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Abstract 

A control strategy is developed for a 3-dimensional over- 
head crane. Using the differential flatness of the crane and 
a parameterization method, we first calculate the optimal 
trajectory of the payload that results in minimum trans- 
fer time when there exist obstacles in the direct moving 
path. A learning algorithm is then used to generate the 
desired feed forward input signal that can drive the sys- 
tem output to track the optimal trajectory. A key feature 
of this strategy is that it is model free and thus is ro- 
bust to uncertainties in modeling and parameters. When 
there exist external disturbances, an H,, optimal control 
method is used to reject the disturbances. Simulation re- 
sults are given to verify the strategy and compare some 
performances. 

1 Introduction 

Cranes are important tools on many material handling 
sites, such as, construction sites, plants, harbors, airports, 
etc. In these places, large and heavy objects need to be 
transfered from one location to another Such transporta- 
tions are usually accomplished by some kinds of cranes. 
An overhead crane is one of the most common types of 
cranes found on working sites (See Figure 1). The funda- 
mental movements of an overhead crane are: horizontal 
traverse of the bridge on the runway, trolley travel on the 
bridge, and vertical travel of the hoist below the trolley. 

There are two major concerns in the operation of a crane 
system. First, the crane travel and traverse motions, espe- 
cially during starting or stopping, induce the undesirable 
vibrations of the suspended object. In addition, external 
disturbances, such as gust wind, also can produce the vi- 
brations of the payload. Second, there are often obstacles 
on the working sites, and the payload trajectory must be 
carefully designed to avoid collisions. 

Much research has been done on crane control. Auernig 
and Troger (1987) developed time-optimal control for a 
system which had trolley travel and hoist movements. 
Meta and Unbehanen (1987) considered industrial appli- 
cation of time-optimal ore unloader control. Path opti- 
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mization was also utilized to maintain a safety distance 
from the grab to the ship and other parts of the crane. 
Jones and Petterson (1988) programmed an acceleration 
profile and obtained an oscillation-damped transport with 
swing-free stops. Noakes and Jansen (1992) used pro- 
grammed acceleration-profiles to implement oscillation- 
damped transports and swing-free stops for the suspended 
payload. Hamalainen et al. (1995) developed the dynam- 
ical models of the crane mechanics and actuators. By 
dividing the path planning problem into five phases, they 
also obtained energy-optimal speed references for a given 
transfer time. 

The above methods for the crane deal with one- 
dimensional movement (trolley travel or bridge traverse) 
or two-dimensional movement (trolley travel or bridge 
traverse with hoist movements). A more realistic case 
is a three-dimensional (3-D) movement of the overhead 
crane, that is, travel, traverse and hoist move concur- 
rently. Moustafa (1994) gave a linearized model of the 
load swing dynamics of an overhead crane with simulta- 
neous trolley, bridge and hoist movements. Time-varying 
coefficients were considered and a set of sufficient condi- 
tions on the parameters of feedback law were obtained to 
guarantee the asymptotic stability of the system. 

All of the crane control systems above consider the swing 
motion produced by trolley or girder movement and do 
not deal with the case where vibrations are caused by 
external disturbances. Beilvean et al. (1993) proposed 
a control strategy to control payload oscillations regard- 
less of the causes of excitation. The strategy was based 
on sensing the dynamic response at the load hoist cable 
and applying periodic balancing forces and moments to 
the cable to damp the oscillation of the load, whenever 
detected. 

In this paper, a robust control strategy is developed for a 
3-D overhead crane. First, we calculate the time-optimal 
trajectory for a payload to move from one place to another 
without colliding with obstacles. This planing does not 
involve any system parameters and is made possible by a 
set of special flatness relations. Next, we use a learning 
control algorithm to obtain the desired input signal which 
can drive the output to track the optimal trajectory. The 
learning control is necessary for a model free approach 
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since the flatness equations relating input to payload tra- 
jectorie involve system parameters. Because of the model 
free nature, this method is robust to modeling errors as 
well as parameter uncertainties such as the weight of the 
payload. To be able to reject external disturbances, we 
use H ,  method on a nominal model to design a stabilizing 
feedback law that is used in the learning controller. How- 
ever, the issue of how to compromize between the learning 
convergence and the disturbance-rejection performance is 
not easily resolved. We will give some simulation results 
to illustrate this problem. 

2 Model Description 

Consider a 3-D overhead crane shown in Figure 1 with the 
following assumptions: 1. the payload is a point-mass. 2. 
the rope is massless and has no torsional stiffness. 3. the 
motions of the trolley and girder are frictionless. 4. the 
control inputs to the system are the mechanical forces. In 

Figure 1: Overhead crane system 

where g is the gravitational acceleration. ml and m2 
are the masses of the trolley and girder, respectively. 
J1,  J z ,  J3 are the mass moments of inertia of the trolley, 
girder and hoist motors respectively, while bl , b z ,  b3 are 
the radii of the respective motor drums. m is the mass of 
the load. 

In equation (4), there are six variables and only five of 
them are independent. If we choose x, y, I ,  xg, yg as inde- 
pendent variables, then zg can be obtained by 

zg = 4 1 2  - (xg - x)2 - (yg - y)2 ( 6 )  

Suppose that F1, F2, F3 are the mechanical forces ap- 
plied to the trolley, girder and hoist, respectively. Let 
q = [z y 1 zg yglT, U = [Fl F2 F3 0 0IT, then using the 
Lagrangian method, the equations of motion are given by 

(7)  

where L = T - U .  Let the state variable 2 = [qT qTIT and 
the output y = [xg, yg, zg lT ,  then the state-space model 
of (7) can be written as 

= f(.,ii) (9) 

where H denotes the inertia matrix of the system and is 
a function of 5 and the system parameters, and 

this 3-D crane system, there are five degrees of freedom. 
The dynamics can be separated into two parts. The upper 
part is related to the motor drives for trolley, girder and 
hoist movements. We use the coordinate system (x, y, I) 
to represent their positions. The lower part corresponds 
to the load. For the load dynamics, we can either use 
the Cartesian coordinates (zg, yg, zg) or use the spherical 
coordinates ( a ,  P, 1 )  to indicate the load position. These 
two coordinate systems have the following relationship 

xg = x + l s i n a s i n p  (1) 
yg = y + l s i n a c o s p  (2) 
zg = l cosa  (3) 

In this paper, we choose the Cartesian coordinates 
(zg, yg, zg )  to represent the load dynamics since the spher- 
ical coordinates exhibit singularity at all possible equilib- 
rium points (when a = 0). 

The kinetic energy of the model in Figure 1 is 

1 x  1 Y 2  1 i 1 . 2  T = -JI(-)~ + - J z ( - )  + -J3(-)’+ -mzy 2 bl 2 b2 2 b3 2 
1 1 

2 + 5m1(2  + i2) + -m(ig2 + ygis” + i g 2 )  (4) 

and the potential energy is 

U = -mgzg (5) 

1 . la(q*Hg) 
S(q,  g)g = p g  - - 

2 & 
The above model involves H ,  I?, S(q, i), E. 
them, HI G(q) are explicitly expressed as functions of 2 
and the system parameters. H , S ( q , g )  82 can be ob- 
tained by symbolic MAPLE when we do simulation on 
computers. 

’ a4 

3 Optimal Load Trajectory Using Flatness 

An overhead crane usually transfers a load from one lo- 
cation to another repetitively. In case there exists an ob- 
stacle in the direct load moving path, a feasible load path 
must be carefully designed to ensure that the load will 
maintain a minimum safe distance from the obstacle as 
well as a small swing angle during transition. 

In general, the trajectory planing needs to be performed 
for all state variables of 2 in order to meet system dy- 
namic constraints. However, since the overhead crane is 
a differentially flat system which has the property that 
the state and input variables can be directly expressed in 
terms of the output and a finite number of its derivatives 
(Fliess et al. 1990). Therefore, if we develop trajectory 
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planing for the output y, then the state variable 2 can 
be calculated immediately. In section 3.1, we discuss the 

to obtain time-optimal trajectories for y. 

subject to 

flatness of the crane. In section 3.2, we develop a method Sk(ijd) L Tk = l , . . . , n  

I 4 Y d ) l  5 a0 

3.1 The flatness of the overhead crane IP(Yd)l 5 P O  

According to Fliess et al. (1990), an overhead crane is a 
flat system with following equations 

where tf is final time. The problem can be solved using 
a parameterization method. 

(2 ,  - g)(xg - x) = x g z g  

(29 - d ( Y g  - x) = Ygzg 

(zg - .)2 + (Yg - + z; = l 2  

These equations can be rearranged to yie!ld 

Sg zg 
x = x  g - -- 

zg - $/ 

Yg zg y = yg - -- 
zg - !I 

- 
1 =  ( xg - x ) 2  + (Yg - Y)2 + 2; 

(''1 
(13) 
(14) tions 

For simplicity, the desired trajectories of x g d ,  Ygd, Zgd are 
parameterized as linear combinations of sinusoidal func- 

Thus, x, y, 1 are the functions of xg, yg , zg and their deriva- 
tives. By differentiating equations (15) to (17), the deriva- 
tives of z, y, 1 can also be represented as the functions of 
the derivatives of xg,yg,zg.  Thus, if y is known, then j;. 
can be obtained. 

The load swing angles CY,  ,L? can also be represented as the 
functions of the derivatives of y. We can simply write 
down the following differential equations for the load dy- 
namics 

Some extra conditions at the initial and final time also 
need to be satisfied in order to transfer the load from one 
rest position to another rest position. 

Thus, given the load initial position and final position, 
the time optimal trajectory planning problem is reduced 
to find cj i  such that 

min t f  
c3 

subject to 

mi6g = -Ts inas inP  (18) g k ( c j i )  5 Tk k = 1, 2 ,  ...)2 

I Q ( C j i ) l  5 a 0  

I P ( C j i ) l  L Po 

myg = -T sin a cos ,B 
m2g = -Tcosa  + mg 

(19) 
(20) 

where T is the tension of the rope. iFromi these equations, 
a,,B can be represented as The problem can be solved using MATLAB. Once Yd is 

obtained , we can calculate %d. Notice that no system 
parameters are needed in this method. 9 = a r c t a n ( d G / ( S ,  - 9)) (21) 

,L? = arctan(Z,/y,) (22) 

That is, a ,  ,L? are the functions of derivatives of ij. 

3.2 Optimal trajectories for zg, ygl .zg 
Let the desired output yd = [xgd,  ygd,  zsld]T (subscript(cZ) 
indicates the desired trajectory), then xild, Ygd, zgd should 
satisfy some geometric constraints and swing angle con- 
straints. 

Let gk (yd)  5 T ~ C ,  IC = 1, . . . , n represent geometric con- 
straints needed for obstacle avoidance and Ia(Yd)l < ao, 
I,L?(yd)l 5 ,L?o are the constraints for the swing angles 
(ao, ,L?o are maximum swing angles allowed in the moving 
process), then the optimal trajectory planning problem 
for the crane system is to find yd such that 

min t j  
Y d  

4 Learning Control of the Overhead Crane 

Given the desired trajectory, a control input needs to be 
designed such that this input can drive the system output 
to track the desired trajectory. Learning control is very 
useful to solve this problem. There are many learning 
control algorithms for various systems (Moore 1993). For 
the crane system which has a special dynamics, we use a 
learning algorithm that is based on Bondi et al. (1988). 
Their paper assumes that the number of actuators is the 
same as the number of degrees of freedom. However, for 
our 3-D crane system, the number of degrees of freedom 
are more than the number of actuators. Fortunately, we 
can show that their method is still useful in our system. 
The learning control scheme is shown in Figure 2. The 
system is operated as follows. Given the desired trajec- 
tory ~ d ,  the trajectory error at  the k th  trial is calculated 
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Figure 2: Learning control scheme 

by e k  = f d  - 2 k .  Then e k  and r k  are used to  update the 
reference input r k + l  for the next trial. The update law is 
given by the following algorithm 

where li is the learning control gain which is the same as 
the feedback control gain. 

For this learning control scheme, Ii’ can be chosen such 
that 

lim ( ( e k ( ( = O  

That is, the system output converges to  the desired one 
as IC increases. 

k - t m  

Consequently, the learning control problem is reduced to 
find a “good” feedback controller to have the output con- 
verge to the desired one at a fast convergence rate. If 
the system is in “best” circumstances, that is, no distur- 
bances, then we can use pole placement to  obtain the feed- 
back controller to satisfy the above requirements. If there 
exist external disturbances in the system, the controller 
from pole placement may not reject the disturbances effec- 
tively. Thus, we need to  find another controller. However, 
in this case, it seems that we must sacrifice some learning 
performances in order to reject disturbances effectively. 

In order to discuss more easily, we define good learn- 
ing control performance and disturbance rejection per- 
formance as follows. 

Good learning control performance is to  let the y k  con- 
verge to  yd in a minimum number of trials. 

Good disturbance rejection performance is to  have: (1) 
the vibration is small due to the disturbances; (2) the 
trolley movement is not large in order to  reject the dis- 
turbances; ( 3 )  the input energy is not large in order to 
withdraw the disturbances. 

In the following section, we use two different methods, 
pole placement and H ,  optimal control, to  design the 
feedback controller. 

4.1 Pole placement 
Suppose the linearized crane system is given by 

ii? = Ait+Bu 

~ 
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y = 2  (27) 

The feedback controller IC is obtained by pole placement 
where the poles are chosen to have good learning perfor- 
mances. Then, the feedback control law is give by 

4.2 H ,  optimal control 
If there exist external disturbances in the crane system, 
the feedback controller IC may not have good disturbance 
rejection performances. Therefore, an H ,  optimal con- 
trol method is used to  find a feedback controller such that 
the learning control algorithm can converge and the sys- 
tem can reject the external disturbances effectively. We 
form the H ,  optimal problem as shown in Figure 3 .  

I d  
r 

plant 

t;p 
plant 

t;p 
Figure 3: H-infinity problem setup 

In Figure 3, d is the external disturbance that the system 
must be able to  reject. r is the reference input that the 
system must be able to  follow. z is the regulated output 
that we add to the system. This is the signal we are 
interested in controlling or regulating. y is the measured 
output which is the same as the state variable. 

For the linearized system (27), the H ,  problem can be 
represented as 

It is important that the control signal U be included in 
the regulated output z so that we can bound the con- 
trol magnitude. This also ensures that the H ,  condition 

[ Cl I D 1 2  ] = [ ‘ 0  I I ] is satisfied. 

For the above system, Cl and Bd still have to be chosen. 
We consider a disturbance which is directly applied to the 
load in the x-direction. Thus C1 and B d  are chosen such 



that 

5.1 Optimal trajectories 

2, . , . ’ ,  

L 

2500 138 1 0.15 420 0.45 5.8 
3000 140 I 0.16 468 0.45 7.2 

B d = [ O  0 0 1 0 0 0 0 0 0 1 “  
where p1 ,  p2 are penalizing parameters. They are selected 
via trial and error iterations to  make tlhe system have 
good disturbance rejection performances. 

p2 

100 

time(sec) 

input max ( ( ~ ( ( 2  max response 
energy bl IlWlJa 1x1 time of z 

150 0.13 343 0.57 7.1 

time(& 

The H ,  controller design is to  minimize the effect of the 
disturbance w on the output z by finding, an appropriate 
control input U .  More precisely, we seek at static compen- 
sator F such that after applying the feedback law = ~5 
to the system, the resulting closed-loop system is inter- 

stable and its transfer matrix has the  minimum H ,  
norm. This is a standard H ,  problem (Zhou 1996) and 
MATLAB functions can be used to  obtain the solution. 

Figure 4: Optimal trajectories 

PI, P2 affect the existence of the optimal control solution, 
swing angle, total input energy, gain from the disturbance 
to  the regulation error MIZ magnitude and response time 

IIw112 
of the output. Table 1 and Table 2 show the variations of 
these values when Pi and P 2  change, respectively. When 

Table 1: Performance index vs. p l  (p2 = 200) 5 Simulation 

The control methods developed here are simulated on SGI 
Indy 5000 using MATLAB. The data used for simulation 
are given as follows: ml = IOOkg, ma = 1OOOkg, m = 
15.8kg, 51 = J2 = 53 = 0 ,  20 = xgo I= O,yo = ygo = 
0, zgo = lo  = 1.2m, xj = zg j  = 1.7m, y j  = yg/sf = 1.8m. 

described by following equations 

(x - 35)’ + (y  - .9)’ = 0.2“ 
( Z  - 1.2)2 + ( E  - .85)2 = 0.4” 

(32) 
(33) 

Let the obstacle geometric ans swing angle constraints be 

(zgd - .85)2 + (ygd - .9)’ 2 0.2’ 

(zgd - 1.2)2 + ( x g d  - .85)2 2 0.42 
7i- I4 i - 8 

Figure 4 shows the optimal trajectories for xg, yg, zg. The 
minimum transfer time is t j  = 2.3s. FVe can see swing 
angle does not exceed $ in the moving process and there 
is no oscillation at  the end of the movement. 

5.2 Disturbance rejection 
We compare the disturbance rejection performance in the 
feedback control system when we use the feedback con- 
troller K from the pole placement and tlhe static compen- 
sator F from the H ,  optimal control. 

Table 2: Performance index vs. D? (DI = 2000) 

n 200 1 135 I 0.15 I 356 1 0.44 I 4.9 n 

2.8 

p2 = 200 and p l  increases, the maximum swing angle 
1.1 will decrease first and then increase. and input 
energy will increase. The magnitude and the response 
time of 2 will also increase. When p l  = 2000 and p2 

increases, the maximum swing angle la/ and the norm 
klk will increase. The input energy will decrease first l lwllz 
and then increase while the magnitude and the response 
time of 2 will decrease. 

First, we need to choose the penalizing parameters p l ,  p2 

in the H ,  optimal control problem setup. The values of 
Based on these comparisons, we choose p l  = 2000 and 
p 2  = 200 that correspond to  the “optimal choice” with 
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relatively small a ,  fast response of 2 and small input en- 
ergy- 

Figure 5: Swing angle of close-loop system 
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Figure 6: The inputs and outputs of close-loop system 

Figure 5 shows the impulse response of the swing an- 
gle Q corresponding to the disturbance. Figure 6 show 
the impulse responses of x, y, 1, xg, yg, zg and input forces 
FI,  FZ, F3. In the W ,  optimal control system, we can see 
that the swing motion can die out very quickly . Also, 
only x and xg change when the x-direction disturbance 
exists and only F1 is needed to  reject the disturbance. 
The input energy is 135 and norm is 357. For the 

~ 
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pole placement met,hod, there is a large load vibration 
and all three inputs F l ,  F2, F3 are needed to reject the x- 
direction disturbance. The input energy is 328 and norm 
k!!z is 651. l lwl lz 
Consequently, the H ,  optimal control method has much 
better disturbance rejection performance than the pole 
placement method. 

- k=Z 

Figure 7: Learning results 

5.3 Learning control 
In the learning control scheme, we use K and F to do sim- 
ulations. When we use I< in the learning control scheme, 
xg, yg, zg converge to the optimal trajectories a t  3th trial. 
However, if F is used in the learning control scheme, it 
needs 28 trials for zg, yg, zg to converge to the optimal 
trajectories. Therefore, the pole placement method has 
much better learning performance than the H ,  optimal 
control method. Figure 7 shows the learning results for 
the trajectories of zgl yg, zg when the feedback controller 
I< is used. We can see xg, yg, zg almost track the optimal 
trajectories at Y h  trial. 

6 Conclusions 

The dynamic model of a 3-D overhead crane is developed. 
In case there exist obstacles in the load moving path, the 
time-optimal load trajectory is obtained under the ob- 
stacles and swing angle constraints. No system param- 
eter knowledge is needed for trajectory planning. Using 
a learning algorithm, a desired reference input signal is 
calculated which ensures the system output to track the 
optimal trajectory exactly. For the crane system with dis- 
turbances, we setup an H ,  optimal control system which 
can reject the disturbance effectively. However, it seems 
that some learning performances must be sacrificed. This 
is an area that needs further study. 
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