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A Finite Energy Property of Stable Inversion same order as the forward system dynamics. Besides the numerical
to Nonminimum Phase Nonlinear Systems tractability of nonlinear partial differential equations, a major concern
is the possibly large transient error that is not controlled in this
Hongchao Zhao and Degang Chen approach.

The stable inversion approach is designed to achieve the salient
Abstract—Stable inversion is a completely new approach to the output features of both classic inversion and nonlinear regulation and at the
tracking control of nhonminimum phase nonlinear systems. It not only same time avoid the drawbacks of both. The price one has to pay

offers exact reproduction of a given reference output trajectory but also . that the i . . | ticinat hich i
guarantees stability of all external and internal signals. After a brief IS that the Inversion process IS noncausal or anticipatory, which Is

review of the stable inversion problem, the paper establishes a finite Perfectly fine from an engineering point of view since the inverse
energy property of stable inverses. That is, out of infinitely many possible system is not expressed as a solution to differential equations but
itrr:verseI solutic:rr:si Lhe cf)'ng,; provided by ttr]eﬁst?ble in-\I/_ers)ion proc%?s iSas a general nonlinear mapping. For a class of nonlinear systems
e only one that has finite energy, or, the2(—oo, +o0)-norm. The . af . . .
effectiveness of the stable inversion approach in output tracking as with a well-defined rellatlve degree gnd hyperbolic Ze,rq dynamics,
compared with the well-known classic inversion and nonlinear regulation the problem of computing the stable inverses for nonminimum phase

approaches is demonstrated by working out an example of a nonlinear Systems is converted into a corresponding two-point boundary value

nonminimum phase system. problem. In this paper, a very important feature, the finite energy
Index Terms—inversion, nonlinear, nonminimum phase, output track- Property, of these stable inverses is investigated. This property
ing. suggests many numerical iterative methods to solve the two-point

boundary value problems. The remainder of the paper is organized
as follows. Section Il briefly reviews the stable inversion problem
and its corresponding two-point boundary value problem. The main

The stable inversion approach was first developed by Chen asghtribution of the paper is Section Ill, establishing that out of
Paden [3] to attack a very important and very difficult problennfinitely many possible inverse solutions the stable inverse is the
in nonlinear control: output tracking control of nonminimum phasenly one yielding a finiteC2(—oo, +o0c)-norm. An example is given
systems. In this approach, the output tracking controller hasiraSection IV to demonstrate the effectiveness of the stable inversion
structure of feed-forward plus feedback. The nonminimum phaagproach in output tracking control as compared with the classic
system is first stably inverted offline to obtain desired (and stablg\ersion and nonlinear regulation approaches. Finally, a conclusion
state and input trajectories that satisfy the system dynamics equai®mgiven in Section V.
and map exactly into a given desired output trajectory. Then the
desired input is used as a feed-forward signal and the state error [l. STABLE INVERSION
deviating from the desired state is used as a feedback signal to &onsider multivariable nonlinear control systems of the form
stabilizing tracking controller. The consequence of this strategy is b= f(x) + g(a)u 1
remarkably accurate output tracking together with guaranteed stability ' A
of both external and internal signals. This approach can be easily y =h(x) )
applied to many important engineering systems that are knownwderex is defined on an open neighborhoddof the origin of IR"
be nonminimum phase systems, such as airplanes, rockets, flexif@« ¢ IR™ andy € IR™. The mappingsf () and g;(=) [the ith
robots, and more. column ofg(z)]fori = 1, 2, ---, m are smooth vector fields defined

Stable inversion is closely related to two other approaches in outt X', and ; (x) [the ith component ofu(x)] for i = 1, 2, ---, m
tracking control of nonlinear systems. The first is the classic inversi@ife smooth functions oA'. Without loss of generality, it is assumed
approach that controls the transient behavior precisely by usitigat £(0) = 0 andh(0) = 0. For such systems, the stable inversion
stabilizing feedback together with feed-forward signals generatggoblem as posed in [3] is as follows.
by an inverse system. The classic inversion was first studied byStable Inversion ProblemGiven a smooth reference output tra-
Brockett and Mesarovic [1]. Later, Silverman developed an easgctory y,(t), find a control inputuq(t) and a state trajectory(t)
to-follow step-by-step procedure for the inversion of a class @lch that
linear multivariable systems [8]. These linear results were extendedy) , ,(+) and 24(t) satisfy the differential equation
to nonlinear real-analytic systems by Hirschorn [4] and Singh [9]. .

For a given desired output and a fixed initial condition, all these @a(t) = flea(®)] + glea(®)]ua(t);
inversion algorithms produce causal inverses that are unbounded fo2) exact output tracking is achieved
nonminimum phase systems.

Also closely related is the nonlinear regulation approach recently hlra(t)] = ya(?);
developed by Isidori and Byrnes [5]. This approach also uses the3) uq(t) and z4(t) are bounded and whenever(t) — 0 as
structure of feed-forward plus feedback and it provides asymptotic + — 4+~
output tracking for a class of reference trajectories generated by a
given autonomous exosystem. The feed-forward signals are calculated
by solving a set of nonlinear partial differential equations of the Here the pairfua(t), x4(t)] is referred to as the stable inverse

solution for a given reference output;(¢). It is called stable
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uq(t) = 0, xq(t) — 0 as t— toc.
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Assumption 1: Assumption 2:

1) The nonlinear system has a well-defined vector relative degreel) yq(t) € C"(—o0, +oc).
7 =[ri, -, rm]’ € IN™ at the origin. 2) There existdto, t], a finite closed interval iiR, such that

2) The equilibrium point of the zero dynamics at the origin is y(t) = 0 for all t & [to, tf].
hyperbolic. 3) supepgy, o 1Ed (), v (O] |2 is sufficiently small.

To solve the stable inversion problem, the nonlinear system is fitsthas also been shown that the two-point boundary value problem

partially linearized. Define locally has a unique solution when the nonlinear system and the

def 11 1 L o 2 - reference trajectory satisfy Assumptions 1 and 2, respectively [7].

¢ - (00 & e Gy &1 e G G It is noticed that the reference trajectories are restricted to a
Yy, s oy g7, g, o gl2 oy DI (3) compact interval. However, this is not a significant restriction in

practice since all practical trajectories have a finite duration.
As mentioned earlier, the signals;(¢) andu.q(t), are incorporated
F} — 3(x) in our output tracking controller to achieve exact output reproduction
7 . but at the same time maintain closed-loop stability. Even for a

forms a change of coordinates wifi{0) = 0. In this new coordinate mismatched initial condition, asymptotic tracking is guaranteed as

: : long as the forward system has been stabilized. This property is shared
system, the system dynamics equation becomes . 4 : ;
by both stable inversion and nonlinear regulation as both approaches

y(’) =al(& n)+ B nu (4) have the same closed-loop structure. See [2] for more details on
B =aq(€ )+ a2(€ nu (5) closed-loop controller design using stable inversion.

Choosern such that

where

(& n) =LA@ (€,
& m) rhl (& IIl. FINITE ENERGY PROPERTY

y _ r—1 —1
B(& n) =LyLy h[®7 (&, n)] The goal of this section is to establish that out of an infinite number
and¢; andg. are defined accordingly. Setft) = y4(#). Then, we of input and state trajectories that are capable of producing exactly

immediately have a given desired output trajectory, the desired state trajectory and
- the nominal control input given by the stable inversion approach
§=t is the only pair yielding a finitels(—oc, +00)-norm. This is a
def (Y1, Gars -+, yflqlfl), Yaz, oo, y((]grl), yl(i';;fl)]'f very important property of stable inversion. It immediately suggests
) its value in many applications where output tracking, input energy
andy"(t) = y§” (t). Solving foru from (4), we obtain consumption, internal vibration, etc., are of concern.
M, 1B (ea, 7’)],1[%([)(” — aléa ). ©) Before we start, let us recall two standard theorems from theory

of ordinary differential equations. The first theorem concerns the

Upon substituting this, (5) becomes the so-caliefgrence dynamics local property of solutions on the stable or unstable manifolds of
a hyperbolic equilibrium point.

n= P[!/ff)w Eax 1] ™ Theorem 1: (See Wiggins [10] for a proof.) Leki’* andW* be
where the local stable and unstable manifolds of a hyperbolic equilibrium
o) L def ’ ) . point of a dynamic system. Then the solutions of the dynamic
pPlya s &an] = a1(€ay m) + q2(&as m)[F(Ear )] system with initial conditions i#1* (respectivelyi¥*) approach the
. [yy) — al&ay )] equilibrium point at an exponential rate asymptoticallytas +oo

(respectively,t — —o0).
The second theorem addresses the local property of solutions
t are on neither the stable nor the unstable manifolds of a
erbolic equilibrium point. To state the theorem, let the origin be
the hyperbolic equilibrium point of a dynamic system. Denote by
B(h) a spherical neighborhood with center at the origin and radius
e =97 (G ) © Of'If]h. 2: (See Mill d Michel [6] fi f.) LetV
Y —1p (r) eorem 2: (See Miller an iche or a proof.) LeWV*

wa =3, na)l™ lya” — ad€a, ma)] © and W* be the local stable and unstable manifolds of a hyperbolic
wheren, solves the following two-point boundary value problem: equilibrium point of a dynamic system. Then there exists a> 0
(respectivelys, > 0) such thatifi7, n(7)] € IRx B(61) [respectively

The reference dynamics becomes autononzeus dynamicsvhen
output y4(t) is set identically to zero. It has been shown that, folrh
systems satisfying Assumption 1, the stable inverse pair, the desiFl
state trajectoryr4(#), and the nominal control inpuiy(?) can be
constructed as follows [3]:

g :p[y‘(i . nl (10) IR x B(62)] for some solutiony; of the system buty(r) ¢ W*
subject to (respectivelyi™), thenn(#) must leave the balB(6:) [respectively
B*[n(to)] = 0 B(6,)] at some finite time_fl > T (re_spectivelytz < 7). .
{B“ [n(t,)] = 0. (11) These two theorems will be applied to the reference dynamics for

t < to andt > ty during which the reference dynamics becomes
Here B°(n) = 0 characterizes the local unstable manifold anthe autonomous zero dynamics. With these preparations, we start by
B*(n) = 0 the local stable one of the origin of the zero dynamicdirst showing that the boundary condition (11) ensures finite energy
andt, andt; are the time which will be specified in the comingof the solution of the two-point boundary value problem, but those
Assumption. not satisfying the boundary condition (11) all have infinite energy.

In order to guarantee the existence of solutions to this two-pointTheorem 3: Suppose that the nonlinear system and the reference
boundary value problem, the reference output trajectory needsttajectory satisfy Assumptions 1 and 2, respectively. Then, among
satisfy mild sufficient conditions as follows. all the solutions;(t) of the reference dynamics (10), the(¢) that
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satisfies the boundary condition (11) is the only one yielding a finite obviously true. If the set is nonempty, we construct a new set

L2(=00, +00)-norm. {th» k=1,2,3,---, t,o, >t >ts} as follows. Lett) = ¢; and
Proof: Assumptions 1 and 2 guarantee the existence of a uniglie= [t{, #; + At]. Then find the first; ¢ I, in the#, set and let
na(t) for all t € (—oo, +oc). Consider t, = t; and I, = [t,, t, + At]. Continue this process until thg set
oo “to . t s is exhausted. The constant in this process is defined by
[ mewiza= [ oz [ i . 5
—oo —co to At = - .
oo y max [p[y”. €41 € B(26)]|
+ / 774 ()2 dt. 1 . . .

tr With this At, it follows easily that|n(¢)| > 6 for all ¢ € Ii since

{g(f;ﬂ = 26. Also notice that all thesé,’s are disjoint.

Two situations need to be considered. First, thetsatontains a
Ky =sup{|na(t)]2 | to <t <ts} finite number of points. Then by Theoremsgi) will leave the ball
in finite time after eact,. Therefore, the total amount of time during
which 5(¢) is inside the ball is finite, and during the rest of the time
it is outside the ball ofn(¢)| > 26. Consequently, (16) is true.

In the second situation, the sét,} contains an infinite number

Sincerq is continuous, it is bounded over a compact interval. Deno

By the boundary condition (11);4(t;) € W* for all ¢ > t; since
W? is invariant. By Theorem 1, there exist constants > 0 and
21 > 0 such that

[na(t)]2 <ailnate)]z exp{=pi(t —tp)} of points. In this case, we have
<ar1 Ky exp {—pi(t —ty t >ty oo ; : ; >
Soufb epi=h(—in) vt / n(0)l3 dt > / IOH S / 5 dt
Similarly, the boundary condition (11) implies that(to) € W* for ty Urty e k=1 Y1k

all t+ < tg and that there exist constants > 0 and 32 > 0 such i N
that we have _Zb At
k=1

[1a(t)]2 < azlnato)lz exp {F2(t —to)} which is unbounded and implies (16).

SapKy exp{Ba(t —to)},  Vt <to. A similar argument can be applied wheytt,) ¢ W*. Hence,
Hence violating any part of the boundary condition (10) always leads to
to “to ) 2 K2 19l 22—, +00) = 0. O
/ [na(t)]3 dt g/ Q2 K2 e2P2(tt0) gy — 58 v The following two theorems claim that both the desired state
—0 —o0 P2

trajectory z; and the nominal control input; obtained vian.(t)

have finite£2(—oo, +o0)-norms, while those obtained via any other

7(t) have infinite £2(—o0o0, +00)-norms. Due to the limitation on
oo . +oo ) a2 K2 paper size, both proofs are omitted.

/ Ina(t)]3 dt < / ai K} e gt = 91711 (13) Theorem 4: Suppose that the nonlinear system and the reference
t tf “~f

ity .
/ na(B)2 dt < K2|ts — tol.
ta

4 trajectory satisfy Assumptions 1 and 2, respectively. Then, among
Substituting (13) into (12) we get the infinitely many state trajectoriegt¢) which map exactly into the
oo desired output trajectory, the;(t) computed byrs = &' (&4, 14),
/ [na()]5 dt < M7 < 4oc (14) whereny is the solution of (10) subjected to (11), is the only one
- yielding a finite £2(—oc, +o0)-norm.
where the constant To establish the next theorem on the property of the nominal control
9 1.9 9 1 e0=1/2 input, we pose the following technical assumption that is used in the
A {“?‘Al + K|ty —to| + alfhl} proof of the theorem.
202 26 Assumption 3:0n the zero dynamics manifolgl= 0:
that is 1) L,L}'h(x) is globally uniformly bounded;
400 1/2 2) given anys > 0, At > 0, there exists am(At, 6) > 0 such
14l 2o(—s0, +o0) = U |7ld(t)|§df} <My < +oo. (19) that for allt, | p()| > & for all 7 € [t, t + At] implies that

) ) Il (0, ) “%z[t,tJrAt] 2 €.
On the other hand, consider any other solutign) of (10) that ¢ js noticed that the first condition in the assumption does not pose
does not satisfy the boundary condition (11), that is any practical constraints since matrixis the high-frequency gain
n(to) € W andlor g(ty) g W*. from input to output which is bounded fc_)r_ any pr_e}ctical systems.
The second one is related to an observability condition. In the linear

Supposey(ty) ¢ W*, theny(t) ¢ W* for all t > t; due to the case, if the zero dynamics is observable framthen the condition
invariance ofi¥?. We want to show that th&€.(—oc, +o0)-norm s satisfied.

of this solution is infinite by showing Theorem 5: Suppose that the nonlinear system and the reference
o0 trajectory satisfy Assumptions 1-3. Then, among all the control

/ In(t)]3 dt = +o0. (16) inputs which reproduce exactly the reference trajectory, he

br computed byug = [3(¢a. 1)) [0 — a(€a, na)], whereng is

Select a constant; = 26 > 0 as in Theorem 2. Without loss of the solution of (10) subjected to (11), is the only one yielding a finite
generality, we assume that| = 26 is not an equilibrium, since oth- £2(—o0, +oc)-norm.
erwise we immediately have (16). Léty, k =1, 2, 3, -+, tj41 > Remark: In practice, it is impossible to work with the interval
tr > ty} be the set of all time points at which enters the ball. If (—oc, +00). Instead,[-T, T] will be used where-T < t, and
this set is empty ang(¢y) € B(26), n will leave the ball in finite 7' > ¢;. Supposeu(t) is any control input defined of--T', T
time and stay outside for the rest of the time, onif;) ¢ B(26) and it producesy(t) = yq(t) on [T, T]. Then we can claim,
it will remain outside the ball for alt > t;. In either case, (16) as an immediate consequence of Theorem 5, thdt) || z,(—r, 1]
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Fig. 1. Simulation results by three output tracking approaches.

is greater than|| ua(t) ||c,(—7, 7 for T' sufficiently large. In this The stable manifold of the zero dynamics is characterizegh by 0,
senseu (t) is the minimum energy input among all exact-outputand the unstable manifold by
reproducing input signals. Note that we did not explicitly specify the

initial condition 5(—1") since it has a one-to-one relationship with N2 = =3 = %7}}2- (22)
u(t) and therefore is implicitly specified. Similar comments can also
be made regarding.(¢) and x.(t). Based on the results obtained in last section, there is only one

On the other hand, it should be pointed out that it is possible fERjectory satisfying the above reference dynamics yielding a finite
achieve approximate output tracking with an approprigte that has £2(—o0, +oc)-norm, and it is theya(t) given by stable inversion.
smaller energy tham,() on [T, T] if exact output reproduction Thus, any numerical iterative algorithm can be used to compi(te

is not required. This is easy to conceive sincét) is not optimized as long as it converges and produces a firlt¢ —oc, +occ)-norm
for energy on[-T, T]. solution. The method chosen here is as follows: first, integrate the

unstable part of the reference dynamics that is given by (20) backward

in time with zero final condition to obtain, (¢); second, use (22)

for the unstable manifold to obtain the required initial condition for
The effectiveness of stable inversion in output tracking and if$: then, integrate the stable part of the reference dynamics in (21)

properties established in the previous section can be illustrated by {hgvard in time to obtairy;. (t).

following example of a nonlinear single-input/single-output system: sjmylation results are shown in the first column of Fig. 1. In this

IV. AN EXAMPLE

7 —325 + 22 + 22 9 simulation a linear stabilizing feedback is implemented which gives
To| = | @1 +3z2—ax3 |+ [0|u (17) the following closed-loop dynamics:
s —3uy — x3 — x5 0 . ) 7
Y= o1 — 25 (18) &= f(x)+g(x)u = f(x) + g(x){ua + k[l — zd]}, 2(0)=0
with a reference output trajectory given by wherek = [-7.5, —50, 25] is the feedback gain. It can be seen from
. 3 the plots that a remarkably accurate output reproduction is achieved,
Ya = {0'02 = 0.02 cos(0.Aaft = 5]), ¢ €5, 10] (19) and the internal dynamics of the system is stable with desired state
0, otherwise. trajectories and the nominal control input approach zero as time goes

It can be easily verified that all three assumptions required to app® €ither plus or minus infinity.

stable inversion are satisfied. By applying a change of coordinates AS @ comparison, let us first consider the nonlinear regulator
approach. A rest initial condition is also assumed. The reference

§=a1—ws trajectory can be generated by the following exosystem:
m = T2
no — 2
N2 = &3 Wy = ?Tf ws
and letting¢ = y = ya, the desired output, the reference dynamics o
can be derived to be wWo = —?uu
i =3m + ya (20) w3 =0

M2 = — 3 — 12 — 7]%. (21) Yd = W3 —un
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TABLE |
A COMPARISON ON CONTROL AND STATES ENERGY AND TRACKING ERRORS
Approaches | Stable Inversion | Nonlinear Regulation | Classic Inversion
I=10,20] I=10,20] I =10,10]
| llcny 1.2632 1.3158 2.1395 x 10!
IEZ PNTS 0.1112 0.1161 5.9425 x 10°
lly=valleawy | 6 3388 x 10~4 0.3493 5.0094 x 10~
Nyallcqry
Iy-vellemey | g 9342 x 10— 0.4886 8.5586 x 10~
dllcaa(n
with initial conditions being set and reset as follows: beforehand, since “noncausal” implementation here actually means

computing by using “anticipatory” reference data.
w1 (—00) = wa2(—00) = w3(—o0) =0
w1(5) = w3(5) = 0.02; w2(5) =0 V. CONCLUSION

5)
wi(10) = w2(10) = w3(10) = 0. For nonlinear systems of the form (1) and (2) with a well-defined

After solving a set of partial differential equations, we obtain théelative degree and hyperbolic zero dynamics, the stable inversion
zero-error manifoldz™ = 7 (w) andu® = u*(w), in a closed form problem is guaranteed to have a unique solution under mild conditions

pdthe reference output trajectory. In this paper, we have shown that

and the closed-loop dynamics, which shares the same feed-forwt% table i luti : . tant i
plus feedback structure and the same linear feedbackkgaith the € stable inverse solution enjoys some very Important properties
beyond the guaranteed boundedness and convergence, even if the

stable inversion implementation, is given b L - .
P 9 y system has nonminimum phase. Specifically, the nominal control
fle , input is the only one that uses a finite amount of energy to reproduce

&= f(z)+ g(x)u . ;
. ; exactly the reference trajectory and at the same time to cause a
= f(@) + g(@){u (w) + k[z — m(w)]} finite amount of internal vibrations. The stable inverse solution can
z(0) =0. be used in tracking controllers that guarantee closed-loop stability

and exact output tracking without any transients. Using the same

Simulation results by this regulator design are shown in the secoswucture for the forward feedback controller as that used by nonlinear
column of Fig. 1 from which it can be seen that the asymptotic trackegulation, stable inversion is also a model-based approach and has
ing is achieved with transient errors existing both at the beginninige same robustness issue as nonlinear regulation does. To handle the
and at the end of the output maneuver. Comparing stable inversioodel uncertainty, either a robust feedback controller needs to be
and nonlinear regulation, it is noticed that both approaches havelesigned or some robust stable inverse solutions be computed. The
mismatched initial condition at = 0 and both assure asymptoticrobustness issue of inverse solutions is an issue of stable inversion
convergence of output errors. However, because of the noncausahd is currently under study.
preview characteristic of stable inversion, it is capable of transition
without causing transient output errors. In contrast, the nonlinear REFERENCES
regulation approach does not have such capability. ) . o
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