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An Architecture and An Algorithm for Fully
Digital Correction of Monolithic Pipelined ADC’s

Eric G. Soenen and Randall L. Geiger

Abstract— Accurate trimming of the analog circuitry in ana-
log/digital converters beyond 12 b is difficult. An alternative
approach allows a margin of errors on all analog components and
compensates for it in the digital domain. This paper describes
such a method for pipelined or cyclic converters. Unlike in
sigma-delta converters, no over-sampling is required. A powerful
identification algorithm determines a limited number of digital
coefficients, that linearize the response. No external measurement
hardware is needed. Based on the known performance of state-
of-the-art analog blocks, linearity of 16 b at multi-Mhz sampling
rates seems achievable.

I. INTRODUCTION

HE new self-calibration technique is best suited for

multistage, pipelined converters with nominally identical
stages. It corrects the most common causes of converter
nonlinearity: errors on comparator trip-points, incorrect DAC
levels and incorrect amplifier gains. In this paper, a mathemat-
ical description of the operation of such pipeline is first given.
Terminology is defined and related to classic, uncorrected
converters. Redundancy is described in a general way, and
it is shown how it can correct comparator errors. Then, based
on the formulas derived earlier, a complete digital correction
scheme is introduced. An iterative algorithm called “accuracy
bootstrapping” provides the required identification of the ana-
log components, using much of the hardware already present
in the system. Performance of the method is discussed, based
on the (small) residual nonlinearity. An intuitive explanation
of the convergence is given. Finally, fundamental limitations
are discussed.

II. GENERALIZED MATHEMATICAL DESCRIPTION

Fig. 1 shows a schematic of one converter stage. The in-
coming signal, V®, is compared against a number of reference
levels, V™, using a flash converter, which consists of a
comparator string and a voltage divider that operates off the
main reference. The comparator outputs provide a rough digital
representation of the input voltage, in thermometer format.
It will be called the local code, c. A flash section with M
comparators can generate M + 1 possible codes. The flash
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Fig. 1. Schematic of one converter stage.

section is followed by a reconstructing digital/analog converter
(DAC). Depending on the local code, one out of M +1 possible
voltages, VPAC | is subtracted from the input signal.

The difference signal (Vi* — VPAC) is amplified by a
sample/hold (S/H) amplifier. The amplifier gain, A, restores
the difference signal to a level compatible with the input
range of the next stage. The resulting signal will be called the
residue, V™. A can have any value greater than 1, positive
or negative. A possible input-referred offset of the amplifier
cannot be distinguished from a variation on the VPAC’s and
will not be discussed separately. The S/H action allows several
stages to be cascaded in a pipelined fashion. Cascading more
stages allows a higher resolution.

We will now consider a converter with L nominally identical
stages, numbered O (last, or least significant stage) to L — 1
(input, or most significant stage). For each stage (designated
by its number, [, in subscript), the local code, c;, can be written
as a function of the input voltage V;®. We will designate the
M + 1 possible digital words for ¢; by the integers 0 (for 00
.-+ 0), 1 (for 10 --- 0) through M (for 11 --- 1).

0 for Vir< Vo]

ref in ref
ao{ L lr VOISV <YW
M for VrefM -1 <V

For any given ¢, a general equation can be written for the
residue V;*** as a function of V;".

Vlres — (Vlin _ V;DAC[C[])AI. (2)

1057-7130/95$04.00 © 1995 IEEE




144 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 42, NO. 3, MARCH 1995

Or rearranged:
. Vires
- Vlm — VlDAC[cl] + ! . 3)
4
From the structure of the pipeline, it is clear that
Vi =V, @

The expression for the input voltage of stage ! can then be

expanded to

Vi2hle - 1] L5
A AA

V'lin = ‘/ZDAC[Cl] + (5)
By further expanding the same expression and evaluating it
for | = L — 1, the input voltage V' of the pipelined converter
with L stages can be written as (omitting the ¢; for clarity):

v _yoac , VRIS | VRS
L=t T Ap .y U Ap1Ap,
VDAC Vres
+—2 0 ) ()
Ap 1--A1 Apa---4Ag

This general equation is based on the assumptions that

1) All the parameters of the stage are fixed, i.e., time and

signal invariant.

2) The gain of all interstage amplifiers is linear and free

of hysteresis.

3) The difference operation occurs in a linear, signal-

independent way.

4) The stage does not add any noise to the signal.

In a practical multistage A/D converter, the local codes of all
the stages are combined to form the digital conversion result
(CR), according to (6). The first terms of the equation are the
useful ones. The last term is always neglected. It expresses
the inherent quantization error, which originates from the fact
that the analog residue from the last stage is not converted any
further. It can be seen to decrease drastically as the number
of converter stages (L) or the gain of the interstage amplifiers
(A;) are increased.

The same discussion applies to cyclic converters, in which
the residue from a single stage is fed back to that same stage
for successive conversions. Algorithmically, there is no differ-
ence between such arrangement and a pipeline. Equation (6)
equally applies, as long as the stage subscript [ is interpreted
as designating a sample in time rather than a stage in a spatial
arrangement. A peculiarity of the cyclic approach is that all
parameters V™, VPAC and A are equal for successive stages.
The calibration method to be discussed obviously works in
cyclic structures as well. '

III. MINIMAL AND BASE-2 CONVERTERS

CR is most easily obtained from the ¢; when the stages
are designed for what we will call “minimal” (as opposed
to “redundant”) operation. The procedure is further simplified
when the converter is based on a radix of 2, i.e., when the
gain of all interstage amplifiers is exactly a power of 2. Many
multistage converter designs are of the minimal base-2 type.

A minimal design is characterized by an integer nominal
gain value A and reference levels V™*f chosen so as to divide
the input range (assumed to be between 0 and R) in as many
equal parts as the absolute value of the gain, |A|. Hence, the
number of comparators, M, is |A| — 1. The V™ are integer
multiples of a fixed voltage increment, AV = R/|A|, so that
Vit = (c+ 1)AV = (¢ + 1)R/|A|, for 0 < c< M.

The number of DAC levels VPAC is equal to |A|. The
VDACs of each stage are also integer multiples of AV =
R/|A|. For positive A the VPAC are given by V,PAC[] =
cAV = cR/|A|. For negative A, this becomes V,PAC[c] =
(c+1)AV = (c+1)R/|A|. Inboth cases,0 < c < M = A—1.

Fig. 2 shows the minimal designs for stages with nominal
gains of 2, —2, —3 and 4. The figure also shows the transfer
function of each stage, i.e., the relationship between V/!* and
V"**. Assuming ideal components, the transfer function of
each stage exhibits a regular saw-tooth behavior. As long as
the input signal to a stage is within the nominal input range,
0--- R, its residue is guaranteed to be within the same range,
R. Since all stages are equal, the residue will fit the input range
of the next stage. The last residue will be limited to 0 -- R,
and the resulting conversion error (further called quantization
error), 7%, will be limited.

R R

0<e" < — - — & ——
T T Apal--- 4l AP

)
€9 represents the inherent uncertainty on the conversion
result. In a classic, ideal N-bit converter, the corresponding
quantization error range would be R/2" | which is also defined
as 1 lsb (for “least significant bit”). By extension, we are
defining 1 Isb as follows:

R
1sb = ——. 8
ls TATE ®
Similarly, the relationship between the input range, R, and the
range of the quantization error (1 Isb) can be expressed as the
effective number of bits, Neg.

R R
Neg = log, <m) = log, (W) = Llog, (|4])- 9

The effective number of bits per stage, neg is given by:

ne = log; (JAl). (10)

For a minimal base-2 converter, A is a power, n, of 2, so
that A = 2". (Note that n.g = n.) The binary conversion
result is particularly easy to obtain. It is sufficient to convert
the c; of successive stages from M-bit thermometer code
to n-bit straight binary, and combine the L individual n-bit
words into an N-bit (with N = nL) conversion result through
concatenation. Furthermore, 0 < €% < R/2™ = R/2N =
1lsb. This expression is consistent with the conventional
definition of an N-bit converter.

IV. REDUNDANCY

It is difficult to control the reference levels V™ of the
flash sections precisely. Unfortunately, any effective trip-point
variations will cause nonlinearities in the overall transfer curve
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Fig. 2. Minimal designs.

of a minimal converter. Oddly enough, the errors are not
caused directly by the incorrect reference levels, since the
Vref’s do not appear in (6). Instead, reference level errors
have an indirect effect, due to the fact that the residue of one
stage exceeds the input range of the next stage.

Assuming ideal interstage amplifiers (linear over a wide
range of input signals), (6) remains valid even when a com-
parator makes a wrong decision. But when a residue exceeds
the input range of a subsequent stage, this causes the next
residue to be even further out of range. Finally, the last residue
gets so large that (7) becomes invalid. The quantization error
becomes significant. In practice, some of the amplifiers may
also clip, which makes matters even worse.

The problem can be avoided by increasing the input range
of each stage, beyond the nominal output range of the previous
stage. This guarantees that the residues would remain limited,
as well as the overall quantization error (within 1 lsb). The
input range can be increased using a design where M > |A|-1.
Either the number of comparators is increased, or the interstage
gain is decreased with respect to the minimal design. The
first option is often preferred, because the nominal gain can
remain integer, and even a power of 2. Two possible designs
of redundant stages with nominal gain of 4 are shown in Fig.
3, as well as their transfer curves.

Design A uses two extra (redundant) comparators compared
to the minimal case, at the top and bottom of the range [1].
Vietle] = (c+1)AV = (c+1)R/|A|, for —1 < ¢c< M +1 and
VPAC[¢] = cAV = cR/|A|, for =1 < ¢ £ M + 1. One can
verify that this provides an overrange capability of +R/|A]|.
We will call this arrangement “minimal + 2.”

Design B uses one redundant comparator compared to the
minimal case and offsets both the V™ and the VPAC by one

3
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Fig. 3. Redundant stages.

half AV. V*f[c] = (¢ + 1/2)AV = (¢ + 1/2)R/|A|, for 0 <
c< M +1 and VPAC[(] = (c — 1/2)AV = (c — 1/2)R/|A4],
for 0 < ¢ < M + 1. In literature, this arrangement has been
described as implementing a “Redundant Signed Digit” (RSD)
[2], [3] algorithm. We will call it “minimal + 1.” One can
verify that this provides an overrange capability of £ R/(2|A}).

Either redundant scheme requires some modification of the
method used to derive the conversion result from the ¢; for
base-2 converters, resulting in slightly more complex logic
[1]. Howeyver, the gain in robustness can be spectacular.

V. GENERALIZED DIGITAL ERROR CORRECTION

Redundancy solves the problem of variability in vref’s, but
not in the VPAC’s and the A’s. However, based on (6), a
digital error correcting scheme that compensates for DAC
and gain errors can be derived. Equation (6) is general. It
will provide a correct approximation for the input voltage, as
long as its terms are computed using the actual values of all
converter components, rather than the nominal ones.

A more powerful approach consists of associating small
digital look-up tables with each stage of the converter, like
depicted in Fig. 4. Each table is addressed by the local code
of the stage, and generates one term of (6). The terms are
summed in a pipelined fashion in order to form the conversion
result. No matter what the actual values of gains and DAC
levels are, the converter can be linearized (within the limits
of the quantization error) by using appropriate digital data
(“coefficients”) in the look-up tables. No tuning of analog
components is necessary, as long as the coefficients are
computed accurately.
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To fit the model of Fig. 1 and keep the quantization error
within bounds despite the presence of component errors,
enough redundancy must be built into each stage. For a
“minimal + 1” pipeline, correct operation is guaranteed when

(PAC 4 PAC)RA 4 AR <

24 (11)

Where R is the nominal input range, ¢APC is the worst-case
flash error, ePAC is the DAC error (both relative to R) and
€4 is the worst-case relative gain error. It should be noted
that the tolerance against flash and DAC errors decreases with
the square of the interstage gain. Hence, pipelines with an
interstage gain of only 2, or one “bit” per stage, are particularly
robust.

The coefficients in the arrangement of Fig. 4 are nominally
different for each stage. (Successive terms of (6) decrease in
absolute value.) This is a draw-back: since the numeric range
of each stage is different, the digital hardware cannot simply
be duplicated from stage to stage. This complicates the design,
and the use of the self-calibration algorithm to be described
below. To improve the structure, (6) is rewritten as (A is the
nominal interstage gain):

yin — yPAC] AD) + VPAC A AE-D
- A(L) A, A@
VDAC A®@  AUL-2)
Ap_1Ap—, AT
AT-D Y4
DAC
TV Ap—1--- Ay AD)
‘/Ores
12
Ap-1---Ag (12)
, Y DAC DAC
yin — —1 1 A+ VL—Z A A
AD AT A,
VPAS  AD
AL Ay 1 Ap_,
YDAC  A(L-1)
a0 2 0
+ ] RTe) AL_l...AJA
‘/Ores
L/ 13
Ar_1--- Ay 3)

This equation expresses the conversion result in a recursive
way. It will be shown that, when translated into hardware, this
form results in identical logic for each stage. We will redefine
the table coefficients, and further call them “weights,” W. The
“ideal” weights, W*, (calculated based on perfect knowledge
of the actual component values) are defined as:

A(L~1—l)

Ap_1-

Wile
il A

= VPA%d (14)

The conversion result can now be rewritten as follows (some
superscripts and indices are dropped for notational conve-
nience):

Stage |

VI [ V'
RAM
Wi)
Data
Latch
\
Digital adder
clock

Fig. 4. Converter stage with look-up table.

Stage L-1

Vin
Vres

Dightal 0
Digital Out

Fig. 5. Nominally identical look-up tables.

on=[[[[[%]4+ Szt

+ P 3]A+ ]A+£}A

A(L) AL) (15

It is clear that the weights associated with each stage are
nominally identical, and nominally equal to the VPAC values,
since the correction factors A/Ar_1, A®/(AL_1AL ) etc.,
are nominally equal to unity. In practice, component variations
are small and the values of the weights will also remain close
to nominal. The architecture that calculates of the conversion
result according to (15), is shown in Fig. 5. The look-up tables
contain the W values. The logic of each stage is identical.
Draw-backs of this scheme versus the one of Fig. 4, are the
extra divisions by A(E) and multiplications by A. However,
if A is chosen as a power of 2, these operations can be
performed by a mere shifting of bit lines, without additional
computational hardware.

It should be noted that the weights computed according
to (6) or (14) are not necessarily fractional values. Yet in a
practical circuit, they must be represented by a limited number
of bits. In addition, the summation of (15) will be performed to
a limited precision. This means that a certain evaluation error
is going to be made on the conversion result, due to truncation.
This truncation error is statistically independent of the inherent
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quantization error of the converter. Its magnitude can be kept
well below the quantization error by proper dimensioning of
internal digital registers and buses. However, a significant
truncation error (+1/2[sb) is often made at the output of the
converter. System-level considerations often limit the number
of converter output lines to its nominal number of bits, Neg,
rather than to its full internal numerical resolution.

VI. THE “ACCURACY BOOTSTRAPPING” ALGORITHM

Digital correction by local look-up tables based on (15)
requires knowledge of the weights W. They could be calcu-
lated analytically according to (14), but this requires accurate
knowledge of the actual gains and DAC levels of the system.
It is conceivable to individually measure these parameters
using precision external equipment. Although feasible for the
one-time calibration of simple converters at the factory, the
method is intensive and does not allow for periodic in-circuit
recalibration. These limitations are removed by the “accuracy
bootstrapping” [4] algorithm. It simultaneously measures the
converter components and calculates the required weights in
an iterative fashion (hence the name given to the method).
Its power is impressive, because it uses the data path already
present to calculate the conversion result. The basic idea of the
algorithm is to individually measure all the DAC levels of each
converter stage, using the remaining stages of the pipeline. The
measurements are used to update the look-up tables of that
stage, and the process is repeated until each stage has been
calibrated.

At a first glance, it may seem unlikely that any accuracy
could be gained this way. In practice, it has been observed that
for specific configurations, the procedure results in an iterative
numerical problem that is extremely stable and converges to
the desired result very fast. The algorithm requires rearranging
of converter stages into a circular structure. The analog residue
of the last stage (stage 0) is fed back to the first stage (L — 1),
and so is the digital bus carrying the conversion result. The
arrangement uses the nominally identical stages of Fig. 5. It
is now possible to inject an analog input signal at the input of
any stage, and use the circular sequence of stages back to that
same point to perform the analog to digital conversion.

Within each stage, the possibility is added to by-pass
the flash comparators and control the reconstructing DAC
externally rather than through the local codes c. It is also
possible to replace the analog input signal by a fixed potential,
VX, The algorithm requires the use of a DAC/subtractor
combination like shown conceptually on Fig. 6. The DAC
is composed of a fixed voltage, used to bias the gain stage,
and a number of voltage increments, which are selectively
enabled and subtracted from the input voltage. One can
verify that the value of each increment corresponds to one
AVPAC nominally equal to 1/}A|. AV;PAC[] is defined
as the differential DAC level between the cth DAC level
and the (c — 1)th DAC level of stage [, or AV;PAC[c] =
VPAC[c] — V;PAC[c — 1]. The more comparators turn on (the
larger the signal), the more increments are subtracted. The
depicted stage is of type “minimal + 17, with an input range
between 0 and 1, and a gain of 2. The two voltage increments
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Fig. 6. Stage, modified for calibration.

of 0.5 each result in differential DAC levels, AV,PAC[1] and
AV,PAC[2], both nominally equal to 0.5. The resulting nominal
VPAC values are —0.25, 0.25 and 0.75.

The accuracy bootstrapping algorithm estimates weight val-
ues We (superscript e stands for “estimate”) iteratively. The
procedure proceeds as follows:

1) The estimated weights of all stages, W*, are initialized

to their nominal values: W¢[c] = VlDAC’""m []-

2) The last stage (stage 0) is calibrated first. The ana-
log input of that stage is held at the fixed potential,
Vix while none of the voltage increments are enabled.
The remaining L — 1 stages of the circular structure
(L-1,L —2,---1), as well as the flash section of
stage 0, are used to determine the conversion result,
Co[0]. This zero-level measurement will be used to
cancel any systematic offset in the stage, as well as the
unpredictability of Vx.

3) The analog input of the last stage is held at V* while
only the first voltage increment is enabled. The same
L —1 stages of the circular structure (L—1,L—2,---1,
and flash section of 0) are used to determine the new
conversion result, Co[1]. The second voltage increment
is then enabled by itself and the same procedure is
followed to determine Cy[2]. In general, the procedure
is repeated until the M increments have been measured
(Co[1] - - - Co[M]). It is clear that the fixed input poten-
tial must be chosen such that the input signals under 2,a)
and 2,b), do not over-range the gain stage. Nominally,
Vix = 1/|A] (for A<0 and for A>0). Each Cy[c]
value represents a measurement of AgAVPAC[¢]; since
each voltage increment was multiplied by the gain of
stage 0 before being converted by the sequence of stages
starting from stage L — 1.
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4) The actual values of the voltage increments of stage 0
can now be estimated, based on the measurements. The
value Dy[1] = (Co[1] — C[0])/A is used as an estimate
for AVPAC(1]. (Subtracting Co[0] cancels the effect of
offset or incorrect V) Similarly, Dg[2] = (Co[2] -
Co[0])/A is an estimate for AVPAC[2). In general,
AVPAC(¢] is estimated as Dy[c] = (Calc] — Co[0])/A4,
for ¢ = 1--- M. It should be noted that the D.’s are
computed by dividing differential measurements by the
nominal value of the gain, A. As a result of using this
rather than the (unknown) actual gain value, Ag, the
AVPAC’s are systematically over-estimated by Ag/A!

5) The Dy values (estimated AVPAC’s) are now used
to estimate the VPAC’s. The estimates will form the
new weights for stage 0 (W§[c]). W§[0] is arbitrarily
kept equal to its nominal value. The other DAC lev-
els are computed by adding the previously obtained
Dole]. Wg[1] = W [0]+Do[1], W§[2] = Wg[1]+Do[2],
or in general: W§[c] = Wgiec — 1] + Dyle], for ¢ =
1--- M. All original (nominal) Wp[c] values in the look-
up table of stage 0 are now replaced by the newly
determined ones. This concludes the calibration of stage
0.

6) Next, the procedure used on stage O is repeated to
calibrate stage 1. The voltage increments of stage 1
are measured, using the converter formed by stages 0,
L —1,L—2,---2, and the comparator section of stage
1. The measured values Ci[c] are used to estimate the
differential DAC levels: Dh[c] = (Ci[c] — C1[0])/A.
Finally, the new weights Wj[c] are computed and used
to replace the original weights of stage 1.

7) The same procedure is repeated to calibrate the stages
l = 2...L — 1. The voltage increments of stage !
are measured, using the converter formed by stages
l-1,1-2,---0,L —1---[. The previously calibrated
stage is always the first (most significant) stage in the
converter used to calibrate the next one. Whenever the
weights of stage L — 1 have been updated, the first step
of the calibration is complete.

8) After one iterative calibration cycle through all the
stages, one could repeat the procedure starting from step
2), to further refine the estimates of the weights. How-
ever, simulations indicated that for practical values of
the analog errors (within 1%), the digitally compensated
pipelined converter will exhibit a very linear transfer
characteristic after one cycle. More cycles do not usually
yield significant improvements.

9) Since no external reference standard was used during the
calibration, the resulting transfer characteristic (although
linear) may be subject to a residual offset or gain error.
It will be shown below how this can be eliminated as
well.

Correct calibration can still be obtained when the analog com-
ponents (in particular the interstage amplifiers) of the pipeline
are noisy. The influence of the noise upon the calculation of the
weights can be reduced to an arbitrarily low level by averaging
a number of successive measurements for each Dj[c] value.
Of course, the conversion result of the pipeline will be subject

Stage Stage | Stage _]

(Aa2) '/ (A=2) (A=2)

:
:
:

(3 out of 16 Stages Shown)

i
y/74 Result Bus [36]

Fig. 7. Calibration hardware.

to the noise during subsequent continuous operation, but any
systematic (harmonic) distortion will be limited.

Fig. 7 shows a possible block diagram of a monolithic 16
b pipelined converter, including look-up tables and pipelined
digital data path for real-time operation. The addition of
a controller and a simple arithmetic unit allows on-chip
implementation of the calibration cycle. Obviously, correction
and calibration can also be performed off-chip, with dedicated
logic or a general-purpose computer. The last approach would
make it possible to integrate a relatively small, analog data
path as a peripheral for a complex digital system like a micro-
controller.

VII. SCALING AND LINEARITY CRITERION

The residual gain and offset error that remain after step
5) of the accuracy bootstrapping procedure can be eliminated
through the appropriate scaling of all weights. The procedure is
based on the measurement of the two fixed reference voltages
(zero and full-scale). One can easily verify the following two
scaling rules:

1) Adding a fixed value, k, to (or subtracting from) all
weights associated with one stage [, results in an offset
(vertical shifting) of the transfer curve, by k/A(L—1-H,
(The fact that the overall linearity is not affected, is the
reason why in step 2.d) of the algorithm, W[0] could
be arbitrarily set to its nominal value.)

2) When all weights associated to all stages are multiplied
by a fixed value, s, the slope (gain) of the transfer curve
is multiplied by s. (A change in offset may result.)

The offset and gain error can be corrected using the conversion
result for the nominal zero level (Mp), and for the nominal
full-scale input of the converter (Mp). My is the overall offset
before scaling. [Mr — Mp]/R is the gain error.

For the theoretical evaluation of the algorithm, one needs a
criterion that isolates residual linearity errors due to incorrect
computation of the weights. These are calibration errors,
different from the other kinds of conversion errors. Sweeping
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an input signal over the whole converter range and looking
for the worst-case difference between output value and known
input, would lump the calibration errors (1) with the other
errors: the (inherent) quantization error (2), the residual gain
(3) and offset (4) errors and the truncation error (5), due to
possible truncation of the conversion result to a limited number
of bits.

Traditional linearity criteria could be used [5], [3]. Differ-
ential or integral nonlinearity (DNL or INL) are determined
through a code density test and are insensitive to quantization,
gain and offset errors. However, DNL and INL would need
to be slightly redefined for this class of converters, which has
more than 2V transition levels (due to the redundancy) and
for which small, local nonmonotonicities may exist.

A generalized definition of INL could be: the amount by
which the range of the total approximation error exceeds 1 lsb
(inherent quantization error). Similarly, DNL can be defined
as: the amount by which the maximum difference between two
consecutive digital outputs exceeds 1 Isb.

Signal-to-noise or signal-to-distortion ratios could also be
calculated, like is common for sigma-delta converters (using a
sinusoidal input signal and a discrete Fourier transform). The
distortion would reflect the residual nonlinearity, while the
noise would lump quantization and truncation errors. However,
both criteria can be impractical in simulations, due to the need
to perform many conversions.

The criterion we will use instead, determines a worst-case
calibration error, based directly on a comparison between the
estimated and the ideal weights. The estimated weights are
computed through accuracy bootstrapping; the ideal weights
are the theoretical weights, calculated according to (6) or (14),
based on the exact knowledge of the actual parameters of the
system. (Ideal weights should not be confused with nominal
weights, which are based on nominal, error-free component
values.) In the process, gain and offset errors are obtained as
well.

The philosophy behind the criterion is that the “best” (most
linear) approximation of the input signal is obtained with
a converter using ideal weights. (In a statistical sense, the
mean square approximation error in (6) is indeed minimized,
since it can be assumed that the probability distribution of
the quantization error is uniform for a uniform distribution
of input signals.) Any weight different from the ideal value,
contributes to the overall linearity error. For the calculation
of the overall error, the estimated weights are first scaled
(to exclude a possible gain error), and then compared with
the ideal weights on a differential basis (to exclude possible
offsets).

1) The L x (M +1) array of ideal terms T}[c] is calculated

based on (6):

VLAl Wild

Tid = = .
ild A1 A ACT-1-D

(16)

2) The L x (M + 1) array of estimated terms TF[q] is
calculated based on the estimated weights, W¢[i] (as
defined in the discussion about the accuracy bootstrap-
ping algorithm). This requires division by as many times

3)

4)

5)

6)

T?le] = Tf[ele?,

7

the nominal gain as there are preceding stages.
Weld

AT-1-0°

The maximum and minimum value that can possibly
be represented at the converter output, using the ideal
weights, are determined. The maximum value, C% .,
is the sum of the largest possible term of each stage.
The minimum value, C%;, is the sum of the smallest
possible term of each stage. (These values are not the
same as top and bottom of the input range.)

Trle = a7

L-1

Chax = Y Maxgo (T7[c)),
{=0

L-1
Crain = Z Miny:o (T[cD.
=0

(18)

Similarly, the maximum and minimum value that can
possibly be represented at the converter output, using
the estimated weights, are determined:

L-1

Clilax = Z Maxi\io (Tf[c]),
=0
L-1

Chin = Z Minfio (T7[e])-
=0

19)

The overall relative gain error, €#, of the converter

is estimated. This estimate may be slightly pessimistic
when compared with a least-squares fit approach, but is
much easier to calculate.

Cs _ Ce.
A %C%“—C‘Lm} 0)

The estimated terms are scaled, to compensate them for
the effect of the gain error:

forl=0---—1 and ¢=0---M.
21

The worst-case range of calibration errors is determined
for each of the L terms of (6), through the compar-
ison between estimated and ideal values. The scaling
performed above removes the effect of a possible gain
error. A possible offset, common to all possible values
of one term, is taken out of the picture by comparing the
two sets of values differentially. A linearity error occurs
when one or more flash sections of the converter flip from
one output code to the next, but the corresponding digital
terms do not correctly reflect the change in subtracted
DAC voltages. For a specific stage, the range of this
error is the maximum difference in “step” between any
two estimated terms, and the corresponding “step” in
ideal terms. Summation of these errors over all stages
yields the overall worst-case calibration error.

L-1
cal = Z Maxp!_o (T7[k] - T [3) — (T7 (k] — TP 15)))-
=0 22)
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This calibration error can be expressed in Isb units
through division by R/|A|X (1 Isb, according to (8)).
Alternatively, the number of effective bits can be calcu-
lated by taking the base-2 logarithm of the ratio R/e.
Since in practice not each error of each term reach their
maximum at the same time, the criterion described here
is pessimistic. A code density test (INL measurement)
will reveal slightly smaller nonlinearity values. We used
the stricter criterion in all simulations presented below.
8) If desired, the overall offset error, £°f, at the mid-point

of the converter transfer curve, can be estimated:
C;xlax] + [Cfnin — C:nin]

Eoff — [anax -
3 .

(23)

VII. SIMULATION RESULTS

The following simulations demonstrate the ability of the
accuracy bootstrapping algorithm to accurately calibrate a va-
riety of pipelined converter architectures. Since the algorithm
is iterative in nature (successive converter stages are calibrated
using an imperfectly calibrated sequence), it is imperative to
determine under what conditions the procedure will converge.

High-level Monte-Carlo simulations proved to be a valuable
statistical tool for this analysis. Many converter configurations
with random or systematic error patterns were simulated. For
a particular batch (a certain architecture), all errors were ran-
domly modified before each run, and the resulting nonlinearity
figures (in [sb) after a complete calibration cycle were tallied.
It was observed that the distribution of residual calibration
errors was always very close to normal. This was to be
expected, since the final figure is the result of a complex
interaction between many independent error variables. The
mean and standard deviation of the residual error can be used
as a design or reliability criterion for particular architectures.
For example, if a Monte-Carlo simulation reveals that a
particular architecture with a particular set of worst-case errors
has a mean residual linearity error after calibration of 0.7 lsb
and a standard deviation of 0.2 lsbh, the architecture would
be adequate for 2 Isb worst-case INL in the six-sigma sense
(0.74+6 % 0.2<2).

Some results are summarized in Table I. The simulations
can be replicated using any high-level programming language.
All the results discussed here were obtained for “minimal+1”
architectures, on which accuracy bootstrapping was found to
perform most reliably. The table lists the number of stages (L)
and the nominal gain (A). These two parameters set all other
nominal parameters (flash reference and DAC levels) of the
converter for a particular batch of Monte-Carlo simulations.
The statistical component variations were simulated by adding
random errors to the nominal parameters before each run, using
arandom number generator. The distribution of errors is binary
(i.e., either maximally positive or maximally negative). The
table lists the magnitude of the error on all gains (eA, in
%), reference levels and DAC levels (eV and eD, in % of
the input range). Input-referred white noise introduced in the
stages was modeled by adding an error to each signal, again
according to a binary distribution. The magnitude of the white
noise is expressed in lsb.

TABLE I
SIMULATION RESULTS

L A eA eV eD noise Nav Nit Dbits mean sigma
6 2 1 1 1 .1 1 1 16 .68 .22
16 -2 1 1 1 .1 1 1 16 .69 .21
16 -2 1 1 1 0 1 1 16 .67 .20
16 1 1 1 .1 1 2 16 .55 .20
16 -2 1 1 1 .1 1 2 16 .56 .20
16 -2 1 1 1 2 1 1 16 2.32 .71
16 -2 1 1 1 2 8 1 16 .91 .26
16 -2 3 3 3 .1 1 1 16 1.33 .57
16 -2 3 3 3 .1 1 2 16 .59 .22

4 4 1 1 1 .1 1 1 8 .30 .09

8 4 1 1 1 .1 1 1 16 .39 .12
20 -2 1 1 1 .1 1 1 20 .79 .24
24 2 1 1 1 .1 1 1 24 .97 .29
10 3 1 1 1 .1 1 i 15.85 .46 .14
i6 2 .5 .5 .5 .1 1 1 16 .59 .19
24 -4 1 1 1 .1 1 1 48 2.53  1.26
24 -4 1 1 1 .1 1 2 48 .29 .10

The variables characterizing the accuracy bootstrapping
algorithm itself are the number of averages used for the
measurement of each differential DAC level (Nav) and the
number of iterations (Nit), which are also listed in the
table. For easy reference, the nominal number of bits of each
architecture (bits) are included in the table as well.

Each Monte-Carlo batch consisted of 1000 simulation runs,
with each time a new, random combination of errors. The
empirical statistics of each batch are summarized as the
mean and standard deviation of the residual linearity error
(in Isb), like defined in (22). These simulations show that
the residual calibration errors in “minimal + 1” architectures,
subject to “realistic” component errors (1%), are comparable
to the inherent quantization error (1 Isb), at both the 16 b
and the 24 b level. It should be noted that the use of a
binary rather than a normal error distribution represents a
pessimistic, worst-case approach. Calibration also appears to
work on “minimal + 2” architectures, but results in larger
residual errors and less reliability (larger sigma). A pipelined
converter that seems to use a somewhat similar calibration
technique with one comparator per stage and a gain smaller
than 2, has recently been reported [6]. Few details are presently
available.

The criterion ((22)) also allows calculation of the linearity
between calibration steps. Fig. 8 shows the linearity for a
number of 16 b (16 stages with gain of 2) “minimal + 17
converters, expressed in effective bits (log, (R/e°*!)). Each of
them had initial relative errors of 1% on all components. The
figure shows the linearity before calibration, then each time
after a stage has been calibrated (the newly calibrated stage
being first in the pipeline). This is repeated for two passes. It
should be noted that at the beginning of the second pass, the
linearity suddenly drops, before picking up again. The cause of
the drop will become clear in the next section. It will be shown
how the weights associated with each stage are calculated in
such a way that when exactly one pass of the algorithm is
performed, all weights are scaled by a same amount. This
results in a linear overall transfer curve, despite the presence
of gain errors on each interstage gain. When a second pass of
the algorithm is started, a new gain mismatch is introduced,
which is only resolved after that pass is completed.
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Fig. 8. Progression of the calibration.

IX. INTUITIVE EXPLANATION OF THE CONVERGENCE

A closed, mathematical proof of convergence for the accu-
racy bootstrapping algorithm, is not straight-forward. In this
section, intuitive considerations are discussed that help under-
stand the mechanisms involved. They can best be explained
separately for the different kinds of errors. Only gain and DAC
errors need to be considered, and not flash errors, since the
reference levels do not appear in (6) or (15). We will assume
a “minimal + 1” converter. The compensation of gain errors
can be explained as follows. When stage O is calibrated, its
differential DAC levels AVPAC are estimated based on the
measured values Cy (step 2,c) of the algorithm):

Dy[c] = (Colc] - Col0])/A (24)
Since the Cyp values were measured using the converter itself,
they can be written in the format of (15), which in turn can
be rewritten as:

Wi o Wi
A A®)

Expanding Cy[c] and Cy[0] in this manner yields:

Wi_o  Wi_s

Do[c] = (WL—l[M} t—4 tam

Wo
rogits) [

CR=Wr_..1+

+

+ - 25)

Wo
-+ AT-D)

|16

[0 [24 [28 [32
CALIBRATION_STEP
WL—2 WL—-3
— (WL._l[O} + 2 + y1o)

(26)

Wo
cgity) [

It can be verified that since Cp[0] is measured with only
Vi applied (steps 2,a) and 2,b) of the algorithm), the input
signal to the next stage (L — 1) is nominally equal to R (full-
scale), which results in a comparator code ¢ = M for stage
L — 1. The measurements for which a differential DAC level
is subtracted (Cy[1] - - - Co[M]) are characterized by a nominal
input voltage of O to stage L —1, which results in a comparator
code ¢ = 0 for stage L — 1. (The opposite is true if the gain is
negative.) However, all the other terms are nominally common
between Cy[0] and Cy[c], with ¢ = 1--- M. As a result, when
the difference is taken in (26), most terms cancel out, except
for the two W,_; terms, and some lower-order terms, which
we will neglect. (The smaller the initial errors, the better the
approximation). This simplification yields:

@7

This shows that the DAC levels (obtained by summing to-
gether a number of D-terms) of stage 0 are essentially esti-
mated using the difference between the largest and the smallest
weight of stage L — 1, scaled by A. Since A is used instead of
the (unknown) value of Ag, each Dy value (and hence each
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W) is overestimated by a factor Ag/A. Similarly, one can
derive an expression for D1 [c] (calibration of stage 1).

~ WolM] — Wo[0]
1 .

It is clear that because of the division by A, each
D; value (and hence each W;) is overestimated by a
factor A;/A, on top of the factor Ag/A already present
in the estimates for Wy. As a result, the W; values are
overestimated by A; Aq/A®. Similarly, after calibration, the
W, values are overestimated by A2 A; Ag/A®) and so on. The
Wy _1 are overestimated by Ar_1---Ag /A(L). Comparison
with (14) shows that the ideal W;’s should have been
obtained from the ideal VPAC s through multiplication with
ATL=D/Ar oA, AL /A (... Ay etc. This means
that after one calibration cycle through all stages, all W; have
effectively been overestimated by AL~1... 4g/AL). Since
it was shown that multiplication of all weights by a constant
factor does not affect linearity, this illustrates that accuracy
bootstrapping achieves linearization despite the presence of
gain errors. It explains why a residual gain error is left after
calibration. A similar reasoning can be applied to explain the
discontinuity in linearity after one pass of the algorithm, as
shown in Fig. 8.

The compensation of DAC errors can be considered in-
dependently from the gain errors, but can be explained in
a similar way. The differential DAC levels of stage O are
estimated using measurements (Dp) that are dominated by
(Wr_1[M] — W_1[0])/A. Initially, nominal values will be
used for the Wi _1’s. If the actual V,P_Alc values are off, so
that (W1 [M] - W _1[0]) = fo(W}_,[M] - W] _,[0]) (the
ideal weights W* are defined in (14)), the range of the Wy
will be overestimated by fo, as if a linear scaling had taken
place. Similarly, the range of the W;’s, based on a mea-
surement dominated by Wy terms, will be overestimated by
fo- Independently however, there may still be a measurement
error, due to some lower-order terms we neglected. This can
be expressed by an additional factor f;, which expresses the
relative measurement error on (VPAC[M] — VPAC[0}), on top
of the error due to the Wy’s.

This reasoning can be continued, and it will appear that each
new set of weights will be scaled in a way that incorporates the
measurement errors on all previously calculated weights, plus
a new factor f to account for the current measurement error.
The idea is that an error in the estimation of earlier W’s is not
critical, as long as later W’s remain consistent. The “scaling”
of stages towards the front of the pipeline must match the
scaling of all stages behind them. The factors f; tend to get
closer and closer to unity for successive stages, because more
stages are matched and the accuracy of the pipeline improves.
The process eventually results in a linearization of the overall
transfer function.

D[] (28)

X. NOISE AND NONLINEARITY

The proposed architecture, together with the accuracy boot-
strapping algorithm, solves the problem of unpredictable flash
transition levels, DAC levels, and interstage gains. These

parameters are usually the hardest to control in high-resolution
converter designs. A great advantage of this solution, is that
the calibration is performed using the actual analog data path
(analog pipeline of stages) of the converter. As a result, all
parasitics are effectively taken into account: the calibration is
performed at actual speed, with all switches, multiplexers etc.
present.

As long as the analog stages fit the model of Fig. 1, it
does not appear that there is a it fundamental limit to the final
linearity that can be achieved through accuracy bootstrapping,
no matter how many stages are cascaded. Simulations have
shown successful calibration of 48 b converters (although
impossible to realize in practice), with 1% initial error on all
components. However, the model does not include effects like
noise, interference, parasitic coupling from stage to stage (e.g.,
through the power supply), nonlinear gain, component drift etc.
These must be kept under control through sound analog design.
Present state-of-the-art CMOS technology allows the design of
fully differential switched-capacitor amplifiers with linearity
and noise performance to the 14 to 16 b level or beyond at
a S/H rate of several Mhz. So far however, the inability to
control component matching to the same level, has limited
their application to over-sampled converters [7]. The high
over-sampling ratios used (usually above 100) limit the over-
all performance to audio-frequency conversion rates, where a
digitally corrected pipeline could reach the same accuracy at
MH?z rates.

Nevertheless, the algorithm itself appears extremely robust
against amplifier noise and nonlinearity. These effects have
been included into high-level simulations, and the following
conclusions seem to hold:

1) Noise of up to several [sb was found to have little impact
on the final linearity, as long as every new weight value
computed during the calibration process is obtained by
averaging enough measurements.

2) A limited amount of amplifier nonlinearity (expressed
as a “curvature” of the gain characteristic) does not
influence the calculation of the weights much. This
is because during the calibration, the amplifiers at the
front of the pipeline are only biased at the low or
high end of their range. Although the linearity criterion
may reflect correct weights in the presence of such
amplifier nonlinearity, the transfer characteristic of the
converter will exhibit a smooth, composite curvature and
associated INL errors. To keep the overall INL error
below 1 Isb, the output-referred curvature of the gain in
each amplifier must be kept below 1 Isb. By contrast,
the effect of amplifier nonlinearity on the DNL is very
limited.

XI. CONCLUSION

This paper provides a mathematical description of pipelined
analog/digital converters, including the much-applied concept
of “redundancy.” Based on the analysis, a fully digital error
correcting scheme is derived, based on a limited. number
of look-up tables. A powerful iterative algorithm (“accuracy
bootstrapping”), in which the pipeline is used to measure
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its own errors, provides the necessary system identification
to determine the table values. The amazing effectiveness of
the method is demonstrated by a number of Monte-Carlo
simulations of different pipeline architectures. Based on the
known performance of analog blocks used in high-accuracy
over-sampling converters, the new method is expected to reach
similar accuracy at effective sampling rates that are two orders
of magnitude higher.
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