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Abstract

This paper addresses the problem of point-to-point sta-
bilization of a two-wheeled mobile robot. It is well known
that there does not exist a smooth static state feedback con-
troller for the stabilization of the mobile robot to arbitarary
fixed postures. Researchers in the past have therefore used
smooth time-varying control, piecewise smooth control and
hybrid control for stabilization. In this paper we present a
piecewise smooth dynamic controller for the global asymp-
totic stabilization of the mobile robot. As different from other
piecewise smooth controllers, our controller has at most one
switching, otherwise it is smooth. Our controller is also dy-
namic in the sense that the control inputs are obtained as a
solution to a first order differential equation and convergence
to the desired posture is guaranteed for any nonzero initial
condition. The controller, inherently simple in its formula-
tion, uses the dynamics of a nonlinear oscillator that plays
a key role in preventing the mobile robot from getting stuck
at any point other than the desired posture. The controller
guarantees the simultaneous asymptotic stabilization of the
states of the mobile robot to their desired values and the
states of the oscillator to zero. Simulation results presented
aptly demonstrate the efficacy of the stabilizing control.

1. Introduction

The problems of motion planning and feedback stabiliza-
tion of mobile robots have been studied in recent years with
the aim of developing autonomous wheeled vehicles. Re-
searchers have looked at the motion planning problem in
search for feasible trajectories and a number of solutions have
been proposed - in some of them optimality of the trajecto-
ries have been ensured while in others the problem of path
planning among obstacles has been addressed. While certain
motion planning algorithms have been modified into feedback
control strategies, some researchers have studied the feedback
control problem separately. Specifically, they have addressed
the problems of tracking a geometric path and the problem
of point-to-point stabilization.

As a pre-cursor to the motion planning problem, the con-
trollability of the mobile robot was ascertained (Lafferiere
and Sussman, 1990; Laumond, 1992, 1993). A solution to
the planning problem was subsequently proposed by Mur-
ray and Sastry (1991). Here the system was converted into

“chained” form and steered using sinusoidal inputs. This
approach can be applied to nonholonomic systems that can
be converted into the “chained form” and can be used for
the motion planning of the car-like mobile robot with n trail-
ers. The procedure for the conversion of the kinematics of a
mobile robot with n trailers into the chained form was devel-
oped by Sordalen (1993). The study of shortest paths for a
mobile robot in the absence of obstacles was carried out by
Dubins (1957), Reeds and Shepp (1990) and by Boissonnat
et.al. (1992). The obstacle avoidance problem was addressed
by Laumond et.al. (1994).

One of the feedback control problems of a mobile robot
can be described as the task of stabilizing the motion of the
robot about a time-indexed trajectory or a geometric path
determined apriori by a motion planner. This problem has
received solutions involving classical nonlinear control tech-
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niques (Canudas de Wit and Samson, 1991; Kanayama et.al.,
1990; Sampei et.al., 1991; Samson and Ait-Abderrahim,
1990). The problem of tracking a reference trajectory is de-
fined as the task of finding a feedback control law that asymp-
totically stabilizes the motion of the robot about the reference
trajectory provided that the reference vehicle is not at rest at
all times. Hence stabilization to a desired posture is not in-
cluded in the definition of the tracking problem.

The feedback stabilization problem is inherently more dif-
ficult than the problems of tracking or path following. This
is due to the non-existence of a stabilizing static smooth
pure state feedback law for the nonlinear model represent-
ing a mobile robot. This negative result is the consequence
of a theorem due to Brockett (1983). In recent years a con-
trol technique using time-varying state feedback was proposed
to achieve smooth point-to-point stabilization. The explicit
time-varying nature of the control, first proposed by Samson
(1990), does not violate Brockett’s theorem (1983). Several
studies have been carried out thereafter. General existence
results can be found in (Coron, 1992), and explicit time-
periodic feedback laws for a class of nonlinear systems can
be found in (Pomet, 1992). The convergence properties of
time-varying feedback has been studied by Gurvits and Li
(1992) and M’Closkey and Murray (1993). In general, the
smooth time-varying controllers are known to have slow con-
vergence rates. An alternative method for point-to-point sta-
bilization is to design piecewise-smooth controllers. The work
on discontinuous controllers for nonholonomic systems was
initiated by Bloch et.al. (1990). A controller for the expo-
nential convergence of a mobile robot to a desired posture us-
ing piecewise continuous feedback was developed by Canudas
de Wit and Sordalen (1992) and Sordalen (1993). Though
piecewise continuous controllers can guarantee faster conver-
gence rates, they may have multiple switchings and may not
be always practical. For example, multiple switchings in the
controller of a nonholonomic flexible space multibody system
may excite the high frequency modes of the system. More
recently, hybrid controllers that are both piecewise smooth
and time-varying, have been proposed for mobile robots and
other nonholonomic systems. A detailed review of different
feedback control strategies developed for nonholonomic sys-
tems can be found in (Kolmanovsky and McClamroch, 1995).

In this paper we present a hybrid controller, piecewise-
smooth and dynamic, for the global asymptotic stabilization
of a two-wheeled mobile robot to arbitrary desired postures.
The control action of our piecewise smooth controller can be
designed to be continuous by proper choice of controller pa-
rameters. As different from existing piecewise-smooth con-
trollers, our controller has at most one switching and in the
event that there is no switching, as in the case of the parallel
parking problem, our controller is smooth. It is also differ-
ent from existing controllers in the sense that it is a dynamic
controller. Research effort in the past have been mainly con-
centrated on designing explicitly time-varying and piecewise
smooth controllers and the possibility of using dynamic con-
trollers for feedback stabilization (Kapitanovsky, et.al., 1993;
Tilbury, et.al., 1995) has been largely overlooked. In our dy-
namic controller, the inputs to the mobile robot are obtained
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as a solution to a first-order differential equation and asymp-
totic stabilization of the robot to the desired posture is guar-
anteed for any nonzero initial condition. The dynamic con-
troller proposed herein is physically motivated and uses the
dynamics of a nonlinear oscillator which plays a key role in
preventing the mobile robot from getting stuck at any point
other than the desired posture.

The rest of this paper is organized as follows. In section
2 the kinematics of the mobile robot is discussed. In section
3 we design a controller that converges the mobile robot onto
the line containing the desired posture. This prepares us for
the discussion in section 4 where the problem of feedback sta-
bilization to a desired posture is addressed. In section 4 the
stabilizing controller is presented along with its proof. Sec-
tion 5 provides results of numerical simulation and concluding
remarks are included in section 6.

2. Mobile Robot Kinematics

The kinematics of a mobile robot with two driving wheels
are given as

£ =cosfu
y =sinfu,;
9=u2 (1)

where, z and y denote the Cartesian coordinates of the robot
and ¢ denotes the orientation of the robot with respect to the
positive z axis. u; and uy are the linear and angular velocities
of the robot, they are also the controls of the robot.

In reference to Fig.1, it is assumed that x, y and ¢ denote
the current configuration of the robot and z,4, y4 and 8, de-
note the desired configuration of the robot. Let £ denote the
straight line passing through the coordinates z, and y; with
the slope of 8, and let M denote the projection of the point
(z,y) on £. If p denotes the distance between the points M
and (z,y), and d denotes the distance between points M and
(za,ya), then, p and d can be expressed as follows

p=(Az? + Ay“')l/2 sin(y — 64)

= Ay cosby ~ Az sinfy (2)
d= (Az2 + Ayz)l/2 cos(y — 64)
= Az cos8q + Ay sinby (3)

where Az and Ay are defined as Az £ (za — z) and Ay S
{ya — ), respectively. If the expressions in Eqs.(2) and (3) are
differentiated, it can be easily shown that

p= =sinb;—ycosby= u sin(Af) (4)
d=—& cosfy — g sinfy = —uy cos (AG) (5)

where A6 is defined as Ag 2 (6, — 6).

The task of converging the mobile robot from its present
coordinates (z,y,8) to the desired coordinates (z4,y4,684) is
equivalent to the task of converging the variables p, d and
A#f to zero. Indeed, if p, d and Aé are simultaneously zero, it
can be shown that r =4, y = y2 and 8 = 6.

In the next section we study the asymptotic convergence
of the mobile robot to the line £ and in the following section
we design a controller for the asymptotic feedback stabiliza-
tion of the robot to its desired posture.

3. Asymptotic Convergence to the Line

The mobile robot converges onto the line £ if the variables
p and A8 converge to zero. To achieve this task, we use the
following theorem by Mukherjee and Chen (1993).

Theorem 1: (Asymptotic Stability Theorem)
Consider the nonautonomous system

& = f (t,x(t) ' (6)

where f : Ry x D — R" is a smooth vector field on R, x D,
D ¢ R" is a neighborhood of the origin & = 0. Let £ = 0 be
an equilibrium point for the system described by Eq.(6). We
then have

f(t,()) =0,

(a) A necessary condition for stable systems
Let V(t,x) : Ry x D — R, be locally positive definite and
analytic on R, x D, such that

vE> 0 )

A OV

Vit,x) = -+ (g—;) Fit,x) (8)

is locally negative semidefinite. Then whenever an odd deriva-
tive of V vanishes, the next derivative necessarily vanishes and
the second next derivative is necessarily negative semidefinite.
(b) A sufficient condition for asymptotically stable systems

Let V(x) : D — R, be locally positive definite and ana-
lytic on D, such that V < 0. If there exists a positive integer
k such that

V() <0 Y #£0:V(T)=0 ©
vil(x) =0 fori=2,3,---,2k

where V(*)(x) denotes the () ~th time derivative of V with re-
spect to time, then the system is asymptotically stable. How-
ever, if V() =0, Vj =1,2,--, 00, then the sufficient condi-
tion for the autonomous system to be asymptotically stable
is that the set

S={z:Vvi(x)=0, vj=1,2,---,00}

contains only the equilibrium point x = 0.

Proof:
Please refer to the proof in (Mukherjee and Chen, 1993).

Remark 1: In simple words, this theorem states that when
the first derivative of the Lyapunov function vanishes, the
second derivative also vanishes and asymptotic stability can
be concluded if the third derivative is negative-definite. If the
third derivative is negative-semidefinite and also vanishes, the
fourth derivative necessarily vanishes and asymptotic stability
can be concluded from the negative-definiteness of the fifth
derivative. This logic can be used recursively for higher order
derivatives of the Lyapunov function.

Theorem 2: (Asymptotic Convergence to the line £)
The control input u, defined by the relation

u; = psinc (Af) u1 + a Ad, a>0 (10)

where sino(ag) 2 {sn(80) /A9 if 80 £0

=0
will asymptotically stabilize the mobile robot onto the line £
for any bounded v, satisfying

¢t ot
lim /// ul =0 (11)
t=oe jrdrde

for all finite 7 > 0. Specifically, (p, A8) = (0,0) is a globally
uniformly asymptotically stable equilibrium point for the sys-
tem

ﬁ = sin (A0) uy

A0 = —uz

if u; and u, are chosen according to Egs.(10) and (11).
Proof:

To prove the convergence of p and A to zero, a continu-
ously differentially Lyapunov function candidate V is defined
as follows .

V=g (p* + A6?) (12)
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Clearly, V is globally positive definite, radially unbounded
and decrescent. The derivative of V can be computed as

V=pp- Ao
in (A8
=-Af [UQ~pSXnA(0 )ul]
=—alAf® <0 (13)

where Eqs.(1), (4) and (10) were substituted. Since V in
Eq.(13) is globally negative semi-definite, the equilibrium
point (p, A8) = (0,0) is globally uniformly stable.

To prove asymptotic stability, we realize that the first
derivative of V is negative semi-definite and vanishes on the

set §, 54 {(p, 58} : A8 = 0}. The third derivative of V can be
. \2 .
computed as VP = —2a (AO) = -2au,? and V® = —2ap? u,?

on S. The term —2a p? appearing in V@ is negative definite on
S. Following the same line of proof of Theorem 1 in (Mukher-
jee and Chen, 1993) we can conclude that p and A6 converge
to zero if the condition in Eq.(11) is satisfied.

Remark 2: The condition in Eq.(11) can be satisfied quite
easily by almost any function u;(t). Some simple examples
include exponentially convergent, constant, or periodic input
u.

Remark 3: Though V is an explicit function of p and A4, it
is an implicit function of time. From the above theorem we
can conclude that V(t) —— 0 as t — oo if u; and u, satisfy
Eqs.(10) and (11).

4, Stabilization to a Desired Posture
4.1 The Stabilizing Controller

The stabilizing controller consists of two control laws, u,
and up. The control law for u, is proposed in Eq.(10) in terms
of u;. To define the control law for u;, we let ¢ = 0 be the
initial point of time and ¢ be some positive number less than
72/8. If V(0) < o, we choose T = 0. Otherwise, we choose T
such that V(T) < . The control law for u; is now proposed
as follows

if t<T:
ft>T:
{u1=[,ud (@ +7*-nV)+wn] /cos(A)

N =—pun(@+n*-nV)+wd n(T)#0

u=C (14)

(15)

where, u and n are strictly positive numbers, and w and C are
nonzero numbers. In the controller proposed above, q, ¢, C,
i, n, w and T are controller parameters.

Remark 4: In the general case, the controller given by Eq.(10)
and Eq.(14) or (15) is piecewise smooth. However, there will
be at most one switching between the control laws given by
Eqs.(14) and (15). Specifically, there will be one switching if
the initial value of V is greater than o, otherwise there will
be no switching and the controller will be smooth.

Remark 5: The term cos(A8) in the controller in Eq.(15) will
always be positive. This will be established later in this sec-
tion. Therefore the controller in Eq.(15) is well defined. Note
however, if T > 0 the control action u; may be discontinu-
ous at time t = T if the controller parameters are not chosen
properly.

Remark 6: The control law for u; given by Eq.(14) was chosen
quite arbitrarily. Any choice of u; that satisfies Eq.(11) could
be chosen. A constant u; was chosen in Eq.(14) for the sake
of simplicity.

Remark 7: The dynamic controller in Eq.(15) along with
Eq.(5) represents a time-varying oscillator in the phase space
of d, n. This oscillator is physically motivated and plays a
key role in preventing the mobile robot from getting stuck at
any point other than the desired posture. While a rigorous

proof is provided in the next section, physical insight into the
dynamics of the robot can be attained if we notice that the
equilibrium point (d,n) = (0,0) of the oscillator is unstable
for all V > 0 and stable for V = 0. This implies that d, n
converges to zero only after the mobile robot has converged
onto the line £. In the next section we show that in fact d,
n and V converge to zero simultaneously and as a result the
mobile robot is stabilized to its desired posture.

4.2 Stability Analysis

Before we prove the asymptotic stabilty of the of equi-
librium point (p, d, A8) = (0,0,0), we present some new results
with the help of the following theorem.

Theorem 3: (Time-Varying Oscillator)
Consider the following nonlinear time-varying oscillator

H=—~uzn [zf+z%-—nW(t)]—wza (5T >0, (16)
fg=-—pzn [+ -nW(Ht) +wn
where p > 0, n > 0, and w # 0 are constants and W(t) is a con-
tinuously differentiable function that satisfies 0 < W(t) < M
¥t > 0 for some constant M > 0. Let z(t) = [21(t) z(t)]" be
any solution of the oscillator starting from an initial condition
2z(T) = (210 220)7. Then, the following statements are true
(a) =z(t) is globally uniformly ultimately bounded,
(b) For any nonzero initial condition z(T) = (250 220)7, 2(¢)
satisfies

t ot pt
lim ///z‘,?zoo vr > T, i=1,2,
tmoo Jodrdr

(c) If W(t) is monotonically decreasing and W(t) — 0 as
t —+ oo, then 2(t) — 0 as t — oo.

Proof:
(a) Consider the scalar function

V(z,i,) = % 122 2 % (zf + zg) (17)

The function V satisfies
1. V>o,
2. V — oo uniformly for t > 0 as ||z|| — oo, and
3. V has continuous first partials for z; and z,.

The derivative of V along the system trajectory given by
Eq.(16) is computed as
1;7 =221+ 22 2
=—p (2 +23) [z + 22 - nW(t)]
S—p(Z+22) 22+ -nM] (18)

Define the closed set § = {z €R?: |z| < \/nM} and let S, >

S denote the set of all points whose distance from S is less

than ¢ for a small number ¢. Let ¢ denote the complement of

S and 8¢ denote the complement of S.. Now it can be easily

seen from Egs.(17) and (18) that V and its derivative satisfy:
1. \?(zl) < V(2,) for all z; € S and all z, € 5¢, and

2. V(z,t) < —pe? (@ +nM) <0forallt 20 and all z € s¢
The global uniform ultimate boundedness of the system tra-

jecto)ries can now be concluded from (LaSalle and Lefschetz,
1961).

(b) For any given r > T, define
m=_wmin W(t)>0
T<t<r

& =min {||z(T)||, vVAm} >0
Ss={zeR:|z| > 6}
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Then on the boundary of S5, we have ||z|| = 5, and from
Eq.(18) we get

V= -plzl? [Iz1” - nwo)]

=—p8 [2-nW)] >0, Vtell 7]

since nW(t) > 62 vt € [T,7]. Therefore, all solutions 2(t) on
the boundary of S; remains on the boundary of $5 or moves
inside Ss over ¢ € [T, 7). Consequently, any trajectory starting
inside S5, does not leave S5 before t = 7. Hence [[z(7)] = §
and z;,%; # 0 for all ¢t > 7 because of the oscillator dynamics.
Due to continuity of z,, 55, we have

3
/z?dtzal, i=1,2

Eas

for some 6, > 0, vt sufficiently large. Therefore

t ot ot
lim /// 2 =00 i=1,2
Lindl- 2 Jy py )

(c) Consider a time series tg,t1,t2,t3,---, Where T = ¢t <

t <ty <tz <- Let the values of W(t) at these instants
of time be denoted as Mo, M1, M, M3,---. In other words,
M, =W(Et=1t)i=0123,- .. Since W(t) is nonincreas-
ing, we know that W(t) < M; vVt [ti,00) and M; > My, i =
0,1,2,3,---. Define the closed set $; = {z € R? : |zl < vVn M;}
andlet S, cU;={z€ R : 2| $2vnM},i=0,1,2,3,.... It
simply follows that Uy, c Ui, i = 0,1,2,3,---. We construct
the time series recursively starting with ¢, = 7. Assume ¢;
has been selected. Since W; < M; Vt > t;, the trajectories of
the system given by Eq.(16) will be confined within U; after
a finite time interval starting at ¢ = ¢; due to global uniform
ultimate boundedness. Denote this time interval by ¢! and
define

t! =min{t: W(t) < M1/2}

tiv1 =t +max(t, t]'}

With this time series, we have M;+; € M;/2 < My/2it!. Now
we prove the convergence of z(t) to zero. Given any ¢ > 0, we
can select I such that /n'M; < ¢/2. Then the trajectory of
the system will be confined in Uy V¢ > ¢, ie. 2(t) e Ur vt >
t;. Therefore (|z(t)|| < e V¢ > t; which implies z(¢t) — 0 as
t — oo,

Remark 8: If the condition W(t) ~— 0 in (c) is not satisfied,
then the trajectories of the system will eventually be confined
within a closed set U always containing the equilibrium point.
The size of this set depends on the limiting value of W(¢t). If
this is a small number, the closed set U will be a small region
about the equilibrium. Then uniform ultimate boundedness is
a practical notion of stability which is sometimes referred to as
“practical stability” in the literature (LaSalle and Lefschetz,
1961; Spong and Vidyasagar, 1989).

We are now ready to prove the asymptotic convergence
of the mobile robot to the desired posture.
Thet))rem 4: (Asymptotic Convergence to the Desired Pos-
ture

The mobile robot system described by Eq.(1) globally
asymptotically converges to its desired posture x4, y4, 64, i.e.,
(p,d, A8) — (0,0,0) as t — oo with the controller described
by Eq.(14) or (15) and Eq.(10).

Proof:

We first prove the theorem for the case (a) T = 0. Then
we prove it for the case (b) T > 0.

Case (a): Since T =0, V(0) < 72/8. Therefore from The-
orem 2, we know that V(¢) < n?/8 V¢ > 0 regardless of the
choice of u;. This implies that |[A¢|< n/2 Vt > 0. Hence the
controller in Eq.(15) is well defined.

Now suppose that V(0) # 0. The closed loop sub-system
defined by Eqgs.(15) and (5) can be converted to the form given

by Eq.(16) by letting z 24 22 pand W) = v(t). Using
Theorem 3, part (a), we conclude that d and 5 are bounded.
From part (b) we additionally know that

ot pt
lim /// P =x VYr>0
tmoo fodrdy

From Eq.(5) and from the fact that cos A8 < 1, we can then

conclude ot
lim /// =0 V720
t—oo fotrdy

Thus from Theorem 2 we can conclude that W(t) = V(t) — 0
as t — oo. This in turn implies p(t), A8(t), d(¢), n(t) — 0 as
t — oo from the definition of V in Eq.(12) and part (c) of
Theorem 3.

If V(0) = 0, then (p, A8) = (0,0) vt > 0, from Theorem 2.
The closed loop subsystem defined by Egs.(15) and (5) is now
of the form .

d=—pd(d+7%) -wn
f=-—un{d+9?) +wd

Clearly, d(t), n(t) — 0 as t — oc.

Case (b): To prove the theorem for case (b), we only need
to show that under the choice of u, given by Eq.(14), (i) there
is no finite escape for ¢ and (ii) V(¢) will be become less than
72/8 in finite time. By substituting Eq.(14) into Eq.(5) the
behavior of d is seen to be governed by

d=~C cos Ad

Clearly, d has no finite escape time. Furthermore, it can be
easily verified that u, in Eq.(14) satisfies the condition in
Eq.(11). Therefore V(t) will become less than 72/8 in finite
time since it tends to zero as t — oc.

5. Simulation Results

In this section simulation results are presented that amply
demonstrate the capability of the controller to stabilize the
mobile robot to different desired postures. For these cases, the
initial and final coordinates of the robot are given in Table
1, where the units are meters and degrees. The choice of the
controller parameters and the total simulation time, t;, for
these four cases are shown in Table 2 in S.I. units.

Case A represents the parallel parking problem. The tra-
jectory of the robot in the z-y plane for this case is shown in
Fig.2. It is clear from this figure that the robot converges to
its desired posture. The value of the Lyapunov function at
the initial point of time was less than o = 0.8 and hence the
controller was smooth. The total simulation time required
was 4.19 seconds. In Cases B, C and D, the robot is required
to make a 360 degree, a 135 degree and a -180 degree turn re-
spectively, between its initial and final configurations. In each
of these three cases the initial value of the Lyapunov function
was larger than the value of ¢ = 0.8. Therefore the controllers
in each of these cases had one switching. The switching time
t = T for the controllers are given in Table 2. The trajectory
of the robot for cases B, C and D are shown in Figs.3,4 and §
respectively. These figures clearly demonstrate that the mo-
bile robot converges to its desired posture in each case. The
total simulation time required for cases B, C and D were 8.68,
9.00 and 6.52 seconds respectively.

6. Conclusion

In this paper a piecewise smooth dynamic controller is
proposed for the point-to-point stabilization of a two-wheeled
nonholonomic mobile robot. The piecewise smooth nature
of the controller is derived from the fact that the controller
switches once after a certain measure of the error in the pos-
ture has reduced below some constant value. For problems
where this error is initially low, there is no switching and the
control action generated is smooth. The controller proposed
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herein is obtained as a solution to a first order differential
equation and as such it can be classified as a dynamic con-
troller. In the literature few results can be found on feedback
stabilization of nonholonomic systems using a dynamic con-
troller. In our case, the dynamic controller is simple in its
formulation and utilizes the dynamics of a nonlinear oscilla-
tor that plays a key role in preventing the mobile robot from
getting stuck at any point other than the desired posture.
The proposed controller is physically motivated and guaran-
tees the asymptotic stabilization of the states of the mobile
robot to their desired values. Simulation results confirm the
efficacy of the stabilizing control.
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Table 1: Initial and Final Configurations of the Mobile Robot

(zi w 6) (za ya ba)
Case A (0 0 0) (o 1 0)
Case B (0 0 0) (1 1 360)
Case C (0 0 0) (-5 3 135)
Case D (0 0 0) (1 0 -180)
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Table 2:

Controller Parameters and Simulation Time

a w u n o C T tr
Case A 3.00 1.50 0.985 50.0 0.80 1.0 0.00 4.19
Case B 1.00 1.00 0.350 3.00 0.80 1.5 2.72 8.68
Case C 3.35 1.25 0.750 50.0 0.80 -3.0 0.31 9.00
Case D 3.00 1.00 0.500 25.0 0.80 3.0 0.33 6.52

Fig.l Diagram showing the initial and final
configration of the mobile robot

X (m)

Fig.2 Trajectory of the mobile robot for Case A
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Fig.3 Trajectory of the mobile robot for Case B
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Fig.4 Trajectory of the mobile robot for Case C
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Fig.5 Trajectory of the mobile robot for Case D
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