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Tip Trajectory Tracking for Multilink Flexible Manipulators
Using Stable Inversion

Hongchao Zhao¤ and Degang Chen†

Iowa State University, Ames, Iowa 50011-3060

The recently developed stable inversion theory for nonminimum phase nonlinear systems is applied to output
tracking for multilink � exible robot manipulators. The stable inversion theory and a numerical solution to stable
inverses are brie� y reviewed. Forward dynamics of a two-link � exible manipulatorwith tip position as the output
is then given using the assumed modes method. From that, an inverse model is derived and a two-point boundary
value condition is set up. This condition guarantees that the inverse solution for a given desired tip trajectory will
be stable regardless of the fact that a � exible manipulator is a nonminimum-phase system. The stable inverse is
incorporated into an output tracking controller that uses only joint-angle feedback. Excellent tracking is achieved
with no transient or steady-state errors and no internal vibration buildup.

I. Introduction

T HE most elementary task in robot control is to drive the end
effector of a robot arm to follow a given desired trajectory.

Precise positioning and appropriate speed control of the end ef-
fector along a given path are key requirements in many industrial
applications such as arc welding, spray painting, pressure casting,
toolmachineserving,assembling,and thermal treatmentprocessing.
All of these applications demand good designs on output trajectory
tracking controllers for various robotic systems.

Robotics has been an active research area for the past few
decades.1;2 The study on control of � exible robot manipulatorswas
pioneered in Ref. 3, where a linear-quadratic optimal control ap-
proach was successfullyapplied to the end-effectortrackingcontrol
of a one-link � exible robot arm in which the nonminimum-phase
effectwas � rst demonstrated.After that,many researchershave con-
sidered different approaches to the control of one-link � exible arms
that are linear systems for small de� ection. Among those, Siciliano
and Book4 used a singular perturbation approach to deal with the
� exible modes. Bayo5 appliedFourier transformto obtainstable but
noncausal control input. Kwon and Book’s6 method is time domain
and achieves the same effects as those of Bayo’s. As for the non-
linear control of multilink � exible manipulators, Lucibello and Di
Beneketto7 applied the nonlinearregulationtheory,8 and asymptotic
tracking of periodic output trajectories was achieved. In a similar
approachby De Lucaet al.,9 simulationresultsdemonstratedasymp-
totic tracking of a � nite trajectory with transient errors at both the
beginning and the end of the maneuver.

This transient behavior can be precisely controlled by applying
the classical inversion method that uses stabilizing feedback to-
gether with feedforward signals generated by an inverse system.
Conditions for the invertibility of linear systems were developed
by Brockett and Mesarovic,10 Silverman,11 and Sain and Massey.12

Inversion of nonlinear real-analytic systems was established by
Hirschorn13 and Singh.14 All of these inversion algorithms produce
causal inverses for a given desired output and a � xed initial condi-
tion, but unbounded control and state trajectories will be produced
for nonminimum-phase systems. This fundamental dif� culty has
been noticed for a long time.

This paper, an extendedversion of Ref. 15, developsa new track-
ing control strategy for multilink � exible robot manipulators. The
controller uses a feedforward signal generated by stable inversion16

anda stabilizingsignalfromafeedbackstabilizer.This designavoids
the transient problem in the nonlinear regulation approach and the
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internal-dynamicsinstabilityproblemin classicalinversion.As a re-
sult, remarkably accurate output tracking togetherwith closed-loop
stability will be achieved. The remainder of the paper is organized
as follows. Section II brie� y reviews the stable inversion theory and
a numerical solution to stable inverses.Section III describes the for-
ward dynamics of a two-link � exible manipulator and derives its
stable inverse dynamics. In Sec. IV, conditions for applying stable
inversion are veri� ed and the effectiveness of stable inversion to
output tracking for nonminimum-phasesystems is demonstratedby
simulation. A conclusion is given in Sec. V.

II. Stable Inversion
Consider multivariablenonlinear control systems of the form

Px D f .x/ C G.x/u (1)

y D h.x/ (2)

where the system state x is de� ned on an open neighborhoodof the
origin of Rn and the input u 2 Rm and the output y 2 Rm . Smooth-
ness of f . /, G. /, and h. / is assumed. Without loss of generality,
we also assume that f .0/ and h.0/ D 0. For such systems, a stable
inversion problem is posed as follows.16

Given a smooth reference output trajectory yd.t/ with compact
support, � nd a control input ud .t/ and a state trajectory xd.t/ such
that 1) ud.t/ and xd .t/ satisfy the differential equation

Pxd .t/ D f .xd.t// C G.xd.t//ud.t/

2) exact output tracking is achieved:

h.xd.t// D yd .t/

and 3) ud.t/ and xd .t/ are bounded and

ud.t/ ! 0; xd.t/ ! 0 as t ! §1

Here ud .t/ and xd.t/ are referred to as the stable inverse solution
for a given reference output yd.t/. They are called stable inverses
because of the boundedness and convergence provided by condi-
tion 3. In addition, xd.t/ is called the desired state trajectory and
ud.t/ the nominal control input.

A. Two-Point Boundary Condition
To � nd xd .t/ and ud .t/ for a given yd.t/, the following steps can

be used. First, set y.t/ ´ yd.t/ in the output equations (2). Second,
differentiate each output equation until at least one input variable
appears explicitly.This step will give us m equations of the form

y.ri /

di
D Nai .x/ C Nbi .x/u; 8i D 1; : : : ; m (3)
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where each Nbi .x/ is a 1£m row vector.Next, we do a changeof state
variables.Let » contain all of the derivativesof the output variables:

»
defD y1; Py1; : : : ; y.r1 ¡ 1/

1 ; y2; : : : ; y.r2 ¡ 1/

2 ; : : : ; y.rm ¡ 1/
m

T
(4)

Choose ´ to contain any (n ¡ dim.»/) variables that are linearly
independentof » such that [»T ; ´T ]T quali� es as a new set of state
variables. Under the new variables

»

´

defD
Á1.x/

Á2.x/

defD Á.x/ (5)

the m equations in Eq. (3) collectively become

y.r /

d D Na.»; ´/ C NB.»; ´/u (6)

and differentiating´ in Eq. (5) leads to

Ṕ D Nc.»; ´/ C ND.»; ´/u (7)

where

Nc.»; ´/ D @Á2.x/

@x
f .x/

x D Á¡1.»;´/

(8)

ND.»; ´/ D
@Á2.x/

@x
G.x/

x D Á¡1.»;´/

(9)

Because we have set y.t/ ´ yd .t/, we have

» D »d
defD yd1; Pyd1; : : : ; y.r1 ¡ 1/

d1 ; yd2; : : : ; y.r2 ¡ 1/

d2 ; : : : ; y.rm ¡ 1/

dm

T

Solving for u fromEq. (6), we obtain (assuminglocal invertibility16)

u D [ NB.»d ; ´/]¡1 y.r/

d ¡ Na.»d ; ´/ (10)

Substituting this into Eq. (7) leads to the so-calledreferencedynam-
ics,

Ṕ D Nc.»d ; ´/ C ND.»d ; ´/[ NB.»d ; ´/]¡1 y.r/

d ¡ Na.»d ; ´/

defD P y.r/

d ; »d ; ´ (11)

It is noticed that the ´ dynamics is the part of the system made
unobservable from the output by the particular state feedback (10).
Finally, if a boundedand convergent solution ´d.t/ can be obtained
from Eq. (11), it can be used in Eq. (10) to obtain ud .t/:

ud D [ NB.»d ; ´d/]¡1 y.r /

d .t/ ¡ Na.»d ; ´d/ (12)

The inverse change of state variables by Eq. (5) then gives xd .t/:

xd D Á¡1 »T
d ; ´T

d

T
(13)

Note that, when yd.t/ ´ 0 (and, consequently,»d ´ 0), Eq. (11)
becomes

Ṕ D P.0; 0; ´/ (14)

which is the so-called zero dynamics.
For t outside [t0; t f ], the compact support of yd .t/, the refer-

ence dynamics (11) becomes the autonomous zero dynamics (14).
Assume that ´ D 0 is a hyperbolic equilibriumpoint of the zero dy-
namics. It has been shown that any boundedand convergentsolution
´d.t/ of Eq. (11) must satisfy the following two-point boundary
value (TPBV) problem16:

Ṕ d D P y.r/

d ; »d ; ´d (15)

subject to

´d .t0/ 2 Wu ; ´d .t f / 2 Ws (16)

where Wu is the invariant unstable submanifold and Ws the sta-
ble submanifold of the zero dynamics (14). That is, before t0 the
reference dynamics remains on the unstable submanifold, whereas

after t f it remains on the stable submanifold. In the linear case, such
submanifolds correspond to the stable and unstable eigenspaces.
Both submanifolds of the zero dynamics are, respectively, tangent
to their correspondingeigenspaces of the linearized zero dynamics
near ´ D 0.

B. Iterative Solution to the TPBV Problem
The key to obtaining xd.t/ and ud.t/ is to solve for a bounded

and convergent ´d .t/ from Eqs. (15) and (16), the TPBV problem.
An iterative linearization approach to such a solution is described
as follows.

In each iteration, the differentialequation (15) is linearizedalong
the solution obtained from the preceding iteration to yield Eq. (17).
The stable and unstable eigenspaces,Es and Eu , respectively,of the
zero dynamics corresponding to Eq. (17), are used as the boundary
conditions instead of Ws and Wu . Thus, yielding a linear time-
varying TPBV problem at this iteration,

Ṕ d D A.t/´d C B.t/ (17)

subject to

´d.t0/ 2 Eu ; ´d .t f / 2 Es (18)

The boundarycondition(18)can be characterizedby two equality
conditions. To do this, let matrix Xs .t0/ .Ys.t0// contain the real
right (left) eigenvectors and the generalized eigenvectors of A.t0/
associated with eigenvalues having negative real parts and Xu.t0/
.Yu.t0// contain those associated with eigenvalues having positive
real parts. Then, we have

Ys .t0/

Yu.t0/
A.t0/[Xs .t0/ Xu.t0/] D

Js.t0/ O

O Ju.t0/
(19)

where Js.t0/ and Ju.t0/ are the correspondingreal Jordan canonical
forms of the stable and unstable subspaces, respectively. In partic-
ular, from Eq. (19) we have

Ys.t0/A.t0/Xu.t0/ D O (20)

On the other hand, the condition ´d.t0/ 2 Eu can be characterized
by ´d .t0/ expressedas a linear combinationof unstable right eigen-
vectors and generalized eigenvectors.That is,

´d.t0/ D Xu.t0/zu (21)

for some vector zu . Combining this with Eq. (20) yields an equiva-
lent equality condition for ´d .t0/ 2 Eu ,

Cs´d.t0/ D 0 (22)

where

Cs
defD Ys .t0/A.t0/ (23)

Similar derivation at t f can be made to replace ´d.t f / 2 Es by

Cu´d.t f / D 0 (24)

where

Cu
defD Yu.t f /A.t f / (25)

The linear problem [Eqs. (17) and (22–25)] is then solved, and
the solution is taken to be the new approximationof the current iter-
ation. The iteration continues until the solutions in the adjacent two
iterationsare satisfactorilyclose to each other.Solving the boundary
value problem in Eqs. (17) and (22–25) is done following a tech-
nique from linear-quadraticoptimal control and is carried out in the
following steps.

First, apply a change of state variable,

³
defD

³1

³2

defD
Cs

Cu
´d (26)
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Because Cs´d D 0 in Eq. (22) characterizesthe unstable eigenspace
of the zero dynamics, therefore, ³1 D Cs´d is, roughly speaking,
the stable part of ´d . Similarly, ³2 D Cu´d is the unstable part. The
inverse transformation is given by

´d D
Cs

Cu

¡1

³
defD [Ts Tu ]

³1

³2

(27)

Differentiating³1 and ³2 using Eqs. (17), (26), and (27), we get

P³1 D A11.t/³1 C A12.t/³2 C B1.t/ (28)

P³2 D A21.t/³1 C A22.t/³2 C B2.t/ (29)

and the boundary conditions in Eqs. (22–25) become ³1.t0/ and
³2.t f / D 0. Note that ³1.t0/ D 0 and Eq. (28) form an initial value
problem, whereas ³2.t f / D 0 and Eq. (29) form a � nal value prob-
lem. However, these two problems are coupled.

Second, decouple the ³1 and ³2 dynamics. Because ³1 and ³2
satisfy a pair of linear differentialequations, their solutions are also
linearly related. That is,

³2.t/ D S.t/³1.t/ C v.t/ (30)

for some functions S.t/ and v.t/ with suitable � nal value conditions

S.t f / D O and v.t f / D 0 (31)

Differentiatingboth sides of Eq. (30) yields

P³2.t/ D PS.t/³1.t/ C S.t/ P³1.t/ C Pv.t/

Substituting the values of P³1 and P³2 from Eqs. (28) and (29) and
comparing the coef� cients of ³1.t/ leads to

PS.t/ D A21.t/ C A22.t/S.t/ ¡ S.t/A11.t/ ¡ S.t/A12.t/S.t/ (32)

Pv.t/ D [A22.t/ ¡ S.t/A12.t/]v.t/ C [B2.t/ ¡ S.t/B1.t/] (33)

with � nal conditions speci� ed in Eq. (31).
Third,backwardand forward integrate.BecauseEq. (32) contains

only known functions except S.t/, it can be integrated backward in
time to get S.t/. Once this is done, Eq. (33) can also be integrated
backward in time to solve for v.t/. With S.t/ and v.t/ as known
functions, Eq. (28) can be rewritten as

P³1 D [A11.t/ C A12.t/S.t/]³1 C B1.t/ C A12.t/v.t/ (34)

and it can be integrated forward in time with ³1.t0/ D 0 to obtain
³1.t/. With these, the algebraic equation (30) can be used to obtain
³2.t/.

The � nal step is to use the inverse transformation in Eq. (27) to
obtain ´d.t/ that will be the solution of the current iteration.

Even though all stable inversion results are local and we have
chosen a local linearization approach to construct stable inverses,
the stable inverse solution can be, but does not have to be, always
locally constructed.

III. Forward and Inverse Dynamics
Consider a two-link � exible robot manipulator shown in Fig. 1.

Both joints of the links are considered to be revolute, and input
torque is applied at these joints. Each link is assumed to be slender
such that the Euler–Bernoulli beam assumption is valid. Horizontal
planar maneuver is assumed so that we neglect out-of-planede� ec-
tion of both links.

A. Forward System Dynamics
For rigid-bodymechanical systems and single-link � exible robot

arms, dynamic modeling can be easily handled by applying La-
grange’s principle.17 However, the dynamics of multilink articu-
lated � exible structuresis more complicated.Some researchershave
used a � nite element method to numerically construct the dynamic
equations.18 Others have used the assumed modes approach.19;20 In
this paper, the assumed modes method is also used to parameterize

Fig. 1 Two-link � exible robot arm.

the continuous deformation of both � exible links. The following
discussion on forward dynamics is included for the sake of � xing
notations. Detailed derivation of the forward dynamics is omitted
due to the availability of the relevant references.

Let zi measure the distance of a point at link i in the direction of
the undeformedlink positionand wi the deformationfor the i th link
for i D 1 and 2. Let ¾i j .zi / be the j th admissible function for the i th
link and qi j .t/ the correspondinggeneralizedcoordinates.Then the
distributed de� ection of the i th link, wi , is approximated by

wi .zi ; t/ D
n i

j D 1

¾i j .zi /qi j .t/; 8i D 1; 2 (35)

The admissible functionsare chosen to be the ones for the clamped-
free beams,21 and two � exible modes are assigned to each link,
ni D 2. One simple choice of the admissible functions is of the form

¾i j .zi / D [zi =li ]
j C 1 ; 8 j D 1; 2; 8i D 1; 2 (36)

where li is the length of link i for i D 1 and 2. The geometric bound-
ary conditions are all satis� ed because the polynomials in Eq. (36)
always have ¾i j .0/ D ¾ 0

i j .0/ D 0, where ¾ 0
i j . / denotes the derivative

of ¾i j . / with respect to its spatial variable zi .
Denote the system’s generalized coordinates

Ã
defD [µ1; µ2; q11; q12; q21; q22]

T

which consist of the rigid modes µ and the � exible modes q for both
links:

µ
defD [µ1; µ2]T ; q

defD [q11; q12; q21; q22 ]T (37)

By Lagrange’s method, the equationsof motion can be written as
follows:

M .Ã/ RÃ C H .Ã; PÃ/ C C PÃ C K Ã D Buu (38)

where u D [u1; u2]T is the vector of joint torque and Bu D [I2 £ 2;
O4 £ 2]T is the torque distribution matrix. K is the stiffness matrix

K D
O2 £ 2 O2 £ 4

O4 £ 2 M3

(39)

The damping matrix C is taken to be proportional to the stiffness
matrix K by a damping ratio ®:

C D
O2 £ 2 O2 £ 4

O4 £ 2 M2

(40)

where M2 D ®M3. M.Ã/ is the 6 £ 6 positive de� nite symmetric
inertia matrix, and H .Ã; PÃ/ the part containing centrifugal and
Coriolis terms.

There are many ways to choose the system output. Depending
on which point along the links is selected as the output, the whole
system can be either minimum phase or nonminimum phase. If the
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output is selectedto be the joint angles, i.e., the sensorsandactuators
are collocated, the system is known to be minimum phase. A more
meaningful choice of the output is the tip position, and this choice
renders the system nonminimum phase. We choose

y
defD [y1; y2]

T D µ C arctan
w1.l1; t/

l1
; arctan

w2.l2; t/
l2

T

(41)

When elastic deformation of the � rst link is small, the output vari-
ables are approximately the tip angular positions of the links. It can
be seen that both output componentschosen are practicallymeasur-
able. For small elastic deformation,

arctan
wi .li ; t/

li
¼

wi .li ; t/

li

(42)

By substitutingEqs. (35) and (42) into Eq. (41), we obtain the output
equation

y D DÃ (43)

where D D [D1; D2] with D1 D I2 £ 2 and

D2 D
l¡1
1 ¾11.l1/ l¡1

1 ¾12.l1/ 0 0

0 0 l¡1
2 ¾21.l2/ l¡1

2 ¾22.l2/
(44)

Equation (38) togetherwith Eq. (43) constitutes the forwarddynam-
ics of the two-link � exible robot manipulator system.

B. Inverse Dynamics
Inverse dynamics usually consists of reference dynamics (11)

and an output equation (10). For a � exible manipulator system, the
inverse dynamics can be simply derived as follows.

Rewrite the forward dynamics (38) and (43) as follows:

M11.Ã/ Rµ C M12.Ã/ Rq C H1.Ã; PÃ/ D u (45)

M21.Ã/ Rµ C M22.Ã/ Rq C H2.Ã; PÃ/ C M2 Pq C M3q D 0 (46)

y D µ C D2q (47)

where D2 is de� ned in Eq. (44) and M2 and M3 are de� ned in
Eqs. (40) and (39), respectively. From Eq. (47), we have

µ D y ¡ D2q (48)

Let yd be the reference output trajectory. Set y ´ yd . Substituting
Eq. (48) into Eq. (46), we obtain a dynamic equation governing the
� exible coordinates q:

M1. yd ; q/ Rq C M2 Pq C M3q C H2. yd ; Pyd ; q; Pq / D M4. yd ; q/Ryd

(49)

where

M1. yd ; q/ D M22. yd ; q/ ¡ M21. yd ; q/D2

M4. yd ; q/ D ¡M21. yd ; q/

Equation (49) is the reference dynamics equation (11) in second-
order form.

The equivalenceof the general equation (10) for the � exible ma-
nipulator can be easily obtained from Eq. (45) with a substitution
of Eq. (48) and y ´ yd :

u D [M12. yd ; q/ ¡ M11. yd ; q/D2] Rq

C [M11. yd ; q/Ryd C H1. yd ; Pyd ; q; Pq/] (50)

Equations (49) and (50) characterize the inverse dynamics of the
two-link � exible manipulator system.

C. Linear TPBV Problem for Flexible Manipulators
To ensurea stable solutionfrom the inversedynamics,a two-point

boundary condition (16) needs to be imposed on the � exible mode
q. However, instead of Eq. (16), we directly derive the linear TPBV
problem(17) and (18) for our � exiblemanipulators,based on which
the iterative procedure described in Sec. II.B can be carried out to
� nd stable inverses.

First, we need to � nd the linearized equation for the reference
dynamics (49). A notation for convenienceis in order. Let .x/ be
a km £ lm matrix functionof x 2 Rn and Nx 2 Rn be a column vector.
The derivative of at a point x0 in the direction of Nx is de� ned as

Dx0
x Nx defD

n

i D 1

@

@xi
x D x0

Nxi (51)

Using this notation and neglectinghigher-orderterms, the � rst term
M1 Rq in the reference dynamics equation (49) can be linearized as

M1 Rq ¼ M0
1 C D0

q M1[q ¡ q0] [ Rq0 C [ Rq ¡ Rq0]]

¼ M 0
1 Rq C D0

q M1q Rq0 ¡ D0
q M1q0 Rq0 (52)

where the superscript 0 stands for evaluation along q0 and/or Pq0
(solution of the preceding iteration) no matter which is applicable.
Because it can be easily veri� ed that

[Dx M Nx] Qx D [Dx M Qx] Nx (53)

where Qx 2 Rn , we obtain

M1 Rq ¼ M0
1 Rq C D0

q M1 Rq0 q ¡ D0
q M1 Rq0 q0 (54)

Both M2 and M3 are constantmatrices.For the term H2.yd ; Pyd ; q; Pq/,
we have

H2 ¼ H 0
2 C D0

q H2 [q ¡ q0] C D0
Pq H2[ Pq ¡ Pq0]

D H 0
2 ¡ D0

q H2q0 ¡ D0
Pq H2 Pq0 C D0

q H2q C D0
Pq H2 Pq (55)

Similar to the derivation for the � rst term M1 Rq, we can get the
linearized form of M4 Ryd as

M4 Ryd ¼ M 0
4 Ryd ¡ D0

q M4 Ryd q0 C D0
q M4 Ryd q (56)

Thus, combiningEqs. (54–56), the linearized inverse dynamics can
be expressed as

L1 Rq C L2 Pq C L3q D L4 (57)

where

L1 D M0
1 ; L2 D M2 C D0

Pq H2

L3 D D0
q M1 Rq0 C M3 C D0

q H2 ¡ D0
q M4 Ryd

L4 D M 0
4 Ryd ¡ D0

q M4 Ryd q0 C D0
q M1 Rq0 q0

C D0
q H2q0 C D0

Pq H2 Pq0 ¡ H 0
2

Let ´ D [qT ; PqT ]T and

A.t/ D
0 I

¡L¡1
1 L3 ¡L¡1

1 L2

; B.t/ D
0

L¡1
1 L4

(58)

Then Eq. (57) is the same as Eq. (17) in second-orderform.
Second, the linear boundaryconditions(22–25) are to be derived.

Instead of updating the transformation matrices Cs and Cu at each
iteration, in this simulation we compute one Cs and one Cu for all
iterations. The matrix A.t/ in Eq.(58) is evaluated at q0 D 0 and
yd D [0; 90]T deg. It is found later in the simulation by computing
the eigenvalues of A.t0/ and A.t f / that, at both t0 and t f , the zero
dynamics has � ve stable eigenvaluesand three unstable ones. Thus,
following the procedure in Sec. II.B, the transformationmatricesCs

and Cu would be of dimension 5 £ 8 and 3 £ 8, respectively.
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IV. Digital Simulation Study
In this simulation study, we demonstrate the effectivenessof our

proposedtrackingcontroldesignusing stable inversion.First, a sim-
ulation setup is presented.Then, some conditions are veri� ed to en-
sure the applicabilityof stable inversion.This is followedby a track-
ing controllerdesign.Finally, some simulationresultsare presented.

A. Simulation Setup
Table 1 lists key parameters of the two-link � exible arm model

used in this study. The two links of the manipulator are assumed to
have the same structural damping with ® D 0:01.

A1 D

37
60

m C 2m e C 2.h=l2/ 5
4
m C 4m e C 4.h=l2/ ¡ 1

6
m ¡ 2.h=l2/ ¡ 4

15
m ¡ 2.h=l2/

29
30

m C 3m e C 3.h=l2/ 68
35

m C 6me C 6.h=l2/ ¡ 1
4
m ¡ 3.h=l2/ ¡ 2

5
m ¡ 3.h=l2/

1
4
m C me

1
2
m C 2me ¡ 1

20
m ¡ 1

12
m

1
5
m C me

2
5
m C 2me ¡ 1

30
m ¡ 2

35
m

The reference trajectory is selected following considerations
given by Bayo and Paden.22 First, the accelerationpro� le should not
have exceedingly high-frequency components. The reason is that,
if the acceleration changes too rapidly, then the calculated torque
pro� le will containhigh peak impulse, which may excite the natural
frequenciesof the � exible manipulators.Second, the maximum ac-
celeration limit should be chosen so as not to saturate the actuator.
With these considerations,we have chosen the reference tip trajec-
tory for link two as shown in Fig. 2, in which the accelerationpro� le
is a sinusoidal function. A similar reference trajectory pro� le has
been chosen for link one.

B. Veri� cation of System Properties
To apply the stable inversion approach, two conditions need to

be veri� ed16: the system should have a locally well-de� ned relative
degree and its zero dynamics should have a hyperbolic equilibrium
point at the origin.

Before we verify these, we � rst show the nonminimum-phase
propertyof the system.Otherwise, the output trajectory trackingcan
be accomplished using the classical inversion approach.13 To make
notationssimple,we assumethat the two links are identical.Let l, m,

Table 1 Properties of the robot arm

Property Link one Link two

l, m 1.0000 1.0000
½, kg/m2 0.3000 0.1000
e, N/m2 3.9375 0.4375
me , kg 0.1500 0.1000
h, kg/m2 0.2000 0.0670

Fig. 2 Desired tip trajectory pro� les for link two.

and e denote their length, mass, and product of area moment of in-
ertia and Young’s modulus, respectively. Also let me and h denote
the endpoint mass and hub inertia of the second link, respectively.

Zero dynamics is � rst obtained from the referencedynamics (49)
by setting yd D [0; 90]T deg and derivatives of yd of all orders to
zero (an equilibrium point). Then, a standard linearization on the
obtained zero dynamics yields linearized zero dynamics as follows:

A1 Rq C A2 Pq C A3q D 0 (59)

where

A3 D

4e 6e 0 0

6e 12e 0 0

0 0 4e 6e

0 0 6e 12e

and A2 D ® A3 . Note we have exactly

det A3 D 144e4 > 0 (60)

det A1 D ¡ 1
13,230,000

m4 ¡ 13
10,584,000

m3me

¡ 13

5,292,000
m3 h

l2
¡ 13

44,100
m2me

h

l2
< 0 (61)

Equations (60) and (61) imply that the product of all eigenvalues
of the system is negative. Because the total number of the eigen-
values is an even number, we conclude that there exists at least one
positive real eigenvalue for the linearized zero dynamics (59). The
nonminimum-phase property, thus, is veri� ed. It is noticed from
the preceding argument that the nonminimum-phaseproperty is in-
dependent of ®, the damping ratio. Thus, even in the case when
structural damping is neglected (® D 0), the � exible manipulator
system is still nonminimum phase.

To verify the hyperbolicity of the zero dynamics, we further as-
sume that me and h D 0 for notational simplicity. First, zero eigen-
values can be easily excluded from the fact that det A3 6D 0. Next,
suppose the zero dynamics has pure imaginary eigenvalues §i¸
with ¸ 6D 0. Substituting them into the characteristicequationof the
zero dynamics leads to

det ¡¸2 A1 § i¸A2 C A3 D 0

Equivalently,

det ¡¸2 A1 A¡1
3 C [1 § i®¸]I D 0 (62)

Equation (62) says that there exists eigenvalue Ņ of matrix A1 A¡1
3

such that

¡¸2 Ņ C [1 § i®¸] D 0; Ņ D .1=¸2/[1 § i®¸] (63)

But the characteristic equation of matrix .e=m/A1 A3
¡1 is exactly

given by

s4 ¡ 61

420
s3 ¡ 331

2,116,800
s2 C 127

42,336,000
s ¡ 1

1,905,120,000
D 0

It can be easily veri� ed that this characteristicequation has all four
real roots. Thus, condition (63) cannot be true when ® 6D 0. Hence,
the linearized zero dynamics (59) cannot have purely imaginary
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eigenvalues §i¸. However, no conclusion can be made about the
hyperbolicityof the zero dynamics when structural damping is ne-
glected (® D 0).

The well-de� ned relative degree property can be seen by arrang-
ing the forward dynamics as follows. Substituting Eq. (48) into
forward dynamics equation (46) yields

[M22.Ã/ ¡ M21.Ã/D2] Rq C H2.Ã; PÃ/

C M2 Pq C M3q C M21.Ã/Ry D 0 (64)

It can be easily seen that matrix M22.Ã/ ¡ M21.Ã/D2 evaluated at
µ2 D 90 deg is exactly the matrix A1 in Eq. (59) because Eq. (64)
with y ´ yd is the reference dynamics (49). Equation (61) says that
this matrix is nonsingular.Thus, substitutingEqs. (48) and (64) into
another part of the forward dynamics (45) gives

Mr Ry C H1 ¡ [M12 ¡ M11 D2][M22 ¡ M21 D2]¡1

£ [H2 C M2 Pq C M3q] D u (65)

where

Mr D M11 ¡ [M12 ¡ M11 D2][M22 ¡ M21 D2]
¡1 M21

It can be easily veri� ed that Mr , the coef� cient matrix of Ry, is in-
vertible under the same assumptions as made in the veri� cation
of the hyperbolicity, thus verifying the existence of a locally well-
de� ned relative degree. Both output components have relative de-
gree two at the equilibrium point µ D [0; 90]T deg. It can further be
veri� ed that the preceding argument is still valid over the range of
5 · µ2 · 90 deg. The range is selected such that it covers the refer-
ence trajectory chosen in the following simulation study.

C. Controller Structure
The controller structure of our stable inversion method is shown

in Fig. 3. From the stable inverse dynamics with speci� ed bound-
ary conditions, we compute the desired state trajectory xd and the
nominal control input ud . The feedback stabilizing signal us is su-
perimposedon the feedforwardud to obtain the total control input to
drive the manipulator.Because the � exiblemodes of the arm are not
measurable, the controller uses only the rigid-angle measurement
for feedback, which could be easily read from encoders installedon
both joints.

The � rst column of Table 2 lists the eigenvalues of the forward
dynamics. They are computed from the linearizationof forward dy-
namics (38) at µ D [0; 90] deg and q D 0. The open loop is unstable
because there are four poles at the origin. Therefore, a stabilizer is

Table 2 Eigenvalues of the forward dynamics

Open loop Closed loop

0 ¡0:2608 § i0:6814
0 ¡0:9070 § i11:6319
0 ¡1:4119 § i1:0185
0 ¡1:7529 § i5:8291
¡0:2219 § i0:6581 ¡16:3544 § i54:6808
¡0:6345 § i11:2469 ¡43:8221 § 81:2408
¡16:2886 § i4:7029
¡42:6746 § i81:9378

Fig. 3 Controller scheme of stable inversion.

necessary. However, the topic of general nonlinear stabilization is
outof the scopeof this paper.In this study,a simple linear joint-angle
feedback control is implemented:

us D K p[µd ¡ µ] C Kd [ Pµd ¡ Pµ]

where

K p D Kd D
0:5 0

0 0:375

The gain matrices are selected to stabilize the two linearizationsof
the forward dynamics at t0 and t f . The eigenvaluesof the lineariza-
tion of the forward dynamics (38) at µ D [0; 90] deg and q D 0 after
stabilization are given in the second column of Table 2. The over-
all feedforward plus feedback control law, thus, has the following
form:

u D ud C us D ud C K p[µd ¡ µ] C Kd [ Pµd ¡ Pµ] (66)

See Refs. 23 and 24 for more analysis on stabilization and tracking
performance of controllers using stable inversion.

D. Simulation Results
In this subsection, we present the digital simulation results and

study the performance of our stable-inversion-basedtracking con-
troller. The iterative numerical procedure discussed in Sec. II is
used. For the given reference trajectory, the nominal control input
ud and the desired joint-angle trajectory µd are calculated through
the following steps.

1) Set q0.t/ D 0 for all t .
2) Linearize Eq. (49) along q0.t/ and Pq0.t/ to get Eqs. (22–25),

(28–34), and (57).
3) Integrate Eq. (32) backward in time to get S.t/.
4) Integrate Eq. (33) backward in time to get v.t/.
5) Integrate Eq. (34) forward in time to get ³1.t/ and get ³2.t/ by

Eq. (30).
6) Compute

q D
Cs

Cu

¡1
³1

³2

7) If kq ¡ q0k is greater than a given threshold,set q0 D q and go
to step 2; otherwise go to step 8.

8) Compute the nominal input ud from Eq. (50) and desired rigid
mode µd from Eq. (48).

The numerical procedure stops when it leads to a relative error
of 0:0005% in q between the third and the fourth iterations. It takes
a few minutes on a DEC workstation with the algorithm coded in
Matlab. Figure 4 shows the joint torque ud needed to produce the
desired tip trajectories.As expected, the torque needs to be applied
to preshape the links some time before the tip starts moving due to
the nonminimum-phaseproperty of the system.

Using the control law (66), computer simulation of the closed-
loop dynamics is carried out in Matlab. Figure 5 shows that the tips
follow the desired trajectories exactly without any undershoot or
overshoot.

Fig. 4 Nominal control input by stable inversion.
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Fig. 5 Reference trajectory and trajectory by stable inversion.

V. Conclusion
Stable inversionof nonlinearnonminimum-phasesystems is suc-

cessfully applied to the tip trajectory tracking for a two-link � exible
robot manipulator. Simulation results demonstrate that the stable
inversion approach is very effective for obtaining stable and re-
markably accurate output tracking for � exible manipulators. This
approach is expected to perform equivalentlywell for other realistic
nonminimum-phasenonlinear systems.

It is noticed that stable-inversion-basedoutput tracking uses the
same controller structure of feedforward plus feedback as that used
by nonlinear regulation.Hence, the approach is also a model-based
approachand has the same robustness issuesas nonlinear regulation
does.To handle the model uncertainty,either a robust feedbackcon-
troller needs to be designed or some robust stable inverse solutions
be computed. The robustness issue of inverse solutions is an issue
of the stable inversion theory itself and is currently under study.
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