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Abstract

Output tracking for missile flight control is challenging
due to the nonminimum phase problem. Among exist-
ing methods for output tracking, the regulation approach
usually leads to large transient errors and the dynamic in-
version approach results in unbounded internal dynamics
for nonminimum phase systems. By using a stable inver-
sion approach, this paper presents a new missile autopi-
lot controller that achieves an exact and stable output
tracking without any transient or steady state errors and
internal vibration.

1 Introduction

The problem of output tracking control for nonlinear sys-
tems is of great importance from both the theoretical and
the practical viewpoints, and it has been studied exten-
sively for many years. There are two basic approaches
to attack this problem. Using feedback regulation is one
way which involves stabilizing the closed-loop system so
as to achieve asymptotic tracking of a class of reference
inputs. The second approach is to implement a tracking
controller with a feed-forward signal generated by an in-
verse system coupled with a stabilizing feedback scheme.

For linear multivariable cases, the asymptotic track-
ing problem was solved by [1, 2] and subsequently crys-
tallized as the internal model principle [3]. The matrix
equations defining the asymptotic tracking controllers for
linear systems were translated to nonlinear partial dif-
ferential equations in the nonlinear cases [4]. Although
nonlinear partial differential equations are only numer-
ically tractable for systems of low orders, solutions for
_tracking periodic trajectories have been developed based
on Fourier series [5, 6]. However, the transient error phe-
nomenon is still a fundamental limitation of the regula-
tion approach.

The transient behavior can be precisely controlled by
using stabilizing feedback together with a feed-forward
signal generated by an inverse system. For linear multi-
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variable systems the inversion problem has been solved
to a large degree by Brockett and Mesarovic [7] and Sil-
verman [8]. However, these inverses are all causal. The
linear inversion results were extended to nonlinear real-
analytic systems and conditions-for the invertibility of
these systems have been derived by Hirschorn [9, 10]
Singh [11], besides, had similar tesults on nonlinear in-
version with some modified conditions. Al these inver-
sion algorithms produce causal inverses for a given de-
sired output y4(¢) and a fixed initial condition (o). Un-
bounded control input u(t) and state trajectory z(t) were
produced for nonminimum phase systems. ' This funda-
mental difficulty has been noted for a long time.

Motivated by the success of the noncausal inverse dy-
namics approach [12], the notion of stable inversion has
recently been developed [13] in an effort to find: feedfor-
ward signals for the tracking controller. The problem has
been solved for a class of nonlinear nonminimum phase -
systems with a well-defined relative degree and hyper-
bolic zero dynamics. A numerical procedure has also
been developed [14] for constructing stable inverses based
on iterative linearization and decomposition of the sta-
ble/unstable subspaces. This approach to output track-
ing avoids difficulties in both regulation and classical in-
version while preserves the advantages of both, and is
applied to achieve an exact and stable output trajectory
tracking in a missile autopilot example

2 Stable Invefsion

Consider the multivariable nonlinear control systems of
the form

b= 1@ tolem, ()
y:h<x)) (2)

where system state  is defined on an open neighborhood
X of the origin of R” and input u € R™ and output
¥ € R™. The mappings f(z) and g;(z) (the ith column"
of g(z)), for i = 1,2,..., m, are smooth vector fields de-
fined on X, and h (x), for i=1,2,...;m, are smooth
functions on X, and f(0) = 0 and A(0) = 0. For such
systems, the stable inversion problem has been stated by
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Chen [13] as follows:

Stable Inversion Problem: Given a smooth reference
output trajectory ya(t) with compact support, find a con-
trol input ug(t) and a state trajectory z4(t) such that

1) ug(t) and z4(t) satisfy the differential equation

z4(t) = f(za(t)) + g(za(t))ua(t);

2) ezact output tracking is achieved

h(za(t)) = ya(t);
3) ua(t) and z4(t) are bounded and

" ug(t) =0, za(t) -0 as t— oo.

We call z4(t) the desired state trajectory and u4(t) the
nominal control input. These can be incorporated into
a dead-beat controller which achieves the exact output
trajectory tracking by using the nominal control input as
a feed-forward signal and z — z4, the error signal, as a
feedback signal to the controller. That is mainly the idea
of controllet$ design in this paper.

with N ¥ {1,2,..}, r ¥ (ri,72,-..,7m)T € N™
and y : R* — R™, we define

def =

e

frl = E :1',',
i=1

(r) def (drlyl a3y, d" ™ ym )‘T
Vo= @ T de

?

d
L}y éf (L}‘yl,L?yz, .. .,L;"‘y,,.)T,

def
LYy ¥ (Ly9, Lysy, - Lond)-

Assume that the system has a well-defined relative de-
gree r € N™ at the equilibrium point at the origin. To
partially linearize the system, we define & % ygk_l) for
ali=1,2,...,mand k=1,2,...,r;, and denote

RGO O - N . o

d . 1— .
:e:f (ylyyla"wygr 1))y2’ """ :ygp:m 1))T' (3)

Choose 7, an n — |r| dimensional function on R" such
that ‘

(€7, 1) = &(2) = ($1(2); .- $n(2))"

forms a change of coordinates with ®(0) = 0 [15]. In
this new coordinate system, the system equations (1)-
(2) becomes

& =4
: fori=1,...,m
6::.';—1 = E:‘, (4)
6:‘" = ai(&) 71) + ﬂi(&) n)u
1.7 = q1(£7 ") + QZ(E) 71)“;

which, in a more compact form, is equivalent to
¥ = a(é, n) + BE )y, (5)
i] = QI(E’ 7’) + Q2(£) U)U, (6)

W};el‘e
a(é,n) = LTR(®1(E, 7)),

B, n) = LY R(@71(E, ),
q1i(£: 71) = Lf (¢i(¢—1(€) 77))),

g2:(&,m) = LL(:(@71(€, m)),

for all |r|+1 < i < n. Note that «(0,0) = 0 and
1,(0,0) = 0 since f(0) = 0. Define the following feed-
back control law

de -
et e-amn), O
and choose v = yf,r), immediately we have
d . ry— m—
€=£d :e"f(ydnydn"ny((ill 1))yd2"‘ """ ’y((i:,. 1))T)

and equation (6) becomes the so-called reference dynam-
ics,

1.7 = p(yfir))gd) n); i (S Rﬂ—lrl (8)

where

P eam)

q1(€a,7) + 92(€a, M)BEa, WIS — aléa, ).

It is now clear that an integration of the refer-
ence dynamics gives rise to a trajectory of the origi-
nal states through the inverse coordinate transformation
¢ = ®1(¢,n) and an input trajectory by equation (7).
The problem is how to integrate the reference dynamics
to generate a bounded state trajectory and a bounded in-
put which would solve the stable inversion problem since
the reference dynamics may be unstable in both positive
and negative time directions in general.

For reference trajectories with compact support, the
reference dynamics becomes autonomous zero dynamics
for t outside the compact interval [to,ts]. Assume that
n = 0 is a hyperbolic equilibrium point of the zero dy-
namics. It has been shown that the stable inversion prob-
lem is equivalent to the following two-point boundary
value problem [13]:

1.7 = P(yy);fd, 77): (9)

subject to

B*(n(to)) = 0
{ BY(n(ty)) = 0, (10)

where B*(n) = 0 characterizes the unstable manifold de-
noted as W¥, and B%(n) = 0 the stable manifold W*. It
has also been shown that this two-point boundary value
problem locally has a unique solution [14]. Once the
equivalent two-point boundary value problem is solved,
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the desired state trajectory z4(¢) and the nominal control
input ug(t) can be constructed as follows:

za =37 (¢a,m), (11)

wa = BN 0 — atéan),  (12)

where B(-) = Ly L} h(®71(")), and a() = Ly h(®71(1)).

It is clear that any state trajectories and control inputs
satisfying the reference dynamics (9) would produce the
exact output tracking of the reference trajectory. How-
ever, it is a nontrivial numerical problem to solve the
equivalent two-point boundary value problem because of
the instability of the reference dynamics in both positive
and negative time directions.

3 An Iterative Solution

In this section an iterative linearization approach to the
solution of the two-point boundary value problem which
was presented by Chen [14] is described. In each itera-
tion, the differential equation (9) and its boundary condi-
tions (10) are linearized along the solution obtained from
the previous step to form a new linear time-varying two
point boundary value problem. This linear problem is
then solved involving integrations in two directions and
the solution is taken to be this step’s new approximation.
The iteration continues until some convergence criterion
1s met.

To initialize, we take #°(t) = O for all . Let 5-!
be the solution obtained in the (k—1)th step. Let p*
denote the new corrected solution to be solved in the
kth step, the current step. Linearizing the right hand
sides of the dlfferentlal equation (9) and the boundary
conditions (10) along 7*~! and setting 7 to 9*, we have

f)k = g%(éd’ nk_l)(nk —,T)k_l) + P(gd; ﬂk—l), (13)

subject to

%(ﬂk‘l(to))(ﬂ"(to) — 17" (t0)) + B (1" (t0)) =0,

S T NG ) ~ 0 )+ B ) =,

where des

e {3

&% 0.
By defining the following symbols,

Ak "”’(e (), 7 1(),
B % - S0, 7 OO + pEa, ),
Ck def ﬁB ( b l(to))

e BB"
ck —(" (1)),

k def

pr= (n’“ (b)) (t0) ~ B* ("~ (t0)),

vk aB o O ) = B ),

Wwe can rewrite equatlon (13) and its boundary conditions
in the following format,

i = Aktt)nk + bk(t), (14)

subject to
Cint(to) = u¥,  Clnf(ty) = vt

That is a linear time-varying two-point boundary value
problem we have to solve in each step.

The idea of solving the linear time-varying two-point
boundary value problem is to try to separate the stable
and unstable dynamics and to integrate the stable part
forward in time and the unstable part backward in tinie.
A technique from linear-quadratic optimal control is used
and for convenience, we drop the superscript k in the
followings.

To decouple the stable and unstable dynamics, we ap- -
ply a change of coordinates

_ 21 def C,
~=[a]2[&]n

Since B*(n) = 0 is the condition for 3 to be on the un-
stable manifold, therefore B°(n) may be viewed as the
stable part of 77. Hence, in the linear approximation,z;
is, roughly speaking, picking up the stable part of 5, and
similarly, z; the unstable part.

Let T = [ T} Ty, ] be the inverse transformation matrix;
then ' o
— 21
=[T Tu][zz].

In this new coordinates,

= 2]=[& ]i=] & een i

Substituting the inverse transformation (16) into the
above equation, we can arrange it into

71 = Anf{t)zr + Ara(t)zg + bi(t),
zy = An1(t)z1 + Aga(t)za + ba(t),

(16)

(17
(18)

with initial and final conditions specified respectively as -

z1(%0) = p and z3(t;) = v, and the matrices are deﬁned
as follows:

An@) Y c,amT, ALY AT,
An(t) ¥ C, AT, An(t) L CL AW,
b)Y b)), b)Y cub@).

Since z1 and z; satisfy a pair of linear coupled differential
equations, it is easy to see that the solutions are also
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linearly related. Therefore, there exist a vector function
g(t) and a matrix function S(t) of suitable dimensions,
such that

z3(t) = S(t)z1(1) + 9(2), (19)

with suitable final value conditions

S(t;) =0 and glty) = v. (20)

Differentiating both sides of equation (19) yields
2(t) = S(t)21(t) + Sa(t) +9()-

Substituting the values of z; and z; from (17) and (18)
and comparing the coefficients of z1(t) lead to

S = A1 + A22S — SA11 — SA12S,
g = (A2z — SA12)g + (b2 — Sby),

with final conditions specified in equation (20).

Since equation (21) contains only known functions ex-
cept S, it can be integrated backward in time to get S(t).
Once this is done, equation (22) can also be integrated
backward in time to solve for g(t). With S(¢) and g(t) as
known functions, equation (17), which can be rewritten
as

5= (An(t) + Alz(t)S(t))Zl + bl(i) + Alg(t)g(t), (23)

can be integrated forward in time to obtain z(t). Fi-
nally, the algebraic equation (19) is used to obtain z3(t).
Thus, the kth iterative step is finished by transforming
[z, 271" back into n by inverse transformation (16).
Note that by taking the limits on both sides of equa-
tions (13) and its boundary conditions, which are the
linearized form in the kth step of the equivalent two-
point boundary value problem, we immediately obtain
the original equivalent two-point boundary value prob-
lem. It means that if the numerical iteration converges,
the limit 7 solves the nonlinear two-point boundary value
problem. Thus solving the stable inversion problem.

(21)
(22)

4 Missile Autopilot Example

A closed-loop controller for missile autopilot is designed
in this section using stable inversion. The controller uses
the nominal control as its feed-forward input which is
superimposed by a stabilizing feedback signal. A stable
and exact output trajectory tracking is expected.

Consider the longitudinal rigid-body dynamics of a
missile traveling at Mach 3 at an altitude of 20,000 ft.
The pitch-axis model involving angle of attack and pitch
rates is described as follows

& = KoMfi(a)cosa+ KoMdpbcosa+q (24)

g = Kqufg(a)+KqM2dm6, (25)
where the aerodynamic coefficients are given by

fi(@) = ana® + bpala| + cna (26)

fa(a) = ame® + bnalal + ema, (27)

and « is the angle of attack in degrees; ¢ pitch rate in
degrees per second; & actual tail deflection angle in de-
grees, and M the Mach number. The tail fin actuator
dynamics is approximated by a first-order lag

: 1 1

d=—=6+ ~u, (28)
T T
where u represents commanded tail fin deflection angle
in degrees, and the output is normal acceleration

y=K,M2fi(a)+ K, M?d,$. (29)

The missile with parameters listed in Table 1 is utilized
as the physical model here [16]. The two key assumptions
to ensure the equivalence between the stable inversion
problem and the two-point boundary value problem are
verified as follows.

Ko = (0.7)P,S/mu,
K, = (0.7)P,S/qm
S = 0.4 ft2

v, = 1036.4 ft/s

I, = 1825slug- ft? | 7=1/15

an = 0.000103 deg™3 | a,, = 0.000215 deg—3
b, = —0.00945 deg™2 | by, = —0.0195deg™?
cn = —0.1696deg™! | ¢ = 0.051deg™?

dp = —0.034 deg™? dm = —0.206 deg™?!

K, = (0.7)P,Sd/I,
P, =973.31lbs/ ft?
m = 13.98 slugs
d=0.75ft

Table 1: Details of Pitch-Axis Missle Model

The relative degree of the system is unit which may
be easily verified by the fact that input u is explicitly
involved in the first derivative of the output:

. dfl(a)' ! 1_,
2.—___ 2
y=K.M 1 a+ K, M*da( 7_6+ 7'u), (30)

where 1
K,Mzd,,; =p8#0.

By change of variables
mn
N2 (31)

a
q
{ 6 = (K, M?d,)"Y (€ — k. M? fi(m)),

and let £ = y = y4, the desired output, the reference
dynamics is given by :

oy

M = m+ Ka(K.M) 'yacosm
e = KM fs— K,M*dmd; fi + Kydm(Kdn) ™ ya.

When output is identically zero corresponding to the
reference trajectory outside the compact support, the Ja-
cobian matrix corresponding to the zero dynamics, refer-
ence dynamics with reference trajectory being identically
zero, is given by

0 1
I= [ K M (cm — dmdzten) 0 ] - (32)
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The equilibrium point at the origin of the zero dynam-
ics is hyperbolic since it contains one dimensional stable
manifold and one dimensional unstable one, which may
be seen from the eigenvalues of the Jacobian with the
fact that ¢y > 0,dpm < 0,d, < 0, and ¢, < 0.

To implement our stable inversion method to the de-
sign of tracking controllers, the equivalent two-point
boundary value problem is derived as follows. The lin-
earized version is directly obtained in favor of the numer-

“ical iterations.

The iterative linearization at each step k along the so-
lutions obtained in the previous step k—1 of the reference
dynamics is given by

Uit nf
[G]=a0[5]+0. e
72 72

where

Alt) = [ Ko(K, M) lyzsinm 1 ]

ke M?(fy(m) = dmd fi(m)) ©

KoK, M) ya(cosny + nysinny)
K M?(fy ~ dmd7 ' fr — ot |

+dmd;:_1f17)1) + qum(szn)—lyd

with the notation

bt =

des dfi(m1)
dm

.'.*h

)
and 7; is evaluted at 17'“ 1

Looking for the boundary conditions of the equivalent
two-point boundary value problem, we form the matrix
X, by taking as columns the eigenvectors and the gen-
eralized eigenvectors of A(%) at some fixed time ¢ corre-
sponding to eigenvalues having negative real parts, and
Xy, those corresponding to eigenvalues having positive
real parts. Then, we have

alx =[x x| ]

| e

where J, and J, are the corresponding Jordan forms.

Denote v
FAREE

From (34) we obtain

V,At)X. =0 and Y,A(t)X,=0.  (35)

Sinee we know that 7(¢) belongs to the unstable man-
ifold for all ¢ < ¢g, and it belongs to the stable manifold
for all ¢t > ty, therefore n(to) (respectively n{¢;)) can be
written as a linear combination of the columns of X,
(respectively X,):

ﬂ(to) = XuZy

and  n(t;)= X,Z,. (36)

Combining equations (35) and (36), we have
Y,A(to)‘l}(to) = Y,A(to)Xu Z-u - 0,

YuAQ@p)n(ts) = YuA(tf)X, 2, = 0.
Denoting Cs = Y;A(to) and Cy = Y, A(ty), we obtain

the linear time-varying two-point boundary value prob-
lem for each iteration

B(t) = A()n() + b(d) (37)

subject to

Con(to) =0 and  Cun(t;) =0. (38)

Assume that the reference. output profile has been cho-
sen as shown in Figure 1. The missile is required to track
the desired trajectory in its normal acceleration. The
controller is imposed by the following structure

(39)

where z denotes the state variables of the forward dy-
namics, ¢ = (a,q,6)T. Feedback gian, k, is chosen such
as to stabilize the forward dynamics hneanzed at the ori-
gin. In this example,

kF=[ ~51.1878 —2.9860 7.6265 ],

which puts the poles of the linearized dynamics at
—6.0016, 5.3984 and —15.0000 into 50, —40 + 420 and
—40 — 120. The nominal control input u4(¢) and the de-
sired state trajectory 4(t) are obtained through the fol-
lowing iterative step: ‘

u=1uq—-k(z—=zg3),

o Step 1: Set 5°(2) = 0 for all £.

e Step 2: Linearize the reference dynamlcs along no(t)
to get (17)-(23).

e Step 3: Integrate equation (21) backward in time to
get S(1).

e Step 4: Integrate equation (22) backward in time to
get g(t)-

e Step 5: Integrate equation (23) fofward in time to
.get z1(t) and get 25(t) by (19).

-1
. _ Cs Z1
® Step 6: Compute 7(t) = [ c. ] [ s ]
e Step 7 If |7 — n°|| is greater than a given threshold,
then 7° = 5 and go to step 2 else continue to step 8.

© Step 8: Compute desired state z4(¢) by inverse co-
ordinates transformation z4 = ®~1(£4, ) and nomi-

nal input ug(t) by ug = [8(s; M (0§ = a(€a,n),
which is

Ug = (KzMzdn)—IT(yd + (T - K Mf €os 771)1/4'"

-K, M*? (f n2+ TTL)).

Simulation results are shown in Figure 1. It can be
seen from the results. that an exact output tracking is
achieved, and the internal dynamics of the system is sta-
ble with desired state trajectories and the nominal con-

trol input approach zero as time goes to exther plus or
minus infinity.
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Figure 1: Simulation Results by Stable Inversion.

5 Conclusion

The stable inversion approach to the design of output
tracking controllers for nonlinear nonminimum phase sys-
tems is successfully applied to the trajectory tracking of
a missile autopilot example. The key assumptions on
well-defined relative degree and hyperbolicity of the fixed
point of the zero dynamics are satisfied. Simulation re-
sults demonstrate that the stable inversion approach is
very effective for obtaining exact output tracking for this
flight control example. This approach is expected to per-
form equivalently well for other realistic nonminimum
phase systems. Future work will be on efficient numer-
ical algorithms for constructing stable inverses and on
new applications of stable inversion.
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