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Abstract

This paper is concerned with optimal motion planning of
a flexible space robot. The robot is assumed to consist
of two flexible links which are attached to a rigid space
station floating in space. The optimal motion planning
is first formulated as a two-stage functional optimization
problem, which is further simplified into an optimal tra-
jectory planning problem using recently developed stable
inversion theory. The motion planning is optimal in the
sense that the system performance measured by the ma-
neuvering time together with control and structural vi-
bration energy is minimized. Besides, The controller also
keeps the interference from the arm to the space station
satisfactorily small. A suboptimal solution to the cor-
responding trajectory planning problem is obtained via
two decoupling on the linearized zero dynamics. One is of
the hyperbolic and the nonhyperbolic parts, and another
is of the stable and unstable parts. Numerical examples
finally demonstrate the effectiveness of this approach.

1 Introduction

The flexibility of space robot manipulators and limited
solar energy supplied by space station impose great chal-
lenges to the precise and satisfactory manipulator mo-
tion control. First, any control strategy has to result
in a minimum energy consumption because of limited
resource. Secondly, any movement of the manipulator
arm would transmit an undesired interference force from
arm to space station. Finally, any control forces or dis-
turbances applied to the manipulator are very likely to
excite structural vibrations in the arm as well as in the
space station. Therefore, a good motion control design
for a space manipulator should have the following prop-
erties: 1) Achieving a desired motion with the shortest
possible time; 2) Not exciting structural vibrations; 3)
Using a minimum amount of energy; and 4) Producing
the minimum interference on the space station.
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Researches concerning space robots have been mostly
carried out by considering the rigid links assumption
[5, 6]. By assuming relatively small elastic vibrations,
a perturbation approach is utilized to design separate
motion controllers for the rigid and the flexible parts [4].
Optimal control techniques have also been used in an ef-
fort to reduce energy consumption. By using reaction
wheels or attitude control jets [7], the effect of interfer-
ence from manipulator motion to space station can be
compensated. Another method to reduce the interference
is to include the space station in the trajectory planning
or to use kinematic redundancy to optimize the robot
trajectory [3]. It is noticed that all the methods men-
tioned above either lead to slow motion in order to keep
down energy consumption and vibration excitation, or
neglect the transient impact on the space station. Limi-
tation on fuel consumption has also minimized the usage
of attitude control jets. Motion control without requiring
reaction wheels would be of great advantages because of
the wheel’s significant mass introduced to the system and
their limited capability to correct for the interference.

By using stable inversion approach [2, 1], a completely
different approach newly developed for designing tracking
controllers, this paper investigates a motion control strat-
egy for space manipulators with all flexible links and no
control jets or reaction wheels. The remainder of the pa-
per is organized as follows. Section 2 briefly describes the
equations of motion of flexible space robots for purpose
of fixing notations. It also introduces the formulation of
a two-stage functional optimization problem which char-
acterizes the optimal motion planning. For more details,
readers are refered to [9]. Section 3 develops a subopti-
mal solution to the optimal trajectory planning. Analysis
of simulation results are presented in section 4. A con-
clusion is finally given in section 5.

2 Dynamics and Optimal Motion
Planning

Consider a flexible space robot system which consists of
a rigid space station and a robot arm with two flexible
links. Only planar maneuver is assumed so that we ne-
glect the out-of-plane deformation. Any possible effect
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from the sun or the earth 1s also neglected which implies
that there is no external force on the system. System’s
coordinate frames are defined in Figure 1.

Tnertial Frame

Figure 1: Flexible Space Robot

Assumed modes method is used to parameterize the
continuous deformation of each flexible link. The admis-
sible functions are chosen to be the ones for the clamped-
free beams in this study and two flexible modes are taken
for each link. The Lagrange’s method is applied to form
the system equations of motion. Denote the whole sys-
tem’s generalized coordinates as

¥ = (20,90, 00,01, 02,411, 912, 421, g22)” ,

which consists of the coordinates for the space station v,
the rigid modes for links 8, and the flexible ones for the
links ¢:

d d
v (z0,0,600)7, 0 (61,65)7,

d
¢ % (911,912, 921, 922) -

By the extended Hamilton’s principle in the form of La-
grange’s equation, the equations of motion can be written
as

M($)$ + H(¥, %) + C$ + Ky = Bu, (1)

where M(%) is the positive definite symmetric inertial
matrix, H (1, %) is the part containing the certrifigal and
the coriolis terms, C' the damping matrix, K the stiffness
matrix, B the torque distribution matrix, and u is the
vector of joint torque.

The angular coordinates for the tip positions of the
links are chosen to be the system’s output vector, which
is given by

6y + arctan(u‘fl‘—’tl)

= . 2
y 0, + 0, + a,rctan(w—%iﬂ) )

For small elastic deformation

wl(lI:,t)) ~ (wi(li,t)>,

I Vi=1,2.

arctan(

Thus, we have the output equation

y =Dy, (3)

where matrix D is defined accordingly. Thus, system’s
forward dynamics is given by equations (1) and (3).

Now consider the task usually performed by a robot
arm attached to a space station. The task may consist
of moving the manipulator from an initial configuration
to a final desired configuration. Trajectory planning is
usually first designed to provide a planned path to re-
alize the change of configurations. The planned refer-
ence trajectory together with the system dynamics then
determines the absolute best an ideal controller can do.
This is measured in terms of the amount of control effort,
the maneuvering time, the structural vibrations, and the
interference from the arm to the space station. Conse-
quently, optimizing the reference trajectory is expected
to lead to overall better motion control performance.

Thus, the optimal motion planning can be character-
1zed by the following optimization problem. The initial
and the final configurations are specified by yo and y;
respectively. For convenience, we also define the energy
part of the performance index as

+oo +oo
Je“éf/_ Wqu(t)||2dt+/_ Wallu(®)ll2dt,  (4)

where W, and W, are the penalty weights put on the
energy consumption. Optimal Motion Planning:

min {t; —to + J}
u

subject to
y(t) = Yo, vt < to, and) y(t) = Y5 vt b tfl
lla@Il < €, Ml < €,
lv@ll < €, IO < €,

and system dynamics:
M)y + H@, %) + C + K = Bu,
y =Dy,

and ty 1s given.

Here || -|| appeared in constraint equations is, by abuse of
notation, taken to be the component-wise infinity norm,
and ¢y and ¢; are defined as the initial and the final time
of maneuver respectively.

We attack this optimal motion planning problem in
two steps. A trajectory planning is first carried out to
find out a reference trajectory satisfying the hard con-
straints required on the initial and the final time. Then,
a motion control strategy is designed to realize the ref-
erence trajectory. Thus, the above optimal motion plan-
ning problem is equivalent to the following two-stage op-
timization problem.

Two-Stage Optimal Motion Planning:

min J 3,
u
st y(t) = alt), Ve

min ¢y — 1t +
Ya
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subject to
lu@®l < €u,

@I < e,

lla@Il < &,
(@Il < e,

and system dynamics:
M)+ H(w,$) + C¥ + K¢ = Bu,

Ya = Dw)

and to, ya(to) and ya(ts) are given.
See [9] for more details.

3 Optimal Trajectory Planning

Notice that the inner optimization in the above two-stage
optimal motion planning problem is actually an uncon-
strained exact output tracking control problem with en-
ergy minimization. The newly developed stable inversion
theory provides a solution that precisely addresses these
issues. For any given reference trajectory, it has been
shown that the stable inversion leads to a control strat-
egy that guarantees exactly output tracking with internal
stability. Furthermore, among all controls which gener-
ate the desired reference trajectory, the one being the
solution of stable inversion has minimum energy, and so
does the corresponding internal dynamics [8]. Thus, the
inner optimization problem is automatically solved by
using stable inversion, and the two-stage optimal motion
control problem is therefore reduced to the outer stage
optimal trajectory planning problem.

Optimal Trajectory Planning;:

min{ty —tg + J}
Ya
subject to

llax(t ya)ll < € Nue(t, ya)ll < ew,

“U*(t,yd)“ S evy ”'U*(t,yd)” S Eﬁy

and to, ya(to), and ya(ts) are given.

Here the subscript * stands for the solutions of stable
inversion which solve the inner-stage optimization prob-
lem.

In order to apply the stable inversion theory, it is re-
quired that the system should have a well-defined rela-
tive degree and its zero dynamics should have a hyper-
bolic equilibrium point at the origin. The first condition
is well satisfied since the both components of the out-
put vector chosen in this study uniformly have relative
degree 2. This can be easily verified from the system’s
forward dynamics. However, the hyperbolicity condition
is not satisfied in this flexible space robot case. Fortu-
nately, this problem can be avoided when pursuing only
suboptimal solutions as discussed later in this section.

It is clear that the above optimal trajectory planning
problem is an infinite dimensional search. We simplify
it now by taking the desired output reference trajectory

ya(t), with specified initial and final values y4(to) and
ya(ty) , as a linear combination of some base time func-
tions. Hence, by search over a finite coefficient space, we
can simplify the trajectory planing into -a finite dimen-
sional problem. It can be easily verified that the following
parameterization is valid by choosing the sinusoidals as
base functions:

Yd, [[Clkv sy anyt)
= Y (to) + [Yax (t5) — ya, (t0)] -

n
t—1g

T .t—1
— ; c;:z' sm(27rzt 9, (5)

|t —to
with
Zcik =1.
i=1

Now the stable inverses as functions of the desired out-
put need to be found through the stable inversion ap-
proach. It is known from the stable inversion that these
inverses are nonlinear functions of the solutions to a non-
linear two-point boundary value problem. In order to
obtain the algebraic expressions for the constraint equa-
tions, the two-point boundary value problem is solved an-
alytically by linearizing the zero dynamics at some equi-
librium point followed by integrating the stable dynamics
forwards in time and the unstable dynamics backwards
in time. It is noticed that by doing this linearization,
only a suboptimal solution will be achieved in the trajec-
tory planning. As mentioned above, the stable inversion
approach is not applicable when the zero dynamics is not
hyperbolic. However, in this study, the hyperbolic part of
the linearized zero dynamics is decoupled from the non-
hyperbolic part. Thus, this part can be solved through
stable inversion approach and then used to find the so-
lution for the nenhyperbolic part. Therefore, we obtain
the constraint equations in algebraic form only. See the
following context for more details.

The derivation of zero dynamics from forward system
dynamics is omitted here. The linearized zero dynamics
can be written as

Muli)+Mq1§+ Mylﬁd:O) (6)

My2® + My2§ + Meag + Moag + Myz§a = 0. (7)

Eliminating ¢ from the above two equations to obtain the
hyperbolic part of the zero dynamics, we have

¢ = A+ Bia, (8)

where § = (¢7,¢%)7, and matrices A and B are defined
accordingly. To solve for the stable inverses from the
above hyperbolic part of the zero dynamics using sta-
ble inversion, we further decouple the dynamics (8) into
stable and unstable parts by

_def def | Xs¢ Xu -
1€ X X, ]q¥ [ ‘ 4] NG
[ s u ] Xog  Xug q 9)
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which leads to

G124 0o][a B] 10
BRSPS

We carry out a time-scaling at this moment to simplify
the calculation by setting tp = 0 and

def
thew é told/if~

Changes due to this scaling will be explained as they are
inferred later. From the requirement of stable inversion
we know that the hyperbolic part of the zero dynamics
lies in unstable manifold at time ¢y while in stable man-
ifold at time ¢y, that is,

§1(0) =0, and, §2(1)=0.

Solving (10) with the above initial conditions, we obtain

at) = /0 exp{Jss(t — 7)}Bssia(r)dr, ¥t > 0, (11)

t
da(t) = / exp{—Jus (7 — t)}Busga(r)dr, ¥Vt < 1, (12)
1
where by scaling
Jop =125y, and, Juj:=t;dy,

and B,; and B,y are also defined accordingly. Straight-
forward integration on equations (11) and (12) provides

- 1 -
@) = Y (I+—=I)™
i=1 1
1 g,
= (e LA cos(w,-t)I) B,;—
Wi
c‘%J.,fB,f sin(w;t)] C;, ¥Vt >0,
- 1
3@ty = Z(I'i' EJff)_l :
im1 i
A (-ra-n _ .
[wi (e cos(wJ)I) Buy

1 .
FJufBuf sm(wit)] C;, Vi<,

where
w; = 2w,
C. déf { (ydl(l) - ydx(o))ci127ri :I
' (ydz(l) - ydz(o))ci227ri '
Through inverse transformation of (9), we have con-

structed a mapping from C| set of coefficients C; for all
i=1,...,n, to g«

g0 = T,(C), (13)

which can be written as

Xuge 71§5(0), vt < 0;
qu(il(t) + XuqéZ(t)) VO<t<
Xoqe?#10=Dg (1),  vi>1.

1]* (ta yd) =

Using this mapping and integrations of equation (6) with
time-scaling carefully involved will bring us mappings
from C to v and v:

Ve 1= ']:,(C), Vs 1= TU(C) (14)

From System forward dynamics with 6 expressed as a
function of y; and g¢., substituting (13) and (14) into it
leads to the mapping from C to optimal control input

u. = Ty (C). (15)

The analytical expressions for 7,(C), Ty and T,(C) are
omitted here.

With all these derivations, the corresponding optimal
trajectory planning problem is further simplified, by solv-
ing for a suboptimal solution, into the following finite
dimensional trajectory planning problem with only alge-
braic constraints. This problem can be solved by utilizing
some software package available at present and is formu-
lated as follows:

Suboptimal Trajectory Planning:

mci'n {t; —to + I}

subject to
17, (O < e,
17 (O < e,

and ty is given.

I17.(O)| < e,
17 (Ol < e,

4 Simulation Analysis

In this section, we present the simulation results to illus-
trate our optimal motion planning approach. The flexible
space robot with properties listed in Table 1 is utilized
as the physical model. We assume that the initial and
final configurations of the arm are

—45° 40°
j! 3 anda yd(tf) = [ 140° } s

yd(tﬂ) = [ 450
which may be visualized from Figure 2.

The corresponding suboptimal trajectory planning
problem is first solved to find the planned trajectory. We
set both the energy weights W, and W, to zero for the
convenience in comparison later. This leaves the only
maneuvering time in the performance index. Thus, we
are looking for a trajectory corresponding to a maneuver
which requires the shortest time.

The constraint bounds are determined as follows. By
requiring less than five degree’s deformation in each link,
we take the following as the bound on flexible modes q:

€, = [0.06,0.06,0.06,0.06] 7.
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Links, k=1,2 Spacecraft
Iy (m) 5.0 | h(m) 1.0
pi(kg/m) 0.2 | d(m) 1.0
EI(N/m?) | 1200 | mo(kg) 330.0
me, (kg) 0.1 | Iy(kgm?) | 3125.0
Iy, (kgm?) 20.0

Table 1: Flexible Space Robot Properties

Figure 2: Initial and Final Configurations

Bound on the interference on the space station, which
is characterized by generalized coordinates v and v, is
chosen by investigating the fixed position of the mass
center of the whole system. Since there is no external
forces acted on the system, the position of mass center
should remain unchanged after the maneuver. Assume
that links are moving, in an ideal case, extremely slowly
to fulfill the change of configurations, the space station
has also to move to compensate the motion in order to
maintain the original position of the mass center. By

Gu(to) = Gu(ty), and, Gy(ty) = Gy(ty),  (16)

and assuming fg(t;) << 40°, we obtain
xo(tf) = 0.0339, and, yo(tf) = 0.0118.

Taking the bounds as 25% larger than these ideal values,
and a reasonably small value for 6y, we have

€, = [0.042,0.015,0.046]7.

Arbitrarily pick small bounds on v and u to represent the
slow movement of the space station and allowable control
torque size. Their numerical values are as follows:

€; = [0.01,0.003,0.008]7,
€u = [10.0,6.0]7.

The optimization is carried out by taking three differ-
ent frequency components in output, that is, n = 3. Fig-
ure 3 shows the obtained suboptimal output trajectory.
This trajectory corresponds to the fastest motion with
all the vibrations, interferences and control satisfying the
Lo-norm bounds in the constraint equations. The mini-
mum maneuvering time is found to be t; = 12.24 seconds.

y1_d(degree)
8 o 8 &
.

IS
o

6
time{second)

Figure 3: Suboptimal Trajectory Planned

Based on this planned trajectory, system’s internal
modes and control input can be computed through stable
inversion approach to reproduce this output trajectory.
The reason to use the stable inversion approach is that
the so generated system’s internal modes as well as the
control possess the minimum energy property among all
other modes and control which also produce the same
output. This control design will be seen in our future
work.

A comparison study is made at this point. A heuristic
trajectory with sinusoidal acceleration profile is chosen
as another planned motion trajectory. This trajectory
is constructed such that it requires the same amount of
time to fulfill the maneuver and is shown in Figure 4.
Even though the heuristic trajectory has been chosen to
be as smooth as possible, this trajectory requires control
which will excites the system’s internal modes above the
bound set in the constraint equations. Figure 5 shows the
vibrations modes ¢ generated based on the two planned
trajectories respectively as well as the bound on them.
The violation is seen in the upper part of the figure which
corresponds to the heuristic trajectory.

Another comparison is made by applying distinct con-
trols to realized the same maneuvering trajectory. The
heuristic sinusoidal trajectory is used as planned tra-
jectory. Both the stable inversion approach and a PD
controller are implemented to fulfill the required motion.
The vibration energy generated and control energy con-
sumed are summarized in table 2. It is seen that the
minimum energy property still remains for the stable in-
version approach. However, it is noticed that only the
vibration energy is expected to be smaller by applying
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Figure 4: A Heuristic Trajectory Planned
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q(t) by Heuristic Traj.
o

q(t) by Subopt. Traj.
o

Time

Figure 5: Vibration modes ¢ and its bound

stable inversion since it is the only hyperbolic part in
zero dynamics. It turns out in this simulation study that
the control energy is also better in stable inversion than
in PD controller which is not guaranteed because the sys-
tem does not satisfy the hyperbolicity requirement.

5 Conclusion

This paper presents a new optimal motion planning prob-
lem for flexible space manipulators. First, a two-stage
functional optimization problem is formulated to charac-
terize the optimal motion, and it is then simplified into an
optimal trajectory planning problem by utilizing the sta-

Table 2: A Comparison on Energy

Control llg@llz (1072) | llu(®)]]2
Stable Inversion 184.9 14.73
PD Control 222.8 16.45

ble inversion theory. A suboptimal solution is obtained
instead of the optimal one due to the nonhyperbolicity
of the zero dynamics.

Simulation results illustrate the suboptimal trajecto-
ries planned for the optimal motion. A comparison study
is made against the conventionally chosen sinusoidal tra-
jectory. Both trajectories are of the same maneuvering
time. Study shows that the sinusoidal trajectory requires
the control which will excites the vibration modes above
the restriction bound. Another study shows that for the
same trajectory, stable inversion required control with
less control effort and less vibrations. Future work will
focus on the controller design due to the plant instability
and uncertainty in parameters and truncated dynamics,
and also the optimal solution approach to the problem.
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