is first established for the solutions of the
stable inversion problem. Then, an iterative algorithm
via linearization, discretization and Moore-Penrose gen-
eralized inverse is constructed. This is followed by simu-
lation results to illustrate that the exact output tracking
without any transients has been achieved.

1 Introduction

The problem of output tracking control for nonlinear sys-
tems is of great importance from both the theoretical and
the practical viewpoints and it has been studied exten-
sively for many years. There are two basic approaches
to attack this problem. Using state feedback is one way
which involves stabilizing the closed-loop system so as to
achieve asymptotic tracking of a class of reference input.
The second approach is to implement the tracking con-
troller with feed-forward signals generated by an inverse
system coupled with a stabilizing feedback loop.

For the linear multivariable cases, the asymptotic
tracking problem was solved by [3, 4] aud subsequently
crystallized as the internal model principle[5]. The ma-
trix equations defining an asymptotic tracking controller
for linear systems were translated to nonlinear partial
differential equations in the nonlinear cases[6]. Although
nonlinear partial differential equations are only numer-
ically tractable for systems of low order, solutions for
tracking periodic trajectories have been developed based
on Fourier series[7, 8]. However, the transient error phe-
nomenon is still a fundamental limitation of the regula-
tion approach.

The transient behavior can be precisely controlled by
using stabilizing feedback together with feed-forward sig-
nals generated by an inverse system. For linear multi-
variable systems the inversion problem has been solved
to a large degree by Brockett and Mesarovic[9] and
Silverman(10]. However, these inverses are all causal.
The linear inversion results were extended to nonlinear
real-analytic systems and conditions for the invertibility
of these systems have been derived by Hirschorn[11, 12].
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Singh[13], for example, had similar results on nonlinear
inversion with some modified conditions. All these in-
version algorithms produce causal inverses for a given
desired output y4(¢) and a fixed initial condition z(%o).
Unbounded u(¢) and z(t) were produced for nonmini-
mum phase systems. This fundamental difficulty has
been noted for a long time.

Motivated by the success of the noncausal inverse dy-
namics approach [14], the notion of stable inversion has
recently been developed [1] in an effort to find feed-
forward signals for the tracking controller. The prob-
lem has been solved for a class of nonlinear nonmini-
mum phase systems with well defined relative degree and
hyperbolic zero dynamics. In this paper, we derive a
numerical procedure for the constructing of the stable
inverses. The remainder of this paper is organized as
follows. In section 2 we state the problem of stable in-
version of nonlinear systems and review previous results.
Section 3 shows that the system states and control input
obtained by the solutions of the corresponding equiva-
lent two-point boundary value problem are of minimum
2-norm. Then, a numerical procedure aimed at find-
ing the minimum-energy control input via the Moore-
Penrose generalized inverse is constructed at the begin-
ning of section 4. This is followed by the simulation re-
sults of an example which is a fourth order nonminimum
phase nonlinear system. Finally, some remarks are given
in section 5.

2 Stable Inversion Problem

Consider the multivariable nonlinear control systems of
the form

& = f(z) + g(2)u, (1)
y = h(z), (2)

where the system state x is defined on a neighborhood
X of the origin of R and input v € R™ and output
y € R™. f(z) and g:(2) (the ith column of g(x)) for
i = 1,2,...,m are smooth vector fields and h;(z) for
i=1,2,...,m are smooth functions on X, with f(0) =0
and h(0) = 0. For such systems, the stable inversion
problem is stated as follows[1]:

Stable Inversion Problem: Given a smooth reference
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output trajectory ya(t) with compact support, find a con-
trol inpul ug(l) end a state trajectory xy(t) such that
1) wa(t) and xq(t) satisfy the differential equation

Eg(t) = f(za(l)) + g(xalt)) ualt):
2) exact outpul tracking is achieved
h(za(t)) = ya(t);
3) ug(t) and x4(t) are bounded and
ug(t) — 0,

z4(t) — 0 as t — doo.

We call z4(t) the desired state trajectory and ug(t) the
nominal control mmput. The following notation will be
used throughout this paper.

with N % (1,2, r & (11,0, ., )T € N7
and y : R® — R™, we define |r| o YT,
o) def (d"lyl d"ys A" Ym T
dtry o dtra T drm

d
Lyy & (L, Lpwe, . L)

Assume that the system has a well-defined relative de-
gree 7 € N'™® at the equilibrium point at the origin. To

partially linearize the system, we define fi. def y,(.k_l) for
alli=1,2,...,mand £ = 1,2,...,r; and denote

def
¢ ele,.. .88, LEm T
def . -1 -
= O s S Y] L )

Choose 7, an n — |r| dimensional function on R such
that (¢7,5T)T = y(z) forms a change of coordinate with
¥(0) = 0{15]. In this new coordinate system, the system
dynamics of equations (1)~(2) becomes

¥ = a(€,n) + BE )y, (4)
1 =q(&,n) + 20§, My, (5)

where
a(g,n) = LyA(¢1 (€, ),
A&, m) = LyLi ™ h(4™ (€, m)),
and a(0,0) = 0 since f(0) ='0. Define

u (B ) G — alEam)), (6)

where the subscript d refers to the desired output trajec-
tory. Then, equation (5) becomes the so-called reference
dynamics,
7=p(yy,a,m), n€RI (7)
where p(y‘(ir),Sd, n) is obviously defined.
It is now clear that an integration of the refer-

ence dynamics gives rise to a trajectory of the origi-
nal states through the inverse coordinate transformation

v = ¢~ (& ) and an input irijectory by equation (6).
Now the problein is how to integrate the reference dy-
namics to generate bounded solutions to the stable in-
version problem since the reference dynamics may be un-
stable in both positive and negative time directions in
general.

For reference trajectories with compact support, the
reference dynamics become autonomous zero dynamics
for ¢ outside the compact interval [to,¢s]. Assume that
the zero dynamics has a hyperbolic equilibriumn point at
the origin. It has been shown that the stable inversion
problem is equivalent to the {ollowing two-point bound-
ary value problem{1]:

0=, €a,m), (8)
subject to
B* (n{to)) =0
{ B(n(ty)) = 0, )

where B*(n) = 0 characterizes the unstable manifold de-
noted W*, and B*(n) = 0 the stable manifold W*. It
has also been shown that this two-point boundary value
problem locally has a unique solution[2]. Once the two-
point boundary value problem is solved, z4(t) and w4(?)
can be constructed as follows:

zq =9 (&, ), (10)

ug = [B(Ea, )]~y — ala,m))- (11)

The main purpose of this paper is to construct a nu-
merical procedure to solve this two-point boundary value
problem. Now we end this section by recalling the fol-
lowing theorems from them our main results of the next
section are benefited.

Theorem 1 [16] Let W* and W* be the local stable and
unstable manifolds of the equilibrium point at the origin
of the zero dynamics. Then the solutions of the zero dy-
namics with initiel conditions in W* (respectively W*)
approach the origin at an exponential rate asymptotically
as t — 400 (respectively t — —o0).

Theorem 2 [17] Let n(t) be the solution of the zero dy-
namics. Then there is a 6 > 0 (resp. 62 > 0) such that
if (r,m(1)) € Rx B(61) (resp. € Rx B(62)) for some
solution 7 but (7,n(t)) € W* (resp. & W*), then n(t)
must leave the ball B(61) (resp. B(62)) at some finite
time t1 > 7 (resp. ty < 7).

3 Minimum Energy Solution

This section establishes the following statement: The so-
lution of the two-point boundary value problem equiv-
alent to the stable inversion problem is of minimum 2-
norm, thus, the corresponding desired state trajectory
and nominal control input that map to the desired out-
put trajectory are also of minimmum 2-norm.
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For the couvenicnce of notation. we usc 5(t) to denote
the solutious of both reference dynamics and zero dynam-
ics n the following context since the reference dynamics
becomes the zero dynamics for ¢ outside the compact in-
terval [tg, tr]. First about the solution 7(t), we have the
following result.

Theorem 3 Among all the solutions n(t) of the two-
point boundary value problem (8), the onc which satisfies
the boundary condition (9), na(t), is of minimum 2-norm.

Due to limitation of space, the proof is omitted here.
Interested readers can get the report [18] from the author
by a mail or email request.

The following two theorems claim that the 2-norms of
the state trajectory and of the control input obtained via
na(t) are minimum.

Theorem 4 Among all the stale trajectories x(t) which
produce the exact output tracking of the reference trajec-
tory, the 24(t) computed by xq = ¢¥~1(£4,14), where 74
is the solution of (8) subjecled o (9), is of minimum
2-norm.

Again, the proof is omitted and can be found in [18].

For nonlinear control systems of the form (1)-(2), and
equivalently of the form (4)~(5) in the new coordinate
system, its corresponding unforced dynamics expressed
in the new coordinate system is described as follows.

{ ¥ = alg,)
U] a1(§,m),
where the definition of ¢ follows equation (3). Assume

that the nonlinear systems under consideration satisfy
the following condition:

(12)

Condition 1 The unforced dynamics of the nonlinear
system has a local property that ils states are all zero
if and only if ils output is identically zero.

Thus, for 1 outside the compact interval [to, 7], the
output and all its derivatives of any orders are identically
zero, that is, £ is identically zero. The above condition
together with «(0,0) = 0 implies that a(0,7) = 0 if and
only if = 0. With this in mind, we prove the following
theorem regarding control input.

Theorem 5 Assume that the nonlinear system (1)_(2)

satisfies Condition 1. Then, among all the control inputs
which produce the exacl oulpul tracking of the reference
trajectory, the ug computed by ug = [ﬂ(fd,nd)]"l(y‘({) -
(€4, na)), where ng is the solution of (8) subjected to (9),

s of mintmum 2-norm.

The proof is given in {18]

The results of these theorems allow us to construct a
new numerical procedure which will be described in the
next section to solve the equivalent two-point boundary
value problem, thus solving the stable inversion problem
of the nonlinear systems.

4 Algorithm and Simulation

An iterative numerical procedure is constructed here to
find the control input producing the desired output tra-
jectory with minimum energy. In each iteration, we lin-
earize the system dynamics (1)~(2) along the solutions
obtained in the previous step. Then the approximated
linear time varying system is discretized to give rise to a
linear algebraic system which can be solved by the Moore-
Penrose generalized inverse to obtain the minimum en-
ergy solution, thus, the state trajectory and control input
with minimum energy are obtained. This process which
will be described in some detail as follows is continued
until a convergent criterion is met.

Let z'~! and »*~! be the solutions obtained in the
(i-1)th step. Let 2* and u’ be the new solutions to be
solved in the current ith step. Linearizing the system
equations (1)~(2) along x'~! and ui~! we get

# = f(@) + LA -2
+o(gu)(a™ w2 = 25 4 g( )
¥ = k") + (R ) - 2",

where J(f)(z0) denotes the Jacobian matrix of f with
respect to z evaluated at £0. Thus, we have

&t = Al(t)z' + B'(t)ye’ + E'(t), (13)
¥ = C(t)e’ + D'(v), (14)
where
A (M) = TN (1)) + T (gu)(= 1 (), v (1))
B'(t) = g(2"' (1));
Ci(t) = Jo(h)(*~1(1));
Di(t) = h(z'~1(t)) ~ Jo(h)(z*~ 1 (8))a*  (1);
E(t) = f(&*~1(1)) — L (f)(@ 1 (0)z" (1)~
To(gu)(@'=1(2), w1 (#))2" = (2).

The discretization in time of the above linear time vary-
ing system via the standard approach will give us a sam-
pled data system. For the sake of convenience, we drop
the superscript i in the followings. Using the Variation of
Constant Formula, we immediately get the sampled data

system:
(15)

(16)

g1 = Frzp + Grup + e,
yr = Hpze + di,

where
Fp = q’((k + 1T, kT);

(k+1)T
Gy = / &((k + VT, O)B(t) di;
kT

(k+1)T
e = / &((k + 1)T, )E(t) dt;
kT

Hy = C(kT); di = D(kT).
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Notice that the above matrices can be precomputed
for all integer & once the orviginal continuous time linear
system is known. Now, take an envelope interval [t). /o]
such that #; << fp and 75 >> #;, and perform the sam-
pling over the entire enlarged interval. Qutput ¥, at cach
sampling time k7" can then be evaluated as a linear coin-
bination of uz’s and cj’s with k < k via the sampled data
system (15)—(16), that is,

= Hi(Grorur—y + FroaGrosug_a+ - -+
Fr1Fp—2 ... F1Gouo) + Hy(er -1+
Fer€p-a+ -+ Fr1Fpa... Flep) + di + yr,, (17)

where yi, is the effect of nitial condition 2 = 2(¢).

To simplify the calculation, we try to get rid of the
involvement of xg as follows. - Assuming that the for-
ward system is controllable, the any desired initial con-
dition 2o can be set up by using appropriate control input
U1, U2, . .., Uy Starting from zero initial state, where
n 1s the order of the system. To avoid the potential use
of large such control inputs, we allow more time than re-
quired to set up the correct initial condition, that is, we
will use u_y,u_9,...,u_p with M >> n. Then, equa-
tion (17) becomes

Yo = Hp(Gr—1up-1 + Fro1Gr—otg—2+ - -+

FroaFpooo o FopnGopuop) + Hi(ek—1 + Fro1ex-2
+...+Fk_le_Z...F_M.q_le—M)+dk- (18)

There will be N such equations, where N is the number
of total samples in [t1,12].  Let Y be the column vector
formed by stacking y’s together, that is, y; is the kth
block row of Y. Similarly, let U be the column vector by
stacking u;’s together. Then, the set of N equations of
the form (18) can be written as a compact linear algebraic
matrix equation

Y = MU + Mg, (19)
where My, the coeficient matrix, and Mg are defined in
an obvious fashion. The above equation (19) defines U
as a function of Y in a loose sense. Once Y is given,
there are infinitely many U which will solve the equation
since there are more unknowns in U(= (N + M)m) than
the number of equations(= Nm). Invoking the Moore-
Penrose generalized inverse, we get
U= MI(Y — Mp). (20)
This U will have minimum 2-norm among all the solu-
tions of equation (19), hence the corresponding wu(t) will
have minimum energy. Then, forward time simulation on
the linearized time varying system using the computed
input U, equivalently u as a function of time, will give us
the approximated state 2 of the current step. The sim-
ulation stops when the states computed in the adjacent
two steps are sufficiently close. By the theorems proved

in the previous section, the control and state trajectories
calculated this way are solutions to the stable inversion
problem since both have minimum energy.

Notice that. since the stable inversion method to im-
plement the output tracking is always accompanied by
the stabilizing feedback, we may assume that the lin-
earized time varying system is asymptotically stable at
every step. This is to guarantee the convergence of using
of Variation of Constant Formula in forming the linear
algebraic system.

Besides, when the sampling period 7" is taken to be suf-
ficiently small, the linear time varying system can then be
viewed as a time invariant system within any one sam-
pling period. Thus, the computation of the transition
matrices ® will be much easier, leading to large reduc-
tion of time needed for discretization in each step.

The algorithm described above is illustrated by the fol-
lowing example of a slightly nonlinear single-input single-
output system:

1 —r1 4 29 0
Ty | _ | =3zp+2? 2 1
s | T | m-22s |T]o | (D
T4 —x4 + :cg 0
y =z — 3x3. (22)
The reference output trajectory is given by:
_f 2(1 —cos(t)) tel0,27],
Ya = { 0 otherwise. (23)

It can be easily verified that this system has a well-
defined relative degree » = 2 and its zero dynamics has
one dimensional stable manifold and one dimensional un-
stable manifold. The corresponding unforced system sat-
isfies the Condition 1 in a certain neighborhood of the
origin. Here only 1, 22 and 23 need to be considered
since x4 never appears in the output.

The equivalent two-point boundary value problem can
be found as follows[1]

{Bomiu, (24
N2 = =12 + 07,
subject to
ﬂl(tf) =0 25
{ 2(to) = 573 (to)- (25)

Since the reference dynamics are in a triangular form,
the exact solution of the two point boundary value prob-
lem can be solved analytically. The simulated results via
the iterative algorithm constructed above are shown in
Figure 1, Figure 2 and Figure 4. Figure 1 indicates that
almost perfect output tracking has been obtained except
that the simulated trajectory is half sampling period be-
hind the desired one. This error will be reduced if the
sampling time is reduced. It can also be verified that the
simulated sate trajectories in Figure 2 and control tra-
jectory in Figure 3 are almost identical to the analytic
solution. Hence, the algorithm has converged
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5 Conclusion

For nonlinear systems of the form (1)~(2) with a well-
defined relative degree and their zero dynaniics has a hy-
perbolic equilibrium point at the origin, the stable inver-
sion problem is equivalent to a two-point boundary value
problem (8)--(9). In this paper, we have presented an it-
erative algorithm for the construction of desired state tra-
jectory and nominal control input under the results that
the solution of the two-point boundary value problem is
of minimum 2-norm when the nonlinear system satisfies
the Condition 1. The solutions produced by our method
are bounded and causal. Tracking controllers using the
signals generated by the stable inversion together with
the stabilizing feedback will offer an exact output track-
ing without any transients. The key assumptions here on
the nonlinear systems, when using the minimum-energy
approach, are the well-defined relative degree, hyperbol-
icity of the fixed point of the zero dynamics and Condi-
tion 1 mentioned above. Even though this already covers
a large number of physical systems in many engineering
applications, systems without these assumptions or with
any other forms will still be of great interest.
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