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Nonlinear Inversion-Based Output Tracking

Santosh Devasia, Member, IEEE, Degang Chen, Member, IEEE, and Brad Paden, Member, IEEE

Abstract—An inversion procedure is introduced for nonlinear
systems which constructs a bounded input trajectory in the
preimage of a desired output trajectory. In the case of minimum
phase systems, the trajectory produced agrees with that generated
by Hirschorn’s inverse dynamic system; however, the preimage
trajectory is noncausal (rather than unstable) in the nonminimum
phase case. In addition, the analysis leads to a simple geometric
connection between the unstable manifold of the system zero
dynamics and noncausality in the nonminimum phase case. With
the addition of stabilizing feedback to the preimage trajectory,
asymptotically exact output tracking is achieved. Tracking is
demonstrated with a numerical example and compared to the
well-known Byrnes-Isidori regulator. Rather than solving a par-
tial differential equation to construct a regulator, the inverse
is calculated using a Picard-like interaction. When preactuation
is not possible, noncausal inverse trajectories can be truncated
resulting in the tracking-error transients found in other control
schemes.

I. INTRODUCTION

RACKING control and regulation are common problems
in applications and have thus attracted considerable atten-
tion from control researchers. Asymptotic tracking has been
solved for a given reference trajectory in the context of linear-
quadratic optimal control in [1]. Also, for linear systems, the
asymptotic regulation and tracking of signals generated by
finite-dimensional linear systems has been studied in a general
framework by Francis and Wonham [2]. These authors show
that the tracking problem is solvable if and only if a set of
linear matrix equations is solvable. In the nonlinear case, the
Francis—-Wonham equations have been generalized to a first-
order partial differential algebraic equation (PDE) by Byrnes
and Isidori [3]. This fundamental work has been augmented
with tests for approximate solvability of the Byrnes—Isidori
PDE [4] and methods for optimal regulator design [5]. In
addition, extensions to the Byrnes—Isidori regulator have been
described in [6] and [7].
In this paper we introduce an inversion-based approach to
exact nonlinear output tracking control. Briefly, the control
strategy is as follows. Let y4(-) be a desired output trajectory
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of a nonlinear system

#(t) = f(z(t) + g(=(t))u(?)
y(t) = h(z(t))

(defined more precisely later). The idea is to use control of the
form u(t) = ug(t) + K(zq(t) — x(t)), where (uq(-), za(-))
is the desired input-state trajectory (found through inversion)
satisfying

iq(t) = f(za(t)) + glza(t))ua(t)
ya(t) = h(za(t)).

The feedback term, K (z4(t) — z(t)), is chosen to stabilize the
system along the desired state trajectory.

The Byrnes-Isidori regulator can be applied to any tra-
jectory generated by a given exosystem, but it requires the
nontrivial solution of a set of partial differential algebraic
equations. We trade this requirement—to solve the partial
differential algebraic equations—for the tracking of a specific
trajectory (rather than any one of a family). Moreover, no
exosystem is required, and the specification of trajectories
is simplified. We do, however, introduce boundedness and
integrability requirements on the trajectory. The key to our
approach is finding a bounded inverse, even for nonminimum
phase nonlinear systems, for use in generating feedforward
inputs. In contrast to the inversion approach of Hirschorn [8]
where unstable zero dynamics lead to unbounded responses of
the inverse system, we introduce a nonlinear operator which
is noncausal in the nonminimum phase case. The resulting
desired input trajectories are also noncausal, and we use
preactuation to establish initial conditions in the nonminimum
phase case, in contrast to setting initial conditions as is done
in [9]. Other methods that result in approximate tracking can
be found in [10] and [11].

Noncausal feedforward can be used in the case where
trajectory preview is possible or truncated to a causal signal
at the cost of introducing transient tracking errors. Such
noncausal character is seen in the linear quadratic setting, but
the use of exact inverses in nonlinear tracking control is new.
The noncausal inverses used here are a generalization of the
work by Bayo [12] in flexible multibodies which have been
applied to the control of flexible-link robots in [13]. Recent
work by Meyer ef al. [14] removes some of the restrictions in
our theorems, and makes extensions in the context of air-traffic
control.

Our paper is organized in the following format. Section II
is devoted to the formulation of a nonlinear operator denoted
N and to establishing sufficient conditions for convergence of
a constructive iteration. In the next section, we describe the
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application of N to the development of a nonlinear regulator
based on dynamic inversion. In Section IV, the methodology
is illustrated with an example, and our conclusions are made
in Section V.

1I. A NONCAUSAL NONLINEAR OPERATOR

Here, we develop a nonlinear operator, N, which is central to
the stable inversion of nonlinear nonminimum phase systems.
We begin with its linear counterpart, denoted A.

A. Linear Operator A

Consider the linear system with boundary conditions at +0c
and —oo
#(t) = Az(t) + Bu(t); z(to0) =0 ¢))
where A has no jw-axis eigenvalues, € R”, u € R?, the
matrices A and B have compatible dimensions, and u €
L1NLe. Linear system (1) has a unique solution on (—00, 00)
(see [15, ch. 3]). Without loss of generality, we choose state
coordinates such that
A_ 0
A= [ 0 AJ

where A_ (A,), respectively, has all of its eigenvalues in the
open left- (right-) half plane. It is straightforward to verify that

z(t) = /00 (t — 7)Bu(r) dr )
is the unique solution to (1) if
1(t)etA- 0

and 1(-) is the unit step function. The Green’s function
(see, e.g., [16]) or impulse response for (1) is ¢(-)B. The
state transition matrix usually associated with the initial value
problem #(t) = Az(t) + Bu(t); £(0) = 0 is replaced, in the
boundary-value problem (1), by ¢(-). We refer to ¢(-) as the
bounded state-transition matrix.

Example: For

A= {_01 +01} @
we have
et 0
qﬁ(t):[o 0} if t>0
(1) = [8 Zf} it t<o. )

We define two norms on ¢(-) which will be used later.
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Definition I—Two Norms on Linear State Transition Matri-
ces:

I$()la £ > max g ()l ©)
J

I6()lls £ nsupmax |5, 1(7)] @

where ¢; x(t) is the jth row and kth column element of
#(t) € R™*™. Note that ||¢(-)||o < co implies that the system
is hyperbolic. However, this condition is not needed for the
norm described by (7) to be bounded, as long as the poles on
the imaginary axis are simple.

Definition 2—Linear Operator A: Define the input-to-state
operator A: Ly N Loo — L1 N Ly by

a(t) & /_ ” $(t — 7)Bu(r) dr. (8)

Note that since both u(-) and ¢(-) are in L1 N L, the right-
hand side of (8) can be evaluated using Fourier transform.

B. Nonlinear Operator N

For the system #(t) = f(z(t), u(t)); z(£oo) = 0 we
proceed to develop N, the nonlinear analog of A. We start with
a few definitions which will be used to show that a Picard-like
iteration (using the linear operator A) provides a contraction
that converges to a bounded solution of this nonlinear equation.

Definition 3—Solution Definition: Let z(t) € R", u(t) €
RP, and f(-,-): R™ x RP — R™. Then for a given u(-) €
L1 N Lo, 2(:) € L1 N Lo N C? is called a solution to the
differential equation with boundary conditions

d

Salt) = f((t), u(v);

if 1) the above equation is satisfied almost everywhere (a.e.) in
time ¢, where —oo < t < oo; and 2) lim;, 1o z(t) = 0. Note
that u(-) € L1 N L is fairly restrictive since it implies that
u(-) € L, for all 1 < p < oo. The operator defined here can
be generalized in some cases to u(-) € Lo (see [14] and [17]).

We approximate the nonlinear f(z(t), u(t)) by Az(t), and
the following definition expresses that the vector field formed
by the error in this approximation is locally Lipshitz in both
z and u.

Definition 4—Locally Approximately Linear (la.l) Condi-
tion: The mapping f(-, -): R™ x R? — R™ is defined to
be locally approximately linear (l.a.l) in an r neighborhood
of (0, 0) with positive real constants (K1, K») if there exist
A € R"™" and r > 0, such that for z(t) € R”, y(t) € R,
u(t) € R™, and v(t) € R™ all with || - || norms less than r,
the following local Lipschitz condition holds for all ¢:

1{Fl(®), u(®)] = Az()} = {fly(®), v(D)] - Ay(D)}]};
< Kqllz(t) — y(O)ll + Kallu() — v@):. (10)

This condition on f implies that 1) f(0,0) = 0, 2) f(-, )
is locally Lipshitz, and 3) if f(-,-) is smooth, then A can
be chosen as D, f(z, u)|(o,0). Note that the continuity of
f(-, ) in both of its arguments is necessary, but smoothness

x(too) =0 )
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is not required to satisfy the la.l. condition. For example,
flz,v) = 2+ 0.1|z| + w is Lal, but any f(z, u) with a
step discontinuity in z at the origin is not lLa.l.

Given f(-, -) which is La.l, let A be chosen to satisfy (10)
and ¢(-) be the bounded state-transition matrix associated
with A. This will be assumed for the rest of the paper.
The nonlinear operator will be developed through iterations
based on a linear approximation of f(-, -) by A. To apply a
contraction-mapping, we impose the following condition on
f(:, -) and its approximation A.

Definition 5—Condition 1: Given a positive scalar r, we
say that the approximation of f(z, u) by Az satisfies Con-
dition 1 if f: R® x RP — R™ is lL.a.l (Definition 4) in an
r neighborhood with Lipshitz constants (K, K»), where K
and Ky satisfy

1
< 60T (b
_ (1= 1¢()]a K1)
O < =350 (12
for all u(-) e U £ L1 N Lo N B, where
B, 2 {u(-)[u(t) € R?, and |[a(-)||; + [@()]|e0 < r}. (13)

Inequality (11) implies that z(¢) = Az(t) has a hyperbolic
equilibrium at = 0 (i.e., ||¢(-)||» is bounded). Also, bounds
on K and K, restrict the degree to which f differs from the
linear map.

C. Existence and Uniqueness Theorem

In the following theorem we define a map from u(-) €
Ly N Lo N B, into solutions z(-) of (9). A similar mapping
from bounded continuous functions (BC) into BC is studied
n [15].

Theorem 1: If f satisfies Condition 1, then for all u(-) €
L1 N Leo N B, there exists a unique solution z(-) of £z (t) =
F(z(t), u(y)); o(o0) = 0.

Remark: The boundary condition #{—oc0) = 0 has the prac-
tical implication that with a finite look-ahead these solutions
can be approximated (in the L; N L., sense) in the interval
(=T, o) to a high accuracy, provided T is large enough. The
other boundary condition may be relaxed (see, for example,
[14] and [15]).

Proof: Construct the sequence {z,,(-)}5°_, by defining
zo(-) = 0, and

Tmy1(t) = Pu(zm)(t)
& [ bt = D Slonlr), u(r)] ~ Az ()} dr
(14)
where Py (y[zm(-)] is denoted for simplicity by Py(z,,). We

claim that this sequence converges to the required solution of
(9). The proof consists of four lemmas which are proven in
some generality because a few intermediate results are required
later.

Lemma 1:

P, LiNLe — Loy NCY.
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Proof:
[Pu(z)(®) = Po(m)(B)lleo < [1Pu(z)(t) = Po(y)(t)ll2
/ ot — T)B(r)dr|| (15)
where 1
B(r) £ {la(r), u(r)] - Az(r)} = {fly(r), v(r)] - Ay(7)}.

Hence, for all ¢, we have

1Pu(2)(t) = Po(y)(#)lloo

/¢<t—f r)dr
DY
<ZZ/ 165, 1t — )| Be() dr

j=1lk=1

< (sgpr?%cxm, k(T)I) i/w | Bi(7)| dr
’ k=177
21600 [ 1B dr

<160s [ (Kallalr) = u(l
+ Kollu(r) — v(r)|1) dr [from (10)]
2 160 s(Kallz() — gl + Kallu() - v()l1). (16)

Setting v(-) and y(-) to zero establishes that the range of
P, is contained in Ly, and is uniformly continuous in . [J
This lemma implies that the integrand of iteration (14)
belongs to L1 N L, and is uniformly continuous in ¢.
Lemma 2:

1

&5, et — T)Bk(T)) dr

Pu: Ll n Loo - Ll.
Proof:
1Pu(2)(-) = Pu(y)()lh

:(y)(
) j:l/_oo k=17~

where B(1) 2 {flz(r), w(r)]
Ay(7)}. Hence

w(t—T1)Br(r)dr|dt (A7)

— Ax(7)} = {fly(r), v(7)] —

1Pu(2)() = Po@)()la
< ;;/ / |61t — 7)By(r)| dr di
_;;/ / 6 k(t — 7)By(7)| dt dr
< 3 (max s 00 ) 1BO

= nzzs(-)nauBc)nl

< Ol (Brllz() = y()lle + Kallu() = v()ll1) (18)
using (10) as in the proof of Lemma 1. Setting v(-) = 0 and
y(-) = 0 completes the proof. O
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Corollary to Lemma 2: P, is a contraction on L.
Proof: Set v(-) = u(-) and substitute (11) in (18). O
Lemma 3:

T (-) € L1, and ||£m(t)]leo < T, foralm=1,2,---

Proof: 1) zo(:) € L1 N Lo N C° and 2) zu(-) €
LiN Lo NC® = zpy1(-) € Ly N Loo N CO (from Lemmas
1 and 2). By induction z,,(-) € L1 N Lo N C° for all
m=1,2,---, provided T,,(-) remains in the neighborhood,
ie., ||Zm(-)lc < 7. To see that this proviso is satisfied,
observe that

l2m (Ml = em() = 2o()llx < leﬂml () =20l
, =

< i‘(|I¢(')IIaKl)'“Ild>(~)|laK2||u(')||1

[using (18)]
lle()lla K2

< I_—Kmllut)lh

(since K1||¢()||e < 1)- (19)
Further, from (16)
[Zm(®)lleo < ) la(K1llEm—1()ll1 + Kallu()ll),
YVt e (—oo, ). (20)

Substituting (19) of ||Z.,—1(-)||1 in the right-hand side of the
above equation, and using (12) (Condition 1), we obtain for
all ¢

LAEOTATCTp

A TIBIR @D

]

[[Zm ()l <

Lemma 4: 1My, 00 Tn(t) 2 z(t) exists for all ¢, and
z(-) = Pu(z)():
Proof: From (16), for all ¢
lzm () = Zm-1(D)llo
< Kalp()llallu()ll1 (KilléC)la)™
= Ty(t) = Zm—1(t) = 0as m — o0

(since K1[|¢(-)]la < 1). (22)

Hence, there exists z(t) 2 limym— o0 Zm(t) for all ¢. Next we
show that this pointwise limit function z(-) is the fixed point
of the contraction z,,+1(-) = Pu(2a)()-

From (22) we have, for all ¢

Jim 1P (=2 (O)lloo2 Hn_ [0 () = () =0

for all ¢
= lim_ [Puem)(t) — 7m(8)] = 0. 23)
From (16) we have the Lipshitz condition
1P.@)(®) — Pu@)®lloo < Killdlallz() =yl 24
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This means that P,(z)(t) is continuous with respect to
z € Ly in the || - oo norm, limm—eo Pu(m)(t) =
P, (limy, 00 Zm )(t), and

Pu(z)(t) — =(t) = (25)
Zm(+) converges to z(-) uniformly in ¢, and therefore z(-) is
continuous. From the definition of P, (14) and (25)

z(t) = Pu(a)(t)
A [ gt - Df((r), u(r)) — Az(r)] dr. (26)

This implies that x(+) is a fixed point of the contraction P,.[]

From Lemmas 3 [see (21)] and 4, the uniform pointwise
convergence of the uniformly bounded sequence ., (-) implies
that ||z(t)|je < 7 for all ¢, i.., the solution is bounded. To
see that z(-) satisfies (9), differentiate (26) to obtain!

Gotwy= [ [ G| (ar), ey — st dr

- /_m [A(t — 1) + I™X76(t — 7))

x {f(a(7), u(r)) — Az(r)} dr
= f(z(t), u(t))-

By construction, ,(+) is uniformly continuous for all m =
1,2,--- (Lemma 1). Since z,,(-) € L1, from (27) the lal
condition and Barbalats lemma [18] implies that z,(t) — 0
as £ — =oo. The uniform convergence of the sequence
{Zm( )}y = x(t) — 0 as t — =oo, and thus the
boundary conditions on the solution are satisfied. Also, by the
contraction mapping theorem, z(-) is the unique fixed point
[satisfies (26)], and hence the unique solution to (9). This
concludes the proof of Theorem 1. O
Definition of the Nonlinear Operator N: Theorem 1 de-
fines a mapping N from a given input u(-) € U [U defined
by (13)] to a state trajectory 2(-) € L1 N Lo N CP as follows:
N(u(+)) 2 limymsoo Tm, u(-), Where Z,, () is the mth iterate
defined by (14) and the subscript indicates dependence on u(:).
We now present an application of the operator N to dynamic
inversion. '

[from (3)]
27N

III. REGULATION BASED ON NONLINEAR INVERSION

In the following section we describe an application of
the nonlinear operator N to nonlinear dynamic inversion.
The resulting input is used to develop a nonlinear regula-
tor. Our approach is based on the generation of the triplet
(z4(-), ua(-), ya(-)), through nonlinear inversion, where ya(-)
is the desired output trajectory, and z4(-) and ugq(-) are the
corresponding desired input and state trajectories which yield
the desired output trajectory. The critical issue is to find a
bounded (possibly noncausal) uq(-). We begin this section by
formulating this inversion problem.

' We make formal use of the dirac-6 function in (27). This can be eliminated
with a longer argument using our definition of ¢(¢) (3).
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A. Stable Inversion Problem

Consider the nonlinear system

&) = fle(®)] + gle(®)]u(t)
y(t) = hlz(t)]

defined on a neighborhood X of the origin of R™ with input
u(-) € R? and output y(-) € RY. The functions f(z), g:(x)
(the uth column of g(z)) ¢ = 1,2,---,q are smooth vector
fields, and h;(z) for i = 1, 2,.., ¢ are smooth functions on
X with f(0) = 0 and A(0) = 0.

In the context of the above system, pose the following.

Stable Inversion Problem: Given a smooth reference out-
put trajectory ya(-) € L1 N Lo, find a control input u,4(+) and
a state trajectory z4(-) such that:

1) ug(-) and z4(-) satisfy the differential equation

(28)
(29)

z4(t) = flza(t)] + glza(t)]ua(t). (30

2) Exact output tracking is achieved
hlza(t)] = ya(?). (3D

3) wuq(-) and z4(-) are bounded, and
ug(t) = 0, z4(t) — 0 as t — +o0. (32)

We call z4(-) the desired state trajectory, and u4(-) the nominal
control input. These can be incorporated into a regulator by
using ug as a feedforward signal, and z(-) — z4(-) as an error
signal for feedback (see Fig. 2).

B. Application of N to Stable Inversion

1) Mathematical Preliminaries: In solving for the trajec-
tories x4(-) and wug4(-), the concepts of stable and unstable
manifolds of an equilibrium point arise naturally [19]. For the
sake of completeness we review the definitions here. Let 2 = 0
be an equilibrium point of an autonomous system defined in
an open neighborhood U of the origin of R™

2(t) = flz(?)]

and ¢,(2) be the flow passing through z at ¢ = 0. We define
the (local) stable and unstable manifolds W*, W* as follows:

(33)

W* = {2z €Ul|p,(2) €eUVt>0, ¢,(2) — 0

ast — oo} (34)

“={2€Ulp(2) €TUVELO, $,(2) = 0

ast— —oo}.

(35)

The equilibrium point z = 0 is said to be hyperbolic if the
Jacobian matrix D, f at z = 0 has no eigenvalues on the jw
axis. Let n° denote the number of eigenvalues of D, f in the
open left-half complex plane and n* the number in the open
right half-plane. Stable and unstable manifolds W* and W*
exist locally in the neighborhood of hyperbolic fixed points
and have dimensions n® and n", respectively.

For convenience, we will use the following notation. Let

Mé {Oa 17 27"'}7 r = (77177‘27"'77Aq)T € Eq and y(t) =
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(y:(2), y2( )+

+yg(t)T; t € R. Then we define | 2+

T2 + -+ + 74 and write
)
IOE d::“f ) (36
L)
If y: R® — R? and f: R® — R™, we define
L;fl yi(t)
pa 2 | el (37)
f ?Jq(t)
2) Partial Linearization and Inversion: The system dy-

namics, (28) and (29), are written in the following form,
where the number of inputs (¢) is assumed to be the same
as the number of outputs

2(t) = fla(t)) + Zgl (£)yua(t (38a)
yi(t) = ha(a(t))
Yg(t) = hqe(z(2)). (38b)

We assume that the system has well-defined relative degree
7 = (r1, r2, -+, 1) at the equilibrium point zero, that is, 1)
forall1 < j<gqg,foralll1<i<gq forall kK <r; —1, and
for all z in a neighborhood of the origin

Ly, L%hi(z) =0 (39)
and 2) the ¢ X ¢ matrix
Lg, L~ hy(x) Lg, L ha(x)
5(:1:) - 91LT2~1h2( ) quLT2 'h ( ) (40)

LglLTq_lh (z) L, L’"q‘lh o(z)
is nonsingular in a neighborhood of the origin.

Under this assumption, the system can be partially lin-
earized. To do this, we differentiate y;(-) until at least one
u;(t) appears explicitly. This will happen at exactly the r;th
derivative of y;(-) due to (39). Define §i(t) = ylk 1)(t) for
1=1,---,gand k = 1,---,r;, and denote

¢(t) = (&1(8), fi(t)»-",ﬁil(t) @), €, (1), & ()T
= (1), 91(8), 3170, @), 8TV,

v )" @1
Choose 7, an n — |r{-dimensional function on R™ such that
(€7, ™) = 9(z) forms a change of coordinates with (0) =

0 [19]. In these new coordinates, the system dynamics (28)
becomes

éi(t)=€§(t)

n-l() &, (t)

1 (8) = aulé(), n(O)] + Bil€(t), n(t)]u(t)
fori=1,---,q (42a)
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A(t) = s1[€t), n(t)] + s2(£(#), n(B)]u(t) (42b)
which, in a more compact form, is equivalent to
y 7 (t) = al(t), n()] + BIE®R), n(t)]u(t) (43a)
A(t) = s1l€(t), n(t)] + s2(£(2), n(®)]ul?) (43b)
where
y(t) = (Ui (t), ya(t), -, yg (1)
u(t) = (ul (t)7 Uz (t)a sy Ug (t))T
afé(t), n(t)] = LAy~ (6(t), n(#))] (44)
B, n(®)] = LyLy  hlp ™ (EW®), ()] (45)

Here § is as defined in (40), (0, 0) = 0 since f(0) = 0, and

M (1)) = [ha(2 (1)), ha(2(t)), - hy((®))]"

g(@(t)) = [g1(2(1), g2(2(t)), - - ga(2(D))]-

Since by the relative degree assumption, 3(£(%), n(t)) is
nonsingular, the following feedback control law:

u(t) & B7HE®), n(t)[v(t) — alE®), n®)]]

is well defined and partially linearizes the system such that the
input-output relationship is given by g chains of integrators

y(t) = ult)

where v(t) € R? is the new control input. To maintain exact
tracking choose

(46)

(47)

v(t) =y (@) (48)

Then
(1) = €a(®) 2 yar (), Gar (D), -, 95 (), yaz(t), -+
Rl ()RR el () N C)

and (43b) becomes (50), which we call the internal dynamics,
or the zero dynamics driven by the reference output trajectory

i(t) = sleat), n(t), v§ (0] 2 s(n(t), Ya()  (50)
where
s[n(t), Y37 (b))
2 51(Eat), n(t)) + sa(Ealt), n(£)B™ (Ea(t), n(1))
x [y (8) — al€a(t), n(t))] (51)

where Yy (+) represents £4(-) and yg")(-).
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Fig. 1.

Geometric interpretation of stable inversion.

3) Application of Theorem 1 to Inversion: If s satisfies
Condition 1, then by Theorem 1 there exists a solution
na(-) € L1 N Lo N C° to (50). Once the solution to the
internal dynamics is found, the original state trajectory is
given by the inverse coordinate transformation

za(t) = V71 (gj%) (52)
and an input trajectory, ug(t), by (46)
uq(t) = B (Ealt), na(t))[—e(&a(t), ma(t))]
£ F (Ya(®), na(®)[=a(Ya(®), na(®)- - (53)
4) Geometric Interpretation of Stable Inversion: If Ya(+)

has a compact support, [to, ¢1], then it is possible to give a
geometric interpretation of the evolution of zq(t) [17]. The
noncausal part of the nominal control drives the internal
states of the system along the unstable manifold of the
zero dynamics manifold to a particular initial condition
z4(to) while maintaining zero system output. This initial
condition guarantees two things: 1) the desired reference
output trajectory is easily reproduced with bounded input and
states, and 2) the system state “lands on” the stable manifold
of the zero dynamics manifold at the end of output tracking.
With this nice final condition, the internal states will converge
to zero along the stable manifold without affecting the output.
This geometrical picture is shown in Fig. 1.

5) Contrast with Hirschorn’s Inverse: In the partially lin-
earized normal form

v () = a(&(t), n(t) + BE(), n(t))ult) (432)

0(t) = s1(£(t), n(t)) + s2(€(2), (D))u(?t) (43b)

the comparison between the stable inversion technique and
that of Hirschorn can be made clear. Solve the first equation

for u(-), that is, u(t) = B~1(&(1), n(t)[v(t) — (&), n(1))]
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Feedforward, ug - u y
» System ——
+ x
+
Desired Output Stable State Traj ectory
Trajectory, v, Inversion Tracker
Reference State, xg = - Actual State, x

Fig. 2. Block diagram of the control scheme.

[see (47)] and viewing () (-), £(-)) as the input, this “output

equation” for u(-) along with

A(t) = s(&alt), n(t), (1) n(0)=0

forms Hirschorn’s left-inverse system. This inverse is realiz-
able with standard integrators running forward in time but
could lead to unbounded solutions for nonminimum phase
systems. In contrast, when the initial condition n(0) = 0 is
replaced by the boundary conditions 7(£o00) = 0, to yield our
inverse, the system in no longer realizable with integrators
running forward in time. Rather, causal and noncausal linear
filters are used iteratively to find n and u. Note that when
the linearization is causal, the iterations also result in a causal
operator output which coincides with Hirschorn’s solution.

C. Regulator Based on Nonlinear Inversion

Let (uq(-), z4(-)) be a bounded preimage of y4(-), found
through the inverse operator, to system (28) and (29). We es-
tablish below that the system’s state and output exponentially
track the state trajectory z4(-) and the corresponding desired
output yg(+).

Lemma 5: Given € > 0, there exists 6. > 0 such that
ua(Yllee < € if [[¥a()ll + [Ya() o] < 6.

Proof: To find the inverse input-state trajectory, a
bounded solution to the internal dynamics [see (50)] is found
iteratively as the fixed point of the operator Py,. It follows
from (21) that this fixed point is bounded

KolleOllsllYaCll:

ma( oo < AT

(54)

From (53)
ua(t) = B (Ya(t), na(t)[~&(Ya(t), na(t))].

The lemma follows since &(0, 0) = 0, 3~ is bounded, and
& is continuous [19]. O

Proposition 1: Let (uq(-), z4(-)) be a bounded input-state
trajectory in the preimage of y4(-) for (28) and (29) D, f|o be
Hurwitz, and ||Y4(-)||1 + ||Ya(:)||oo small. Then, the desired
state trajectory x,4(-) is bounded, and the output y(¢) tends to
the desired output y4(¢) asymptotically.

Proof: This follows from standard Lyapunov arguments

based on the linearization at z = 0 [18]. O

If the origin of the system to be controlled is unstable, but

is stabilizable in the first approximation, then we use a control
law of the form

u(t) = ua(t) + K(za(t) — z(t))

where K (z4(t)—x(t) is the stabilizing feedback, with D, f|o— -
Kz Hurwitz, and ug(-) is the feedforward (see Fig. 2). Here,
we used standard stabilizability in first approximation (it is not
our objective to present any new stabilization method). Other
techniques for stabilization can be found in [19] and [20].
For a global approach see [21]. Note that the stable inversion
technique only provides a nominal feedforward input ug(-)
and a desired state-trajectory z4(-) which is to be stabilized.
The input-state trajectory is predetermined by the system, for
a given desired-output trajectory, and does not depend on the
initial conditions or the stabilizing feedback. This concludes
the formulation of the nonlinear inversion-based regulator.

IV. AN EXAMPLE

In this section, both the inversion-based regulator and
Byres-Isidori regulator approaches will be applied to a simple
nonlinear nonminimum-phase system. The example system
is selected such that the solution to the nonlinear partial
differential equations resulting from the Byrnes—Isidori reg-
ulator approach is manageable. The performances of the two
approaches are compared.

Consider the single-input single-output system described by

i (t) —z1(t) + 72(t)

Ea(t) | _ | —3ma(t) + z3(t)
3(t) | | z1(t) — 2z3(t)
4(t) —z4(t) + 23(t)
0
n 2+sin2(:c4(t)) u(t) (55)
0
y(t) = z1(t) — 3z3(t) (56)

and a reference output trajectory given by

A
_ [#=(1—cos(t)) t €0, 27]
va(t) = {02 otherwise 7
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where 4 is 0.1. Note that 4 has to be small enough to
keep the internal dynamics local to the origin.

A. The Byrnes—Isidori Regulator
First, let us consider the Byrnes-Isidori regulator approach.
The reference signal can be exactly generated by the following
linear time-invariant exosystem:
(1) = wa(t)
s (t) = —wi (1)
’d]g(t) =0
ya = wi(t) + ws(t)
with the initial conditions set at ¢ = 0, and reset at ¢t = 2™,
as follows:

(58)

wl(—oo) = 'LUQ(_OO) = w3(—oo) =0

A, A

w3(0) = —2*”— we(0) =0

wy (27) = we(2m) = w3(27w) = 0. (59)

The zero error manifold, z = z(w) and u = u(w), is obtained
by solving a system of nonlinear partial differential equations
which is, in general, extremely difficult if not impossible. For
this example, the partial differential equations are as follows:

Oz (w) wy — Ba:l(w)wl = —z1(w) + za(w)

Bwl 8w2
923, — 922
(97.01 8w2 !
= —3xy(w) + 23 (w) + (2 + sin® z4(w) Ju(w)
8[51(’!1)) . (91171('11}) _
w0, ws 10y wy = z1(w) — 2z3(w)
ozy(w) dz1(w) B
o, wo g wy = —z4(w) + z5(w) (60)
subject to
z1(w) — 3z3(w) = w1 + ws. (61)

We chose the system such that (60) and (61) have a closed-
form solution. This is given by
1

3
wl(w) = —5’101 _— 511)2 — 2’!1}3

za2(w) = w1 — 2wy — 2ws3
1
z3(w) = —§(w1 + wy) — w3

7

2, 3 o 1 2
= 551 + owy + —wiws + wiws + wy

z4(w) 20 10

w(w) = (2w, —|—w2+3x2(w)—gz:i’(w))/(2—|—sim2 z4(w)). (62)

937

Note that with «(¢) = 0 (undriven system), the origin is locally
asymptotically stable since the Jacobian matrix of f(z) at
z = 0 is clearly

-1 1 0 0
0o -3 0 O
1 0 2 0 63)

0 0 0 -1

and has all its eigenvalues negative. Therefore, for simplicity,
we can choose the feedback gain to be zero.

This completes the Byrnes—Isidori regulator design. The
simulation results are presented for a given output trajectory
shown in Fig. 3. The desired state trajectories [obtained from
(62)] which yield exact output tracking are shown in Fig. 4.
Fig. 5 shows the actual state trajectories which differ from the
desired ones. The resultant output trajectory is shown in Fig. 3
(solid line). Note that the output generated by the regulator
does asymptotically track the reference trajectory as predicted
by theory. This is evidenced by the segments from ¢ = 3 to
t = 2x and t > 8. However, there are substantial transient
tracking errors (see Fig. 3) both when getting onto the zero
error manifold and when changing the manifold.

B. Nonlinear Inversion-Based Regulator

Next, we consider the stable inversion approach. To partially
linearize the system, we differentiate the output y to yield

§(t) = 1(t) — 3a3(t) = —4x1(t) + wa2(t) + 623(t). (64
Since the control u(-) does not appear explicitly, we differen-
tiate ¢(-) again to yield

ii(t) = —4(=z1(t) + w2(1)) — 3w2(t) + 27()
+ (2 + sin? (z4(2)))ult) + 6(z1(t) — 273(1))
= (10z1(t) — Tza(t) — 12z3(t) + z3(t))
+ (2 + sin? (za(t))u(t) £ ala(t)) + Bla(t)u(®)-
(65)

Now, not only does u(+) appear, its coefficient 3(z) is nonzero
for all z. Hence, we can set

1
w(x(t)) = ———=<[fa(t) — ez (?))] (66)
Bx(t))
and introduce a change of coordinates
Y Y 1 0 -3 07 [z
g _jyg| _|-4 1 6 0|z a )
m - Iy - 0 0 1 0 X3 o ’lﬁ(fb) (67)
72 T4 0 0 0 1]1Llzs
The inverse transformation is given by
1 1 0 3 OW ry
9o _ 4 1 6 0 y
23| {0 0 1 0f|m]| (68)
T4 0 0 0 1l1in

Using the feedback of (66), the system in the new coordinates

becomes
4(t) = a(?) (69

(t) = s(n(t), ya(t))
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02f ]
0.15

0.1

output

0.05

-0.05
— actual trajectory

-+ desired trajectory

time (s)

Fig. 3. Output trajectory for the Byrnes—Isidori regulator.

Desired State Trajectories

]
—— x1(w(t) |
- = x2§wt
----- x3(w(t
cem xd(w(t
_0.5 1 1 1 1 1 1 1 I 1
0 1 2 3 4 5 6 7 8 9 10
time (s)
Fig. 4. Desired state trajectory for the Byrnes—Isidori regulator.
where Let A be the Jacobian of s
A A |l 0
n=(m m)t A= {o 71} )
and Equation (3) yields the following state transition matrix:
A | T+ Yd a0 0 .
, = i 70 t) = f
(71, Ya) [—772‘*‘77%} (70) balt) [0 e“t} 1 t>0

We now show that s(-, -) satisfies Condition 1. Hence, by
: ; . . ' A [-et 0 .

Theorem 1, there exists a solution 74(-) to the above equation balt) = if t<o. (72)

which belongs to L N Lo, N CY.
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Actual State Trajectories

X X x
ACOK’—*
e

1
o
o

o

Fig. 5. Actual state trajectory for the Byrnes—Isidori regulator.

10 12 14 16 18 20

time (s)

0.2 desired trajectory -
—— actual trajectory
0.15 i
3
g o1 _
[}
0.05 4
0
-4 -2 0 4 6 8 10

Fig. 6. Output trajectory for the inversion-based regulator.

From (6) and (7) we also obtain that ||¢4(-)|lo = 2 and
l¢a()lg = 2. Choose K; such that 0 < K; < 0.5,
r < K;/2, and Ko = 1. With these values for A, K;, Ko,
and r, it is easy to verify that s satisfies (10)—(12) and thereby
Condition 1. Hence, there exists a solution to (70) given by
na(-) = N(ya(-)?

Once 74(+) is calculated, the desired trajectory in the original
coordinates can be calculated using the inverse coordinate

2Matlab routines can be obtained by email to santosh@stress.mech.utah.edu.

time (s)

transformation so that

zq(t) = P ya(t), 9a(t), ma(t), nea(t)]

1
Blza(t))

where ¢ ~1(-) is given by (68) and the nominal feedforward
input u4(t) is calculated according to the linearized feedback
law (66). Note that since 74(t) is nonzero for t < %o, the

u(za(t)) = [fa(t) — a(za(?))]
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Actual State Trajectory

_0.5 1 1 L
24 -2

Fig. 7. Actual state trajectory for the inversion-based regulator.

10
time (s)

0.2 T

0.1

-0.6

~ Inversion—-Based Regulator
" Byrnes-lIsidori Regulator

~-0.7 !

-5 5

Fig. 8. Comparison of inputs to the regulators.

corresponding uq(t) is also nonzero for ¢ < ¢o. This leads to
a noncausal feedforward input.

As in the case of the Byrnes—Isidori regulator, we choose
zero feedback gain because the linear approximation of the
undriven system is asymptotically stable. Simulation results
are shown in Fig. 6 which shows that the actual trajectory
closely matches the desired output trajectory (not absolutely
exact because the input is truncated at ¢ —4). Fig. 7
shows the corresponding actual state trajectories, generated by

10 15 20

time (s)

the truncated input (Fig. 8). Fig. 8 also compares the input
used in the inversion-based regulator to the input for the
Bymes—Isidori case. Note that the inputs are of the same order
of magnitude. Hence, it is advantageous to use the proposed
inversion-based regulator because an almost perfect output
tracking (compare Figs. 3 and 6) is obtained with a similar
control effort. If the input generated by the inversion-based
regulator is truncated, then the resulting transient errors are
similar as in the Byrnes—Isidori case (see Fig. 9); however,
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T T T T
0.2 -+ desired trajectory E
-- Byrnes-Isidori Regulator
015 — Inversion—-Based Regulator
. - -
with input truncated to be Causal
0.1 F i
5
g
3 0.05F 1
~
0 __________________________________
~0.05- :
_0-1 1 1 1 L

Fig. 9. Comparison of output trajectory.

the errors at the end of the motion ¢ 27 present in the
Byrnes—Isidori regulator (due to switching in the exosystem)
are absent. This is mainly due to the anticipatory or noncausal
nature of the inverse-based regulator—when truncated to be
causal transients are present at ¢ = 0, but quite reduced when
anticipated output changes occur at ¢ = 27. A small tracking
error is still noticeable which is absent when no truncations
are present; this reflects the rate of convergence to the desired
state-trajectory and the size of the initial error.

V. CONCLUSIONS

We have introduced a nonlinear operator whose application
in nonlinear inversion yields a clear connection between
unstable zero dynamics and noncausal inversion. When non-
causal inversion is incorporated into tracking regulators, we
can see that it is a powerful tool for control—particularly
when computation is considered. An important fact is that a
given system model defines different input-output operators
depending on how boundary conditions are applied. For the
study of feedforward control, boundary conditions at infinity
give a useful perspective on a system. We have considered
only the case of hyperbolic zero dynamics. Cases where zero
dynamics have a center manifold or a hyperbolic orbit should
prove interesting as well.

APPENDIX

If z(-) is a vector-valued measurable function where z(t) =
[£1(t), 22(t), 23(t),-- -, za(t)]T € R™, then

Izl 2 > |,
1=1

the standard “1” norm in R"

2 [ et ae

| z()lh

10 15 20

time (s)

() ]loo 2 max [z;(¢)] is the standard co norm in R"

[2]loo = () lloo = €885UP,e( oo, oo |1t oo
lz(®)llr 2 le®l: + l2(t)llo

Izl £ llell + [l2/lo-

If hi: R — K™, hy: R — R™, and z € R", then

dh
Lp,h1 = —1h2( )

Ly hy = L, (L}, ha).

hi(z) = O(|iz||l») = M)—“ﬂ is bounded in a neighborhood
of z = 0, where || - || and I - ||~ are norms in R™ and R",
respectively.
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