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Abstract

This paper investigates an extremely important and
challenging problem in nonlinear control: output tracking
control of nonminimum phase nonlinear systems. Not only
does the controller provide stable asymptotic tracking, it also
ensures that the transient error will be within a prespecified
bound. This is achieved by using a novel approach of stable
inversion. In this approach, the nonminimum phase system
is first stably inverted off-line to obtain desired (and stable)
state and input trajectories that map exactly into the desired
output trajectory. Then a feedback controller is designed to
stabilize the closed-loop system and to ensure robustness to
certain types of uncertainties. The procedures developed may
be applied to many important engineering problems, such as
aircraft control, rocket control, medical equipment,
nondestructive evaluation, and so on.

1 Introduction

A system is nonminimum phase (or has unstable zeros
in linear case) if a nonlinear state feedback can hold the
system output identically zero while the internal dynamics
become unstable [1]. Output tracking control of
nonminimum phase systems is a highly challenging
problem encountered in many practical engineering
applications such as rocket control, aircraft control, flexible-
link manipulator control, and elsewhere [e.g., 2-3]. The
nonminimum phase property has long been recognized to be
a major obstacle in many control problems. It is well-
known that unstable zeros cannot be moved with state
feedback while the poles can be arbitrarily placed (if
completely controllable) [e.g., 4]. In the classical causal
inversion approach [5] for exact output tracking,
nonminimum phase causes the internal state to become
unstable while the output is being tracked [6]. The recently
developed nonlinear regulation technique [7] ensures internal
stability with asymptotic tracking, but it suffers from large
transient errors. In most standard adaptive control [e.g., 8]
as well as in nonlinear adaptive control [e.g., 9], all
algorithms require that the plant be minimum phase. In the
recent nonlinear control literature [e.g., 10], nonminimum
phase is again a major barrier in feedback linearization and
stabilization of nonlinear systems.

This paper presents a new procedure for designing
output tracking controllers for nonminimum phase systems.
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The new controller will achieve the salient feature of
nonlinear regulation: stable asymptotic output tracking, as
well as that of classic inversion: high precision without
transient errors. This is achieved by using a novel approach
of stable inversion. In this approach, the nonminimum
phase system is first stably inverted off-line to obtain desired
(and stable) state and input trajectories that map exactly into
the desired output trajectory. With this, the nonminimum
phase control problem is converted into a minimum phase
one. Then a feedback controller is designed to stabilize the
closed-loop system and to ensure robustness to certain types
of uncertainties.

A closely related area of study is the classic inversion
theory that was first studied by Brockett and Mesarovic [11].
In Silverman’s easy-to-follow step-by-step procedure [12], an
input functions defined on [0, o) is obtained by solving
an initial condition problem for a given output function.
Such inverses are necessarily causal but unstable for
nonminimum phase systems. These linear inversion results
were extended by Hirschorn [5] to real analytic nonlinear
systems. Singh ([13] for example) had similar results on
nonlinear inversion with modified conditions and considered
their applications. Similar to the linear case, these inversion
algorithms produce causal inverses for a given desired output
y4(t) and a fixed initial condition x(ty), leading to
unbounded u(¢) and x(¢) for nonminimum phase systems.
This difficulty has been noted for a long time. Singh and
Schy [6] have applied these inversion techniques to the
control of flexible manipulators. Simulation and
experimental results verify that, although exact output
tracking can be achieved transiently, internal vibration builds
up.

Also closely related is the nonlinear output regulation
recently developed by Isidori and Byrnes {7]. This theory
provides asymptotic output tracking for a class of nonlinear
systems with guaranteed internal stability. The solution of
the nonlinear regulator involves solving a set of nonlinear
PDE’s. Also remain to be tackled is that transient errors can
not be controlled precisely and are usually large for
nonminimum phase systems. This is verified by its
application to flexible manipulators control [14]. This
general phenomenon is a fundamental limitation of the
regulation approach.
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The rest of the paper is organized as follows. The next
section sets the basic framework and defines the problem to
be solved. In section 3 the stable inversion problem is
defined and the solution together with its properties is
presented for a class of systems. Section 4 studies the
controller design problem. Four different solutions are
given, each based on different assumptions and each
achieving stable output tracking with prescribed accuracy.
Finally, some possible application areas are briefly discussed
in the conclusion.

2 Basic Setting

Consider a nonlinear dynamical system described by
X=f(x)+gxu+Af(x, 2)+Ag(x, 2)u
Y 3i=0x 2)
y=h(x)+Ah(x, z)
where x is the state vector of the nominal system and is
defined on an open neighborhood X of the origin of R”, Z
is the state vector of the unmodeled dynamics and is defined
on an open neighborhood Z of the origin of R™, u is the
m-dimensional input vector, y is the p-dimensional output
vector, f(x), g(x), h(x), Af(x, 2), Ag(x, 2), @(x, 2),
Ah(x, z) are smooth functions of their arguments with
h(0)=0 and f(0)=0. When m<p, it is generally not
possible to track all degrees-of-freedom in y. When m> p,
some of the degrees-of-freedom in # can be used to change
the zero dynamics. This project will concentrate on the case
m=p. In particular, this proposal will assume m=p=1 for
simplicity. However, all the discussions apply to the case
when m=p>1 with little changes. When Af =0, Ag=0,
Ah=0, and z(t)=0 with ny =0, the reduced system
becomes the nominal system:
. x=f(x)+g(x)u
2o’ {y = h(x)

A1l: ¥, is stabilizable and zero input observable.

The class of reference trajectories considered reflects
practical considerations. For example, all practical signals
have a finite horizon, or are defined over a finite interval of
time. In trajectory planning, the reference signals are
usually defined by interpolating pre-calculated points. In
such cases, it is not practical to try to use an exosystem to
generate the reference signal. Hence, the following
assumption is made:

A2: The reference output trajectory y,(f) is a sufficiently

smooth function of time satisfying
ya(8)=0 Vi<t, and Vit2t, where t; >, are finite.

Here, “sufficiently smooth” means that the signal has
continuous derivative of any required order. This assumption

covers a large family of practical references. Furthermore, it
can be easily extended to cover signals whose certain
derivatives have a finite horizon.

Let x(¢) and y(z) be the state and output trajectories,

respectively, of a dynamical system. For a given reference
y4(2) satisfying assumption A2, we define the following

tracking properties.

Definition 1: The system is said to achieve
1) Exact-Tracking, if [[y(t)— y,()]=0 VieR;
2) e-Tracking, if |[y(1)- y,(t)| <€ VieR;
3) Asymptotic-Tracing, if |y(¢)— y;(t)}] = 0 as t — oo,

4) Stable X -Tracking, if X -tracking is achieved with
bounded x(z) and x(1) >0 as t > eo.

Note that “ X" can be either “g”, or “exact”, or “asymptotic”.
When applicable, the modifiers can be combined. For
example, asymptotic and e-tracking means that both 2) and
3) are satisfied in definition 1. The causal inversion provides
exact-tracking but not stable for nonminimum phase
systems; the nonlinear regulation provides stable
asymptotic-tracking; the stable inversion is to provide stable
exact-tracking; and the proposed controller is to provide
stable asymptotic and e-tracking for the nominal system as
well as in the presence of certain uncertainties.

3 Stable Inversion Problem
For the nominal system Y ,, pose the following:

Problem Statement [15-16]: Given y,(¢) satisfying
assumption A2, find bounded u,;(¢) and x,(z) such that
1) x5(0) = f(x()) + g(x ()uy(r)  VieR 1)
2) h(x; (1)) =y; (1) VieR )
3) uy(t)—>0, x;)—0 as t— too

If this problem has a unique solution, system X, is said to

be stable-invertible. This problem has been solved for a class
of systems satisfying the following conditions.

A3: System X, has well-defined relative degree, i.e., 3
O<r<n, such that in an open neighborhood of 0,
LLh(x)=0 Vi=1, 2, -, r=2, LL7 h(x)#0.

Under this assumption, system X, can be represented in
the following normal form

5i=6i+l i=l' 2""’ r-1
&, = Lph(x)+ LI h(x)u = o€, m+PE, mu (3)
n=p¢& m @)

Here, £=(&,&,&) . &=Li'h(x), i=12,-r.
The coordinate transformation (é,n)T=‘P(x) is a
diffeomorphism with W(0)=0. If u is selected to make
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&, =0, then £=0 and y=¢& =0. The resulting internal
dynamics, 7= p(0, 1), are called the zero dynamics. £=0
defines an invariant manifold: the zero dynamics manifold.

Ad4: The zero dynamics have a hyperbolic fixed point £ =0,

i. e., none of the eigenvalues of the Jacobian matrix
dp ! an(0, 0) are on the imaginary axis.

Under assumption A4, there exists an invariant
submanifold of the zero dynamics manifold, denoted W*

[17). W? has dimension equal to the number of stable
eigenvalues of dp/an(0, 0), and is called the stable

manifold. Similarly, there exists an unstable manifold W“

of dimension equal to the number of unstable eigenvalues of

dp/an(0, 0). W* and W* are smooth manifolds tangent

to the stable and unstable eigenspaces, respectively. W* and

W* are transversal to each other at 71=0. Locally W* is

defined by an equation B“(7)=0, and W* by B*(n)=0.
From eq. (3), since B=L,L}h is nonsingular,

u A [BE A" [y - atg, m) )
is well defined and leads to

£ =y =y,

E= &8 Ouv Jao 0 9.
Equation (4) becomes the reference dynamics (the zero

dynamics driven by the reference output)
n=p(&; M. ©)

Theorem 1 {15, 16]: Under assumptions A2-A4, the stable
inversion problem for system X, has a solution if and only

if the following two-point boundary value problem has a
solution:

n= P(éd. ), ©
B (n(1,) =0,

o @

subject to {B“ (1, ) =0.

Theorem 2 [18, 19]: Under assumptions A2-A4, the two-

point boundary value problem of equations (6-7) has a

unique solution provided |&,]. A sup J&,(f, is not
telto, 1)

too large.

Corollary: Under assumptions A2-A4, system X, is
locally stable-invertible.

Let n,(¢t) denote the solution to the two-point
boundary value problem . Then

EAOES S (FO% MO

(1) = (B, @ g N Y - €4 @), 1y (M) (8)

define the unique solution to the stable inversion problem.
Since &;, n, have continuous derivatives and ¥, o, B

are smooth functions, it is easy to see the following:

Proposition 1: Under assumptions A2-A4, x,(z) and
u4(2) are continnously differentiable. Furthermore, if y4(r)
is smooth, x,(¢t) and u,(¢) are also smooth.

By condition (7) and by dynamical system theory, the
following is immediate:
Theorem 3 [20]: There exist 7, ¥, >0, my, my>1
such that for 121 x (1) e W”,

Jr. 0 < nye'r‘("")lxd(z,)l. and for 1<ty x,(1)e W,
Jra @ < mye* 72, (10 ).

Hence x,4(t) — O exponentially as ¢ — oo, The same
is true for u,, since u, is smooth inx,. If system X, is
truly nonminimum phase, i. e., dimension of W" %0, then
x;()#0 and u;(#)#0 for t<t,. Hence the inverse is
noncausal. If system X, is actually minimum phase,

W“={0}. Then x;(t)=0, u;(#)=0, for t<1,, and the
inverse is causal.

Based on Theorem 1, an algorithm [19] has been
developed to solve the stable inversion problem by
iteratively linearizing the reference dynamics and decoupling
the stable and unstable dynamics. This algorithm has been
successfully tested for the flexible manipulator tracking
problem [21-22]. In another algorithm [20], the forward
dynamics X, are iteratively discretized to form a set of
algebraic (difference) equations. Then the generalized inverse
is solved to yield the discretized trajectory for u,(2).
Testing results were also successful. This algorithm is valid
because of the following property of the stable inverse.

Theorem 4 [20]: Under assumptions A2-Ad, there are
infinitely many u,(¢)’s that enable system ¥, to achieve
exact-tracking, out of all u.(z)’s, u,(¢) is the unique one

with minimum energy.
4 Output Tracking Control

Once the stable inversion problem is solved, a pair
x4(t), uy(t), is obtained which by definition solves the

exact-tracking problem for the nominal system. However,
since the system is nonminimum phase, u,(t) will be
nonzero for all £. Hence, in order to achieve exact tracking,
u,(1) has to be applied starting at ?=-co, which is
impossible. Furthermore, since the forward system is not

necessarily stable, any small perturbation may lead to
divergence from x;(¢), i. e., the loss of output tracking.

Therefore, to be practically implementable, u,(f) with its
left tail truncated is used as feed forward and a feedback
controller is used to stabilized the closed-loop system.

a) Full State Available for Feedback
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First, the possibility of using linear feedback control is
studied.

Assumption AS: The nominal system X, is locally
controllable, i. e., (df / dx(0), g(0)) is a controllable.

Let A=df/0x(0), B=g(0). Under assumption AS,
standard linear techniques can be used to find K such that
A- BK is a stable matrix with its eigenvalues placed at
desired places. Define a feedback control law:

ug )+ K(xy(1)—x(t)) t—t,2-T

)=
Then the closed-loop system is:

X = f(x)+gx)uy+g()K(x;—x) x(t,-T)=0

Xg=fxy)+8(xg)uy X (—00)=0
Let x,(t) = x4(¢)— x(t), then

X, = f(xg) = f(x)+(g(xg)~ g(x)uy — g(x)K (x4 - x)
Some algebraic manipulation leads to
i, = (A= BK+AGx)x, + Ox. )

where A(x,) is continuous in x; with A(0)=0, 0(||x,[|2)
represents a combined term that is of order of |Jx, |2. Then it
is easy to show that when &, is not too large or x, is not
too large, the x, dynamics are exponentially stable. Hence
there exist m>1, ¥ >0, such that

Jx. @l < me "¢ Dlix, 1 - T

But
[x. ¢ = D= |24t - T < mpe™ T
Therefore
[x. )| < mmye7C¢ 5o * DTy >4 T
< mmye” 7T t2t,-T

[x. @l = x| < mpe™ 2% <mye T ve<y, -T
Since h(x) is smooth, it is locally Lipschitz. Hence,
I @) =lrxs )~ x))]
< Lyx, () - x(0)|| = Ly|Jx, )]
< Lymmye™ T VieR
L,mm,

Therefore, choosing T = YLln guarantees

2
ViteR.

[x.0|>0 as
[¥®) = y4(®)| - 0 as t — o also. Therefore:

@) -y.wl<e

Furthermore, since t— oo,

Proposition 2: Under assumption A2-AS, the control law
(9) leads to stable asymptotic and e-tracking.

Assumption AS is a very strong condition. Many
nonlinear systems are not locally controllable, but are still
stabilizable by using state feedback. One class of systems
are characterized by the following.

A 6: span(g, adg, -, ad;'zg} is involutive with
constant rank, and span{g, ad,g, -, ad}'lg} has rank n,

in a neighborhood of 0 € R”.

Assumption A6 is the necessary and sufficient condition

for the nominal system to be feedback linearizable. Under
this assumption, there exists a smooth function ¢(x) such

that the relative degree between ¢(x) and u is n. Let
Gi = l,")?ltp(x), Sai = L",‘(lxd)cp(xd), i=1--,n. Then the
diffeomorphism ¢ =[¢;, 63, **-, g,,]T =¢(x) forms a

change of coordinates. The nominal system in the new
coordinates has the following normal form representation:

Gi=Gin i=1 - n-1
& =Lp¢(x)+ LI ¢(x)u
This suggests the following feedback control law for
t>2to—T (u(t)=0 for t<ty—T):
w(t) =L, Ly 0OT =Ly ¢(x) + L., 9(xs)
+0y_1(Gin = G )+ +4 (G2 = 62) + 89 (G4 — 6]
where s"+a,_ ;5" +--+a;s+a, is Hurwitz. In the

10

original coordinates, the control law is
u(t) = [LLT 9O =L} 9(x) + L, $(x,)
+8, (L3, 8(xg) — L7 $(2)+--
+ay (L y9(x4)— Lpg(x)) + ao (¢(x7) - ¢(x))]

Let ¢, =64 —6i, e=le, € -, e, then

. 0 1
e= e 12t -T
~Gy =Gy " =Gy
Therefore e — 0 exponentially, ie., ¢ —>¢; as oo,

Since ¢=¢(x), x(t)— x;(t) exponentially as ¢ — oo.
Hence for t2¢,-T

Jx() - x4 @Y < me™ 7 Dty — T) - x4(8 — T
Following similar argument as before, one obtains:

Proposition 3: Under assumptions A2, A3, and A6, the
control law (10) leads to stable asymptotic and e-tracking for
proper T.

b) Selected Output Feedback

In many applications, the full state is not available for
feedback, or it has too many components to measure, or it
leads to a controller that is too complicated. Then some
kind of output feedback is preferred. Since the regulated
output y leads to a difficult nonminimum phase control
problem, a different set of output variables are selected for
feedback. For example, in flexible-link manipulator control,
the tip trajectory is the regulated output to be tracked and
joint torque is the input. But this output renders the
input/output mapping nonminimum phase. For a given tip
trajectory, the stable inversion problem can be solved first to
yield a desired joint angle trajectory. Then the joint angle can
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be used for feedback to stabilize the closed-loop system.
This task is relatively easier since it is a minimum phase
system control problem.

Let {=s(x) be measurement for feedback. Then
&4 = 5(x,;) will be the desired trajectory for ¢ to track. The
choice of { needs to satisfy two requirements:

A7: The measurement { can be chosen such that there is

well defined relative degree and the resulting zero dynamics
are exponentially stable.

Under this assumption, the following normal form is
another representation of the nominal systemn

{C ) = gy (x)+ By (x)u
h=p®=p& m)
where & =(C, ¢, -, (") and 7, is the relative
degree. Let &y =Ly Egv vy LD, Then the
desired trajectory for 7, satisfies
The = PG4 Ma).
And {, satisfies
0 = o (%) + By (x g,
uy =B (I IEYY - e (x)). an
Let £, = {;— ¢, then we can have
u=[B 0T [~y (1) + {F +a, V4 4ag, ]

-1 o
& va, (L Vv ral, + a0l =0.

Clearly, if s +a, ;"' ++as+a, is Hurwitz,
¢, — 0 exponentially. However, the control law as defined

above is not realizable, since x is not available for feedback.
Noting that

w=B1 - a1+ B, £ V4 +al, +agl,)

and comparing equation (11) suggest the following control
law for 121, - T

u=uy+[B (x 7'

where 0<7<1 is a small parameter used to scale the
eigenvalues. Substituting this control law leads to

£ = ay (x)+ By (X)tag + By (0B (x )T

a, _y -1 a - ay .
o{._.L_Ci’\ )+..-+Tr_‘l_1-ce +?|—§']

a

a
S VL) (12)
1'1

T
Let Aa= oy (xg)— oy (x), AB =B (x3) - Bi(x).
Rearranging terms leads to
00+ (1 APIB T N L D s 2
= Aa +Aﬁud

Since Aa, Af depend on 7, also, the stability of the
above equation has to be studied together with
The = tha = = P(&1ar Tha)~ P&y, )

Clearly, if Aa=0, AB=0, {, >0 exponentially,
hence £, =0, 7},, = O exponentially. Next note that

o)< L,,(|x,|)K§1; ], JaBl< s (del)[i‘ ], where

Ly(xzp and Lg(fxsp are Lipschitz constants depending
on |x;] with L,(0)=0, Lg(0)=0. Therefore, by
regularity of exponential stability, &, -0, 7,,—-0
exponentially when Ix,I is small enough. This in turn
through a diffeomorphism implies x — x; exponentially.
The allowable size of x; can be made large by regulating 7.
Once exponential stability is established, similar procedures
as before can be applied to establish e-tracking of the
regulated output. To summarize, we have

Proposition 4. Under assumptions A2-A4 and A7, the
control law (12) based on measured output feedback renders
system X, to achieve stable asymptotic and g-tracking.

c) Observer Based State Feedback

Another aiternative to deal with unavailability of full
state is to use state observers. Then the following
assumption is in order.

A8: X, islocally observable.

The full state feedback control law (9) is changed to
u(®)=uz (1) + K(xy () - (1) (13)
where % is the estimate of the state vector. The observer is
of the form:
X=f(X)+g(X)u+ L(h(x)— h(Z)) (11
Let %(1)= X(t)— x(2), then
X = f(2)- f(x)+(8(X)- g(x))u+ L(h(x)- k(X))
After some manipulation, this is of the form

fc:(A—LC+Aa(xd))i+O[|’;‘r]'

In the linear case, the stability of the observer can be
established independent of that of the plant. However, in the

nonlinear case, due to the nonlinear coupling, this is no
longer the situation. Let x, = x; — x, then

X, = f(xg)+g(x)ug — f(x) - g(x)uy — g(x)K(x, - %)
= f(xg) = f(x)+(8(xz)— 8(x))uz — g(x)Kx, + g(x)KX
This can be put into the form:

%, =(A= BK+ A, (x,)x, + (BK + A (x,)i+ oﬂ’gr]

Here, A;(x4), i=o0, p, c, are continuous in x,; and
satisfy A;(0)=0. Furthermore, proper choice of K, L
ensures that A—BK and A-LC are stable matrices.
Hence, ¥, x, > 0 exponentially when A; =0, i=o, p,
c. By continuity, ¥, x, & 0 exponentially if x; is not
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too large. Again the allowable size of x; can be enlarged to

some extent by proper choice of K and L.
procedure can be used to establish e-tracking.

Similar

Proposition 5: Under assumptions A2-AS5 and AS, the
observer based control laws (13) and (11) can render the
system 2, to achieve stable asymptotic and &-tracking.

5 Conclusion

This paper has presented procedures for designing output
tracking controllers that apply to nonminimum phase as
well as minimum phase systems. Not only does the
controller provide stable asymptotic tracking of a desired
reference trajectory, it also ensures that transient errors will
be within a prespecified bound. The robustness in stability
and tracking performance to certain perturbations further adds
to the great potential of the new approach to many important
engineering applications. For example, it can be used to the
aircraft altitude control that is known to be a nonminimum
phase control problem. By essentially removing transient
errors, better riding comfort can be achieved. Another
application example is the rocket tracking problem which is
again a well-known nonminimum phase problem. The high
precision tracking performance provided by the new approach
should lead to greatly improved accuracy of hits. This, in
turn, means large increase of impact power due to the cubic
rule, i.e., increasing the hit accuracy by 10 is equivalent to
increasing the head power by 1000. The techniques and
algorithms developed in the stable inversion theory may also
be applied to other inverse problems in engineering.

References

1 A.Isidori, Nonlinear Control Systems: An Introduction,
Springer-Verlag, New York, 1989.

2 B. Paden, D. Chen, R. Ledesma, and E. Bayo,
“Exponentially Stable Tracking Control for Multi-Link
Flexible Manipulators,” ASME J. Dynamics,
Measurement and Control, vol. 115, no. 1, pp. 53-59,
1993.

3 R.A. Nichols, R.T. Reichert, and W.J. Rugh, “Gain
Scheduling for H-Infinity Controllers: A Flight Control
Example,” IEEE Trans. On Control Systems
Technology, vol. 1, no. 2, pp. 69-79, 1993.

4 WM. Wonham, Linear Multivariable Control: A
Geometric Approach, 3rd ed., Spinger-Verlag, New
York, 1985.

5 R.M. Hirschorn, “Invertibility of Multivariable
Nonlinear Control Systems,” IEEE Trans. On
Automatic Control, vol. 24, no. 6, pp. 855-865, 1979.

6 S.N. Singh and A.A. Schy, “Control of Elastic Robotic
Systems by Nonlinear Inversion and Modal Damping,”
J. Dynamic Systems Measurement and Control, vol.
108, 1986.

7 A. Isidori and C.I. Byrnes, “Output Regulation of
Nonlinear Systems,” IEEE Trans. on Automatic
Control, vol. 35, no. 2, pp. 131-140, 1990.

10

11

12

13

14

15

16

17

18

19

20

21

22

2345

K.S. Narendra and A.M. Annaswamy, Stable Adaptive
Systems, Prentice Hall, Englewood Cliffs, 1989.

R. Ghanadan and G.L. Blankenship, “Adaptive
Approximate Tracking and Regulation of Nonlinear
Systems,” Proceedings of the 32nd IEEE Conference on
Decision and Control, pp. 2654-2659, San Antonio,
December, 1993.

N.A. Mahmoud and H.K. Khalil, “Asymptotic
Stabilization of Minimum Phase Nonlinear Systems
Using Output Feedback,” Proceedings of the 32nd IEEE
Conference on Decision and Control, pp. 1960-1965,
San Antonio, December, 1993.

R.W. Brockett and M.D. Mesarovic, “The
Reproducibility of Multivariable Systems,” J.
Mathematical Analysis and Applications, vol. 11, pp.
548-563, 1965.

L.M. Silverman, “Inversion of Multivariable Linear
Systems,” IEEE Trans. On Automatic Control, vol. 14,
no. 3, pp. 270-276, 1969.

S.N. Singh, “A Modified Algorithm for Invertibility in
Nonlinear Systems,” IEEE Trans. On Automatic
Control, vol. 26, no. 2, pp. 595-599, 1981.

P. Lucibello and M.D. Di Benedetto, “Output Tracking
for a Nonlinear Flexible Arm,” submitted to J. of
ASME.

D. Chen, Nonlinear adaptive Control of Electro-
Mechanical Systems, PhD Dissertation, University of
California, Santa Barbara, 1992.

D. Chen and B. Paden, “Stable Inversion of Nonlinear
Nonminimum Phase Systems,” Proceedings of
Japan/USA Symposium on Flexible Automation, pp.
791-797, San Francisco, July, 1992.

S. Wiggins, Introduction to Applied Nonlinear
Dynamical System and Chaos, Springer-Verlag, New
York, 1990.

B. Paden and D. Chen, “State Space Conditions for the
Invertibility of Nonminimum Phase Systems,”
Proceedings of the ASME Winter Annual Meeting, pp.
37-41, Anaheim, CA, Nov. 1992.

D. Chen, “An Iterative Solution to Stable Inversion of
Nonlinear Nonminimum Phase Systems,” Proceedings
of the 1993 American Control Conference, pp. 2960-
2964, San Francisco, June, 1993.

H. Zhao and D. Chen, “A Minimum Energy Approach
to Stable Inversion of Nonlinear Nonminimum Phase
Systems,” to be presented at the 1994 American Control
Conference.

H. Zhao and D. Chen, “Stable Inversion and Its
Application to Tip Trajectory Tracking for Flexible
Link Manipulators,” Proceedings of ASME
International Conference on Inverse Problems in
Engineering, Palm Coast, Florida, June, 1993.

H. Zhao and D. Chen, “Exact and Stable Tip Trajectory
Tracking for Multilink Flexible Manipulators,”
Proceedings of the 32nd IEEE Conference on Decision
and Control, pp. 1371-1376, San Antonio, December,
1993.



