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A Finite Energy Property of Stable Inversion
to Nonminimum Phase Nonlinear Systems

Hongchao Zhao and Degang Chen

Abstract—Stable inversion is a completely new approach to the output
tracking control of nonminimum phase nonlinear systems. It not only
offers exact reproduction of a given reference output trajectory but also
guarantees stability of all external and internal signals. After a brief
review of the stable inversion problem, the paper establishes a finite
energy property of stable inverses. That is, out of infinitely many possible
inverse solutions, the one provided by the stable inversion process is
the only one that has finite energy, or, theL2(�1; +1)(�1; +1)(�1; +1)-norm. The
effectiveness of the stable inversion approach in output tracking as
compared with the well-known classic inversion and nonlinear regulation
approaches is demonstrated by working out an example of a nonlinear
nonminimum phase system.

Index Terms—Inversion, nonlinear, nonminimum phase, output track-
ing.

I. INTRODUCTION

The stable inversion approach was first developed by Chen and
Paden [3] to attack a very important and very difficult problem
in nonlinear control: output tracking control of nonminimum phase
systems. In this approach, the output tracking controller has a
structure of feed-forward plus feedback. The nonminimum phase
system is first stably inverted offline to obtain desired (and stable)
state and input trajectories that satisfy the system dynamics equation
and map exactly into a given desired output trajectory. Then the
desired input is used as a feed-forward signal and the state error
deviating from the desired state is used as a feedback signal to a
stabilizing tracking controller. The consequence of this strategy is
remarkably accurate output tracking together with guaranteed stability
of both external and internal signals. This approach can be easily
applied to many important engineering systems that are known to
be nonminimum phase systems, such as airplanes, rockets, flexible
robots, and more.

Stable inversion is closely related to two other approaches in output
tracking control of nonlinear systems. The first is the classic inversion
approach that controls the transient behavior precisely by using
stabilizing feedback together with feed-forward signals generated
by an inverse system. The classic inversion was first studied by
Brockett and Mesarovic [1]. Later, Silverman developed an easy-
to-follow step-by-step procedure for the inversion of a class of
linear multivariable systems [8]. These linear results were extended
to nonlinear real-analytic systems by Hirschorn [4] and Singh [9].
For a given desired output and a fixed initial condition, all these
inversion algorithms produce causal inverses that are unbounded for
nonminimum phase systems.

Also closely related is the nonlinear regulation approach recently
developed by Isidori and Byrnes [5]. This approach also uses the
structure of feed-forward plus feedback and it provides asymptotic
output tracking for a class of reference trajectories generated by a
given autonomous exosystem. The feed-forward signals are calculated
by solving a set of nonlinear partial differential equations of the
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same order as the forward system dynamics. Besides the numerical
tractability of nonlinear partial differential equations, a major concern
is the possibly large transient error that is not controlled in this
approach.

The stable inversion approach is designed to achieve the salient
features of both classic inversion and nonlinear regulation and at the
same time avoid the drawbacks of both. The price one has to pay
is that the inversion process is noncausal or anticipatory, which is
perfectly fine from an engineering point of view since the inverse
system is not expressed as a solution to differential equations but
as a general nonlinear mapping. For a class of nonlinear systems
with a well-defined relative degree and hyperbolic zero dynamics,
the problem of computing the stable inverses for nonminimum phase
systems is converted into a corresponding two-point boundary value
problem. In this paper, a very important feature, the finite energy
property, of these stable inverses is investigated. This property
suggests many numerical iterative methods to solve the two-point
boundary value problems. The remainder of the paper is organized
as follows. Section II briefly reviews the stable inversion problem
and its corresponding two-point boundary value problem. The main
contribution of the paper is Section III, establishing that out of
infinitely many possible inverse solutions the stable inverse is the
only one yielding a finiteL2(�1; +1)-norm. An example is given
in Section IV to demonstrate the effectiveness of the stable inversion
approach in output tracking control as compared with the classic
inversion and nonlinear regulation approaches. Finally, a conclusion
is given in Section V.

II. STABLE INVERSION

Consider multivariable nonlinear control systems of the form

_x = f(x) + g(x)u (1)

y =h(x) (2)

wherex is defined on an open neighborhoodX of the origin ofIRn

andu 2 IRm andy 2 IRm. The mappingsf(x) and gi(x) [the ith
column ofg(x)] for i = 1; 2; � � � ; m are smooth vector fields defined
on X, andhi(x) [the ith component ofh(x)] for i = 1; 2; � � � ; m
are smooth functions onX. Without loss of generality, it is assumed
that f(0) = 0 andh(0) = 0. For such systems, the stable inversion
problem as posed in [3] is as follows.

Stable Inversion Problem:Given a smooth reference output tra-
jectory yd(t), find a control inputud(t) and a state trajectoryxd(t)
such that

1) ud(t) andxd(t) satisfy the differential equation

_xd(t) = f [xd(t)] + g[xd(t)]ud(t);

2) exact output tracking is achieved

h[xd(t)] = yd(t);

3) ud(t) and xd(t) are bounded and wheneveryd(t) ! 0 as
t ! �1

ud(t)! 0; xd(t)! 0 as t! �1:

Here the pair[ud(t); xd(t)] is referred to as the stable inverse
solution for a given reference outputyd(t). It is called stable
inverse because of the boundedness and convergence provided by
Condition 3). Besides,xd(t) is called the desired state trajectory and
ud(t) the nominal control input.

For the time being, we only consider nonlinear systems satisfying
the following assumption.
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Assumption 1:

1) The nonlinear system has a well-defined vector relative degree
r = [r1; � � � ; rm]T 2 INm at the origin.

2) The equilibrium point of the zero dynamics at the origin is
hyperbolic.

To solve the stable inversion problem, the nonlinear system is first
partially linearized. Define

�
def
= [�11 ; �

1
2 ; � � � ; �

1
r ; �

2
1 ; � � � ; �

2
r ; � � � ; �mr ]T

def
= [y1; _y1; � � � ; y

(r �1)
1 ; y2; � � � ; y

(r �1)
2 ; � � � ; y(r �1)

m ]T :(3)

Choose� such that

�

�
= �(x)

forms a change of coordinates with�(0) = 0. In this new coordinate
system, the system dynamics equation becomes

y
(r) =�(�; �) + �(�; �)u (4)

_� = q1(�; �) + q2(�; �)u (5)

where

�(�; �) =L
r
fh[�

�1(�; �)]

�(�; �) =LgL
r�1
f h[��1(�; �)]

and q1 and q2 are defined accordingly. Sety(t) � yd(t). Then, we
immediately have

� = �d

def
= [yd1; _yd1; � � � ; y

(r �1)
d1 ; yd2; � � � ; y

(r �1)
d2 ; � � � ; y

(r �1)
dm ]T

andy(r)(t) = y
(r)
d (t). Solving foru from (4), we obtain

u
def
= [�(�d; �)]

�1[y
(r)
d (t)� �(�d; �)]: (6)

Upon substituting this, (5) becomes the so-calledreference dynamics

_� = p[y
(r)
d ; �d; �] (7)

where

p[y
(r)
d ; �d; �]

def
= q1(�d; �) + q2(�d; �)[�(�d; �)]

�1

� [y
(r)
d � �(�d; �)]:

The reference dynamics becomes autonomouszero dynamicswhen
output yd(t) is set identically to zero. It has been shown that, for
systems satisfying Assumption 1, the stable inverse pair, the desired
state trajectoryxd(t), and the nominal control inputud(t) can be
constructed as follows [3]:

xd =��1(�d; �d) (8)

ud = [�(�d; �d)]
�1[y

(r)
d � �(�d; �d)] (9)

where�d solves the following two-point boundary value problem:

_� = p[y
(r)
d ; �d; �] (10)

subject to

Bs[�(t0)] = 0
Bu[�(tf)] = 0:

(11)

Here Bs(�) = 0 characterizes the local unstable manifold and
Bu(�) = 0 the local stable one of the origin of the zero dynamics,
and t0 and tf are the time which will be specified in the coming
Assumption.

In order to guarantee the existence of solutions to this two-point
boundary value problem, the reference output trajectory needs to
satisfy mild sufficient conditions as follows.

Assumption 2:

1) yd(t) 2 C
r(�1; +1).

2) There exists[t0; tf ], a finite closed interval inIR, such that
y(t) � 0 for all t 62 [t0; tf ].

3) supt2[t ; t ] k [�
T
d (t); y

(r)
d (t)]T k2 is sufficiently small.

It has also been shown that the two-point boundary value problem
locally has a unique solution when the nonlinear system and the
reference trajectory satisfy Assumptions 1 and 2, respectively [7].

It is noticed that the reference trajectories are restricted to a
compact interval. However, this is not a significant restriction in
practice since all practical trajectories have a finite duration.

As mentioned earlier, the signals,xd(t) andud(t), are incorporated
in our output tracking controller to achieve exact output reproduction
but at the same time maintain closed-loop stability. Even for a
mismatched initial condition, asymptotic tracking is guaranteed as
long as the forward system has been stabilized. This property is shared
by both stable inversion and nonlinear regulation as both approaches
have the same closed-loop structure. See [2] for more details on
closed-loop controller design using stable inversion.

III. FINITE ENERGY PROPERTY

The goal of this section is to establish that out of an infinite number
of input and state trajectories that are capable of producing exactly
a given desired output trajectory, the desired state trajectory and
the nominal control input given by the stable inversion approach
is the only pair yielding a finiteL2(�1; +1)-norm. This is a
very important property of stable inversion. It immediately suggests
its value in many applications where output tracking, input energy
consumption, internal vibration, etc., are of concern.

Before we start, let us recall two standard theorems from theory
of ordinary differential equations. The first theorem concerns the
local property of solutions on the stable or unstable manifolds of
a hyperbolic equilibrium point.

Theorem 1: (See Wiggins [10] for a proof.) LetW s andWu be
the local stable and unstable manifolds of a hyperbolic equilibrium
point of a dynamic system. Then the solutions of the dynamic
system with initial conditions inW s (respectivelyWu) approach the
equilibrium point at an exponential rate asymptotically ast ! +1
(respectively,t ! �1).

The second theorem addresses the local property of solutions
that are on neither the stable nor the unstable manifolds of a
hyperbolic equilibrium point. To state the theorem, let the origin be
the hyperbolic equilibrium point of a dynamic system. Denote by
B(h) a spherical neighborhood with center at the origin and radius
of h.

Theorem 2: (See Miller and Michel [6] for a proof.) LetW s

andWu be the local stable and unstable manifolds of a hyperbolic
equilibrium point of a dynamic system. Then there exists a�1 > 0
(respectively�2 > 0) such that if[�; �(�)] 2 IR�B(�1) [respectively
IR � B(�2)] for some solution� of the system but�(�) 62 W s

(respectivelyWu), then�(t) must leave the ballB(�1) [respectively
B(�2)] at some finite timet1 > � (respectivelyt2 < � ).

These two theorems will be applied to the reference dynamics for
t � t0 and t � tf during which the reference dynamics becomes
the autonomous zero dynamics. With these preparations, we start by
first showing that the boundary condition (11) ensures finite energy
of the solution of the two-point boundary value problem, but those
not satisfying the boundary condition (11) all have infinite energy.

Theorem 3: Suppose that the nonlinear system and the reference
trajectory satisfy Assumptions 1 and 2, respectively. Then, among
all the solutions�(t) of the reference dynamics (10), the�d(t) that
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satisfies the boundary condition (11) is the only one yielding a finite
L2(�1; +1)-norm.

Proof: Assumptions 1 and 2 guarantee the existence of a unique
�d(t) for all t 2 (�1; +1). Consider

+1

�1

j�d(t)j
2
2 dt =

t

�1

j�d(t)j
2
2 dt+

t

t

j�d(t)j
2
2 dt

+
+1

t

j�d(t)j
2
2 dt: (12)

Since�d is continuous, it is bounded over a compact interval. Denote

K1 = supfj�d(t)j2 j t0 � t � tfg:

By the boundary condition (11),�d(tf) 2 W s for all t � tf since
W s is invariant. By Theorem 1, there exist constants�1 > 0 and
�1 > 0 such that

j�d(t)j2 ��1j�d(tf )j2 exp f��1(t� tf)g

��1K1 exp f��1(t� tf)g; 8t � tf :

Similarly, the boundary condition (11) implies that�d(t0) 2Wu for
all t � t0 and that there exist constants�2 > 0 and�2 > 0 such
that we have

j�d(t)j2 ��2j�d(t0)j2 exp f�2(t� t0)g

��2K1 exp f�2(t� t0)g; 8t � t0:

Hence
t

�1

j�d(t)j
2
2 dt �

t

�1

�
2
2K

2
1 e

2� (t�t )
dt =

�22K
2
1

2�2
;

t

t

j�d(t)j
2
2 dt � K

2
1 jtf � t0j;

+1

t

j�d(t)j
2
2 dt �

+1

t

�
2
1K

2
1 e

�2� (t�t )
dt =

�21K
2
1

2�1
: (13)

Substituting (13) into (12) we get
+1

�1

j�d(t)j
2
2 dt �M

2
1 < +1 (14)

where the constant

M1
def
=

�22K
2
1

2�2
+K

2
1 jtf � t0j+

�21K
2
1

2�1

1=2

that is

k�dkL (�1;+1) =
+1

�1

j�d(t)j
2
2 dt

1=2

�M1 < +1: (15)

On the other hand, consider any other solution�(t) of (10) that
does not satisfy the boundary condition (11), that is

�(t0) 62W
u and/or �(tf) 62W

s
:

Suppose�(tf) 62 W s, then �(t) 62 W s for all t � tf due to the
invariance ofW s. We want to show that theL2(�1; +1)-norm
of this solution is infinite by showing

+1

t

j�(t)j22 dt = +1: (16)

Select a constant�1 = 2� > 0 as in Theorem 2. Without loss of
generality, we assume thatj�j = 2� is not an equilibrium, since oth-
erwise we immediately have (16). Letftk; k = 1; 2; 3; � � � ; tk+1 >

tk � tfg be the set of all time points at which� enters the ball. If
this set is empty and�(tf) 2 B(2�), � will leave the ball in finite
time and stay outside for the rest of the time, or if�(tf) 62 B(2�)
it will remain outside the ball for allt � tf . In either case, (16)

is obviously true. If the set is nonempty, we construct a new set
ft0k; k = 1; 2; 3; � � � ; t0k+1 > t0k � tfg as follows. Lett01 = t1 and
I1 = [t01; t

0

1 + �t]. Then find the firsttj 62 I1 in the tk set and let
t02 = tj andI2 = [t02; t

0

2+�t]. Continue this process until thetk set
is exhausted. The constant�t in this process is defined by

�t =
�

max jp[y
(r)
d ; �d; � 2 B(2�)]j

:

With this �t, it follows easily thatj�(t)j � � for all t 2 Ik since
j�(t0k)j = 2�. Also notice that all theseIk ’s are disjoint.

Two situations need to be considered. First, the sett0k contains a
finite number of points. Then by Theorem 2,�(t) will leave the ball
in finite time after eachIk. Therefore, the total amount of time during
which �(t) is inside the ball is finite, and during the rest of the time
it is outside the ball orj�(t)j > 2�. Consequently, (16) is true.

In the second situation, the setft0kg contains an infinite number
of points. In this case, we have

+1

t

j�(t)j22 dt �
[ I

j�(t)j22 dt �

1

k=1 I

�
2
dt

=

1

k=1

�
2�t

which is unbounded and implies (16).
A similar argument can be applied when�(t0) 62 Wu. Hence,

violating any part of the boundary condition (10) always leads to
k�kL (�1;+1) =1.

The following two theorems claim that both the desired state
trajectoryxd and the nominal control inputud obtained via�d(t)
have finiteL2(�1; +1)-norms, while those obtained via any other
�(t) have infiniteL2(�1; +1)-norms. Due to the limitation on
paper size, both proofs are omitted.

Theorem 4: Suppose that the nonlinear system and the reference
trajectory satisfy Assumptions 1 and 2, respectively. Then, among
the infinitely many state trajectoriesx(t) which map exactly into the
desired output trajectory, thexd(t) computed byxd = ��1(�d; �d),
where�d is the solution of (10) subjected to (11), is the only one
yielding a finiteL2(�1; +1)-norm.

To establish the next theorem on the property of the nominal control
input, we pose the following technical assumption that is used in the
proof of the theorem.

Assumption 3:On the zero dynamics manifold� = 0:

1) LgL
r�1
f h(x) is globally uniformly bounded;

2) given any� > 0, �t > 0, there exists an�(�t; �) > 0 such
that for all t, j �(�) j > � for all � 2 [t; t + �t] implies that
k�(0; �)k2

L [t; t+�t] � �.

It is noticed that the first condition in the assumption does not pose
any practical constraints since matrix� is the high-frequency gain
from input to output which is bounded for any practical systems.
The second one is related to an observability condition. In the linear
case, if the zero dynamics is observable from�, then the condition
is satisfied.

Theorem 5: Suppose that the nonlinear system and the reference
trajectory satisfy Assumptions 1–3. Then, among all the control
inputs which reproduce exactly the reference trajectory, theud

computed byud = [�(�d; �d)]
�1[y

(r)
d � �(�d; �d)], where �d is

the solution of (10) subjected to (11), is the only one yielding a finite
L2(�1; +1)-norm.

Remark: In practice, it is impossible to work with the interval
(�1; +1). Instead,[�T; T ] will be used where�T � t0 and
T � tf . Supposeu(t) is any control input defined on[�T; T ]
and it producesy(t) � yd(t) on [�T; T ]. Then we can claim,
as an immediate consequence of Theorem 5, thatku(t)kL [�T; T ]
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Fig. 1. Simulation results by three output tracking approaches.

is greater thankud(t) kL [�T; T ] for T sufficiently large. In this
sense,ud(t) is the minimum energy input among all exact-output-
reproducing input signals. Note that we did not explicitly specify the
initial condition �(�T ) since it has a one-to-one relationship with
u(t) and therefore is implicitly specified. Similar comments can also
be made regarding�d(t) and xd(t).

On the other hand, it should be pointed out that it is possible to
achieve approximate output tracking with an appropriateu(t) that has
smaller energy thanud(t) on [�T; T ] if exact output reproduction
is not required. This is easy to conceive sinceud(t) is not optimized
for energy on[�T; T ].

IV. A N EXAMPLE

The effectiveness of stable inversion in output tracking and its
properties established in the previous section can be illustrated by the
following example of a nonlinear single-input/single-output system:

_x1

_x2

_x3

=
�3x2 + x22 + x23
x1 + 3x2 � x3
�3x2 � x3 � x22

+
2
0
0

u (17)

y = x1 � x3 (18)

with a reference output trajectory given by

yd =
0:02� 0:02 cos(0:4�[t� 5]); t 2 [5; 10]
0; otherwise.

(19)

It can be easily verified that all three assumptions required to apply
stable inversion are satisfied. By applying a change of coordinates

� = x1 � x3
�1 = x2
�2 = x3

and letting� = y = yd, the desired output, the reference dynamics
can be derived to be

_�1 =3�1 + yd (20)

_�2 = � 3�1 � �2 � �
2
1 : (21)

The stable manifold of the zero dynamics is characterized by�1 = 0,
and the unstable manifold by

�2 = � 3
4�1 �

1
7�

2
1 : (22)

Based on the results obtained in last section, there is only one
trajectory satisfying the above reference dynamics yielding a finite
L2(�1; +1)-norm, and it is the�d(t) given by stable inversion.
Thus, any numerical iterative algorithm can be used to compute�d(t)
as long as it converges and produces a finiteL2(�1; +1)-norm
solution. The method chosen here is as follows: first, integrate the
unstable part of the reference dynamics that is given by (20) backward
in time with zero final condition to obtain�1(t); second, use (22)
for the unstable manifold to obtain the required initial condition for
�2; then, integrate the stable part of the reference dynamics in (21)
forward in time to obtain�2(t).

Simulation results are shown in the first column of Fig. 1. In this
simulation a linear stabilizing feedback is implemented which gives
the following closed-loop dynamics:

_x = f(x) + g(x)u = f(x) + g(x)fud + k[x� xd]g; x(0) = 0

wherek = [�7:5; �50; 25] is the feedback gain. It can be seen from
the plots that a remarkably accurate output reproduction is achieved,
and the internal dynamics of the system is stable with desired state
trajectories and the nominal control input approach zero as time goes
to either plus or minus infinity.

As a comparison, let us first consider the nonlinear regulator
approach. A rest initial condition is also assumed. The reference
trajectory can be generated by the following exosystem:

_w1 =
2�

5
w2

_w2 = �
2�

5
w1

_w3 = 0

yd = w3 � w1
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TABLE I
A COMPARISON ON CONTROL AND STATES ENERGY AND TRACKING ERRORS

with initial conditions being set and reset as follows:

w1(�1) = w2(�1) = w3(�1) = 0
w1(5) = w3(5) = 0:02; w2(5) = 0
w1(10) = w2(10) = w3(10) = 0:

After solving a set of partial differential equations, we obtain the
zero-error manifold,x� = �(w) andu� = u�(w), in a closed form,
and the closed-loop dynamics, which shares the same feed-forward
plus feedback structure and the same linear feedback gaink with the
stable inversion implementation, is given by

_x = f(x) + g(x)u

= f(x) + g(x)fu�(w) + k[x� �(w)]g

x(0) = 0:

Simulation results by this regulator design are shown in the second
column of Fig. 1 from which it can be seen that the asymptotic track-
ing is achieved with transient errors existing both at the beginning
and at the end of the output maneuver. Comparing stable inversion
and nonlinear regulation, it is noticed that both approaches have a
mismatched initial condition att = 0 and both assure asymptotic
convergence of output errors. However, because of the noncausal or
preview characteristic of stable inversion, it is capable of transition
without causing transient output errors. In contrast, the nonlinear
regulation approach does not have such capability.

In the third column of Fig. 1 are those plots of simulation results by
the classic inversion approach. The unboundedness of internal states
and control input shown is due to the unstable zero dynamics.

The control energy, internal states energy, and norms of tracking
errors corresponding to three different approaches are summarized in
Table I.

Norms corresponding to stable inversion and nonlinear regulation
are computed over the time interval[0; 20] since all the values
considered are essentially zero beforet = 0 and after t = 20.
Hence, those norms can be thought of as the norms on(�1; +1).
Norms corresponding to the classic inversion approach are computed
over the interval[0; 10]. For the output, these norms are the same
as those calculated on(�1; +1) since y � yd � 0 for t � 0

and t � 10. However, the norms ofu and x become infinity
on (�1; +1). It is clearly seen from the table the advantages
of stable inversion over the other two approaches. As mentioned
earlier, the price stable inversion pays is that these inverse signals are
noncausal and computed offline. However, online implementation is
also possible, provided that the reference output trajectory is known

beforehand, since “noncausal” implementation here actually means
computing by using “anticipatory” reference data.

V. CONCLUSION

For nonlinear systems of the form (1) and (2) with a well-defined
relative degree and hyperbolic zero dynamics, the stable inversion
problem is guaranteed to have a unique solution under mild conditions
on the reference output trajectory. In this paper, we have shown that
the stable inverse solution enjoys some very important properties
beyond the guaranteed boundedness and convergence, even if the
system has nonminimum phase. Specifically, the nominal control
input is the only one that uses a finite amount of energy to reproduce
exactly the reference trajectory and at the same time to cause a
finite amount of internal vibrations. The stable inverse solution can
be used in tracking controllers that guarantee closed-loop stability
and exact output tracking without any transients. Using the same
structure for the forward feedback controller as that used by nonlinear
regulation, stable inversion is also a model-based approach and has
the same robustness issue as nonlinear regulation does. To handle the
model uncertainty, either a robust feedback controller needs to be
designed or some robust stable inverse solutions be computed. The
robustness issue of inverse solutions is an issue of stable inversion
and is currently under study.
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