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Abstract 
A control strategy is presented for a 3-dimensional 

overhead crane. Using the differential flatness of the crane 
and a parameterization method, we calculate the optimal 
trajectory of the payload that results in minimum transfer 
time when there exist obstacles in the direct moving path. 
A learning algorithm is then used to generate the desired 
feedforward input signal that can drive the system output 
to track the optimal trajectory exactly. 

1. Introduction 
Much research has been done on the crane modeling 

and control [2][4][5]. However, these methods consider 
only 2-dimensional crane trajectory planning. Here, we 
outline a control strategy for a 3-dimensional overhead 
crane. Detailed formulation and development are avail- 
able upon request. This strategy can move the load to 
the desired place while avoiding obstacles. We approach 
the problem in two steps. First, we calculate the time- 
optimal trajectory for the payload to move from one place 
to another without colliding with obstacles. Next, we use 
a learning control algorithm to obtain the desired input 
signal which generates the desired output to track the op- 
timal trajectory. 

2. Model Description 
We consider a 3-D overhead crane shown in Figure 1 

1. The payload is a point-mass. 
2. The rope is massless and has no torsional stiffness. 
3.  The motion of the trolley and gantry i s  frictionless. 
4. The control inputs to the system are the mechanical 

forces. 
In Figure 1, x, y, I are the coordinates of trolley, girder 

and hoist. x,, yg, zg are the coordinates of the load. a, p 
represents the swing angles. They have the following re- 
lationship 

with the following assumptions: 

xg = ; u+ la inas in /3  (1) 

ys = y + l s i n a c o s p  (2) 
zg = l cosa  ( 3 )  

~ 
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Figure 1: Overhead Crane 

Using the Lagrangian method, the equations of mo- 
tion are given by 

where [ q ~  ...q 51 = [x y 1 zg y,], [UI  ... us] = [Fl F2 F3 0 01. 
F1, F2, F3 are the mechanical forces applied to the trolley, 
girder and hoist, respectively. L = T - U, T,  U represent 
the kinetic energy and potential energy, respectively, of 
the whole crane system and are given by 

(5) 

(6) U = - m g z g  

where g is the gravitational acceleration. zg is a nonlinear 
function of x ,  y,  1, xg,  yg. ml and m2 are the masses of the 
trolley and girder, respectively. m is the mass of the load. 
Let Z = [z y 1 xg ys j: y 1 x, y9IT, the state space model 
can be written as 

x == f ( E ,  U )  (7) 

3. Time-Optimal Load Trajectory 
The optimal trajectory planning is to seek a load tra- 

jectory that will accomplish the required load transfer in 
minimum time whiIe at  the same time satisfy some con- 
straints on obstacle avoidance. 

In general, trajectory planing needs to be performed 
for all state variables of Z in order to meet the dynamic 
constraints. However, the crane model can be shown to 
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be a differentially flat system [l]. The state variables and 
their derivatives satisfy the following equations 

x g z g  
zg - g 

Yg zg 

x = x g - -  

y = y g - 7  
zg - 9 

1 = 4 ( z g  - .)2 + (Y, - y)2 + 29” (10) 

That is, x, y ,1  are functions of xg ,yg ,  zg  and their 
derivatives. Therefore, we only need to perform trajec- 
tory planing for zg, yg, zg. Then, all the other variables in 
5 can be obtained from zg, yg, zg and their derivatives. 

The load swing angles can also be represented as func- 
tions of xg, yg, zg and their derivatives by following equa- 
tions 

m x g  = -T sin CY sin /? 
myg = -T sin Q cos /3 

mig = -T cosa + m g  

(11) 
(12) 
(13) 

where T is the tension of the rope. From these equations, 
a ,  /? can be represented as 

dx; + y; 
cy = arctan 

ig - g 

/? = arctan - xg 

Ys 

The trajectory planning is solved by a parameteriza- 
tion method. For simplicity, the desired trajectories of 
x g d ,  ygd, Zgd are parameterized as h e a r  combinations of 
sinusoidal functions 

n t 
zgd = z d s o  + Zgdf + c3i sin(2i - 1 ) ~ -  (18) 

i=l  t f 

where,(xgdO, ygdo, zgdO) is the initial position and 
( x g d f ,  ygdf ,  z g q )  is the final position of the load. Some 
extra conditions at the initial and final time also need to 
be satisfied. Thus, given the load initial position and final 
position, the time optimal trajectory planning problem is 
to find c,ji such that 

min t f  
C, i 

subject to: 
g k ( c j i )  5 ?‘k k = 1 , 2 ,  ...n 

b ( C j i ) I  5 QO 

U 

Figure 2: Learning control scheme with full state feedback 

where t f  is the final time, j=l ,2 ,3 ,  i= l ,  ... n. g k ( c ; , )  5 
T k ,  k = 1 , 2 ,  ..., n,  represent geometric constraints needed 
for obstacle avoidance. la(cji)( 5 a0 is the constraint for 
the maximum swing angle. 

The problem can then be solved using MATLAB. 

4. Learning Control Algorithm 
The purpose of learning control is to design a control 

input such that this input can drive the system output to 
track the desired trajectory. We use a learning algorithm 
similar to [ 3 ] .  Their paper assumes that the number of 
actuators is the same as the number of degrees of freedom. 
However, in our 3-D crane system, the degrees of freedom 
are more than the number of actuators. Fortunately, we 
can show that their method is still useful in our system. 

Suppose the linearized system of nonlinear system (7) 
is given by 

i = AX+BU 

y = clr: (19) 

If U = T - K z  is used to  stabilize the system, where I;’ 
is a feedback control gain obtained from, say, pole place- 
ment method, then the learning algorithm is given by 

T k + l  1 ?‘k + I<(z - ? d )  (20) 
where L%d is the given optimal path for 2 .  The control 
scheme is shown in Figure 2.  Simulation results demon- 
strat,e the efficiency of our learning algorithm. 

5 .  Conclusions 
The dynamic model of a 3-dimensional overhead crane 

is developed, In case there exist obstacles in the load mov- 
ing path, the time-optimal load trajectory is obtained un- 
der the constraints of no swing at the end of the movement 
and bounded load swing angle in the process of the move- 
ment. Such a trajectory corresponds to minimum transfer 
time and at  the same time it avoids the obstacles. Using 
the learning algorithm, a desired reference input signal is 
calculated which assures the system output to track the 
optimal trajectory exactly. 

Reference and simulation results are available upon 
request. 
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