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Abstract

In this paper, the most widely used mode of atomic
force microscopy imaging where the cantilever is oscil-
lated at its resonant frequency is studied. It is shown
that the amplitude and the sine of the phase of the orbit
vary linearly with respect to the cantilever-sample dis-
tance. Experiments conducted on a silicon cantilever
agree with the theory developed.
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Figure 1: A schematic of an atomic force microscope. The
sample to be imaged sits on a piezo tube which
moves the sample in all three directions. As the
sample is moved beneath the micro-cantilever,
its deflections are registered by the resulting
deflection of the laser incident on a photodiode.

The basic operating principle of an AFM is illustrated
in Figure 1. A typical AFM consists of a micro-
cantilever, a sample positioning system, a detection
system and a control system. Sample positioning is
provided by a piezoelectric actuator which can position
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the sample in two lateral directions and one vertical di-
rection. As the sample is brought near the cantilever
tip, the influence of the sample on the cantilever be-
comes significant enough to be registered by the detec-
tion system. A popular detection technique is based
on the optical lever method where the laser incident
on the top surface of the cantilever is deflected into
a split photodiode sensor. Central to the operation
described above is the cantilever which largely deter-
mines the achiveable sensitivity and resolution of the
AFM. A typical cantilever is approximately hundred
microns long, twenty microns wide and on the order of
a micron thick. The cantilever tip can have dimensions
approaching that of an atom.

Tapping Mode imaging is a relatively new method of
imaging that overcomes many of the drawbacks of pre-
vious modes. In this mode the cantilever is oscillated
near its resonant frequency using a piezoelectric crystal
(the dither piezo in Figure 1). The profile of the sample
has an influence on the characteristics of oscillations,
which are monitored to identify and measure surface
features. Here the cantilever tip is in contact with the
sample for a very short time due to which the effect of
the cantilever impact is minimal. Thus this mode has
found widespread applications for imaging soft samples
in both ambient conditions and under liquids. In tap-
ping mode the cantilever tip moves through the whole
range of the cantilever-sample potential which makes a
linear model of this interaction inadequate [1]. Further-
more, it has been shown [2, 5] that chaotic behavior is
possible due to the nonlinearity present. Experimental
evidence for such behavior is also present [3].

In this paper a nonlinear dynamic model for the
cantilever-sample interaction is first developed. With
this model it is shown that the system exhibits periodic
motion with period equal to that of the forcing. The
Poincare map technique i1s used to establish asymp-
totic orbital stability of the periodic motion. Further-
more, the sensitivity of the Poincare map’s fixed point
with respect to the cantilever-sample distance is ob-



tained. The fixed point consists of the amplitude and
the “phase” of the periodic orbit, which can be mea-
sured from the cantilever vibration. The sensitivity
study of the fixed point has shown that the amplitude
and the sine of the phase of the orbit vary linearly with
respect to the cantilever-sample distance. Experiments
conducted on a silicon cantilever have shown that the
cantilever motion is indeed periodic with period equal
to that of the forcing. Furthermore, the variation of
the amplitude and sine of the phase were recorded as
the sample was moved towards the cantilever. The
experimental data confirms the theoretically predicted
linear behavior of these quantities with respect to the
cantilever-sample distance.

2 Analysis of Tapping Mode imaging

A cantilever-sample interaction potential is derived in
[2]. The cantilever-sample forces are characterized by
long range attractive forces and short range repulsive
forces. In ambient conditions capillary forces typically
dominate the attractive portion of the potential {7]. A
schematic of a typical potential between the cantilever
and the sample is shown in Figure 2 which depicts the
qualitative characteristics of the cantilever-sample in-
teraction. The cantilever sample model is given by Fig-
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Figure 2: Sketch of a typical cantilever-sample poten-
tial. The sample has a long range attractive
force which can be neglected after a separation
£. For short separations the forces are strongly
repulsive. The force on the cantilever due to
the sample is given by -%.

ure 3, which shows a spring-mass-damper system as a
model of the cantilever. The cantilever sample interac-
tion is modeled as a nonlinear spring which is effective
only after the separation between the cantilever and
the sample is smaller than £. The energy losses when
the cantilever is under the influence of the sample are
taken into account by a damping term c(y, y). Thus the
cantilever sample model is described by the following
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differential equation (where z = (1, z3)),

2 )
z1,z3) — koxy — h(z1) +g(t) /°

(1)

= < —28wozy — ¢

Figure 3: Model of the tapping mode cantilever and its
interaction with the sample. The (ko,mg,co)
system models the cantilever, attractive forces
and the repulsive forces exerted by the sample
are given by the nonlinear spring h(y) and the
nonlinear damper c(y, ).

During Tapping Mode imaging a sinusoidal voltage is
applied to the dither piezo (see Figure 1). Such a sinu-
soidal excitation can be modeled as an equivalent sinu-
soidal forcing on the mass in the spring-mass-damper
model of the cantilever shown in Figure 3. The can-
tilever is first sinusoidally vibrated without the pres-
ence of the sample, till the cantilever has settled into
periodic oscillations with frequency equal to that of the
forcing. Once the steady state is reached the sample is
moved towards the cantilever and the cantilever starts
“tapping” the sample. This produces a change in the
nature of the oscillations which relates to the proper-
ties like surface topography and hardness of the sample.
Thus by monitoring the changes, material properties
can be imaged; the remarkable feature being that data
at the atomic scales are obtained.

When the cantilever is not in contact with the sample
(that is the cantilever is in the region {y : y < £}) the
potential force ~(y) and the sample damping c(y, ) can
be neglected. With these simplifications the dynamic
equation for the cantilever “in air” is given by

()= )+

The following result establishes the existence of a peri-
odic orbit.
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Theorem 1 The dynamics given by (1) with g(t)
v coswt, has a periodic solution with a period T =
if the operating conditions are such that if anytime t
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cantilever enters the region {1 : &1 > £} then it leaves
the same region with a velocity whose magnitude 1s
smaller than the magnitude of the velocity with which
it enters the region. Furthermore it is assumed that
the sum of the spring force and the cantilever-sample
interaction force on the cantilever is always repulsive
(directed away from the sample).

The conditions for the existence of a periodic solution
with the same period as that of the forcing function are
mild. The only assumption made is that the velocity
with which the cantilever tip enters the region where
the sample’s influence is not insignificant, is greater
than the velocity with which it leaves the region. In
the limit when the cantilever spends no time in the
sample this assumption follows from the principle of
conservation of energy. As will be discusssed later, the
cantilever stays in the region {y : y > £} for a small
duration. Thus this assumption is not restrictive. This
assumption can be further relaxed; the exiting velocity
can be larger than the entering velocity but only within
some given range.

We will use the Poincare map method to further anal-
yse the dynamics. The Poincare section is character-
ized by the position of the highest point the cantilever
will reach in each cycle and the time at which it reaches
the highest point. The fixed point of the Poincare map
is directly related to the magnitude of the periodic os-
cillation. This allows us to study the sensitivities of
the periodic orbit with respect to various parameters
important for imaging. Once the stability of the fixed
point is established we will study the sensitivity of the
fixed point with respect to the cantilever-sample dis-
tance, which is given by £.

For the Tapping Mode dynamics, g(t) := 7 coswt. The
two dimensional Poincare section we will consider is
given by

Y= {(z1,22,1) 21 < 0,2, =0,t € R*}. (3)
Let the periodic orbit T'* corresponding to the peri-
odic solution whose existence was proven in Theorem
1 intersect the Poincare section X at p* = (t*,z*) in
R x R®. The normal to the Poincare section T is char-
acterized by the vector (0 1 0)' (because for any vector
(z1,z2,t) in X, (0 1 0)(z1,22,t)’ = 0). The Poincare
section will be transversal to the periodic orbit I'* at
p* if (0 1 0)'f(p*) is not equal to zero. This is true if
wizr} # ycoswt. We will establish later that for nor-
mal operating conditions of the Tapping Mode atomic
force microscope, w2|z}| >> 7. Thus the periodic orbit
is transversal to I.

Let U a subset of ¥ be a sufficiently small neighbour-
hood of p* such that I' intersects U only once. We now
construct the Poincare map which maps U into £. The
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second coordinate is always zero for any element in .
For notational brevity we will drop this coordinate for
the rest of the discussion. For a point (yo,%0) in U
((yo,to) is identified with (yo,0,%0)) the map P(yo, o)
is defined by the following operations.

Let z(to) = (yo,0) and let the components of the solu-
tion ¢(t,t0, z(tg)) of (2) with initial condition specified
at time tg as z(to) be denoted by (z1(t) z2(t))’ (where
z; and zg represent the position and the velocity re-
spectively). Let t; > o be the smallest time such that
z1(ty) = €. Denote the velocity z2(t}), by y,. Let P!
represent the map given by,

(1)

Let z(t;) = (¢, 9,) and let the solution ¢(¢,%y, z(t,)) of
(1) with initial condition specified at time t; as z(t})
be denoted by (z; z3). Let t4 > t; be the smallest time
such that z;(t4+) = £. Denote the velocity z2(t1) by 9s.
Let P? represent the map given by

#i(1)(

Finally with initial conditions z(t4) = (£, y4) for (2) let

Pj represent the map
)= (%)

gl

where t; > t4 is the smallest time when the velocity is
zero and y; is the position at this time. The Poincare
map P : U — X is defined by

UL
1y

Yo
to

(4)

Yt
it

Yy
ty

(5)

U
t1

Ys
17}

(6)

P:= P30 P%o P, (7)

and thus P((yo,t0)) = (vy,1s).

Implicit in the construction of the Poincare map is the
assumption that for all elements of U the cantilever
goes through the stages described by P!, P? and P3.
We assume that the velocity of the mass mg (shown in
Figure 3) on the periodic orbit T'* towards the sample
at the position £+ d is nonzero. From continuity of so-
lutions with respect to initial conditions we know that
there exists a neighbourhood of p* in ¥ such that any
trajectory with initial conditions in the neighbourhood
will have a nonzero velocity at the position £+ d. This
ensures that U can be chosen small enough so that for
all elements of U the cantilever goes through the stages
described by P!, P2 and P3.

Theorem 2 The periodic orbit of (1) with a period
T = Z—’(—:- for g(t) = ycoswot is stable if the following
assumptions on the periodic orbit hold;



1. the cantilever leaves the region {x; : z; > £}
with a velocity whose magnitude is lesser than the
magnitude with which it enters the same region,

2. the periodic orbit erits the region {zy : z; > £}
instantaneousl,

3. the time when the velocity is positive is equal to
the time when the velocity is negative,

4. the damping £ << 1.

Assumption 1 in the theorem statement is mild; it can
be further relaxed based on the damping factor £. As-
sumption 2 has been discussed at the begining of this
part of the section. It is expected that assumption 3,
that the time of flight from zo to £ given by ¢ —¢; is
equal to the time of flight from the position £ back to
the Poincare section which is given by t; — t4, if the
periodic orbit meets the sample when its velocity is
near zero. This characteristic of the steady state orbit
is supported by experimental evidence. Assumption 4
1s true for most atomic force opertaing conditions. It
needs to be stressed that these assumptions are made
only on the steady state periodic orbit and they can be
violated during transients. Also, the stability is based
on the eigenvalues of the Jacobian of the Poincare map
P. As the eigenvalues are continuous with respect to
the entries of the Jacobian, the stability result can be
expected to hold even if the conditions are near but not
exactly the same as the ones specified by the assump-
tions.

2.1 Amplitude and phase of the periodic orbit
In the tapping mode imaging the surface profile of the
sample is imaged based on the amplitude of the can-
tilever oscillation. Imaging techniques also utilize the
phase between the periodic orbit and the forcing with
an implicit assumption that the orbit can be approx-
imated by a sinusoid. In this part of the paper we
obtain analytical relationships between the maximum
magnitude of the cantilever oscillation and the sample
cantilever distance £. We also obtain the phase of the
periodic orbit with respect to the forcing, at a displace-
ment farthest from the sample.

Note that for the periodic orbit, y(ty) = £. Differenti-
ating this equation with respect to £ and obtaining an
expression for the derivative of g(t,) with respect to £,

we have,
. Dy 9y, dyy D
(o %) ( 5 )— B 2 ) ()
Yy 4 - Y Y Ltg
0 -u Dt Fye Bt D¢

NEA)

If we assume that the time spent “in the sample” (that
is in the region {y : y > £}) in each cycle of the periodic
orbit is small and that the velocity g3 = —Ay,, we have

Dyy S Dy,
(Z)-(>0(%) »

Finally note that y; = 0. Differentiating this equation
with respect to £ and obtaining an expression for the
derivative of y; with respect to £, we have,

)+

Dy 8y;  Bys Dy
L0 3 — dyy 9ty
0 gy Dty dyy  9yy ¢
I3 ay, aty
Note that on the periodic orbit y; = yo and t; = to.

Thus, we can use the above three Equations to obtain
%% and %1. Thus under the assumptions of Theorem
2 we have,

iy

|

Y

o]
~|

M_DOAQ ~ "'kla (9)
and
Ds ., _ wil+ ycosé 1 10
Dt ¢~wgyo(£)+'ycos¢ cos ¢’ (10)
where ¢ = wqty, k¢ = %‘:_13;—:', and ks =

A 2re e . .
‘57‘” +EA1825’1)+;E . If we restrict the operation of the

AFM to aregion where £ >> 2££, where £y = w is the
amplitude of the sinusoidally forced cantilever without
the sample present, then w2l >> 26wilycosd = vy cos ¢.
Also, note that as £ is very small k; can be approxi-
mated by one. Thus |yo(¢)| can be approximated by £
from which it follows that

Don? ny —ky. (11)
Thus these relations predict a linear relationship of the
maximum deflection of the cantilever and the phase (as
defined before) with respect to the cantilever sample
separation.

We had mentioned before that a sufficient condition for
the transversality of the Poincare section to the peri-
odic solution, is that wd|ye| # ycoswt where (to,yo)
is the point where the periodic solution meets the
Poincare section. Note that if £; denotes the amplitude
of vibration of the cantilever under the forcing y cos wot

w2

"/[co?szjot[ = % >>
1 (as & = 5k-). Thus w§ly >> v|coswot| Note that
from (9) it follows that |yo(€)| can be approximated
by £. Thus, w3lyo(£)| & w2l from which it follows that
wilyo(€)] >> vcoswpt for values of £ sufficiently near
2.

without the sample’s influence then



Figure 4: Cantilever deflection vs. distance

3 Experimental results

An atomic force microscope (MultiMode, Digital In-
struments, Santa Barbara, CA) was operated in the
Tapping Mode. A silicon cantilever of length 225 mi-
crons was used. The model parameters were evalu-
ated by analysing the cantilever response to thermal
noise in similar ways to the those suggested in [4, 6].
The quality factor  of the cantilever was evaluated
to be 130, (@ is given by +/komo/co). Thus we have
£ = % = ﬁ = (.0038. The first modal frequency
of the cantilever was at wp = 27 x 73881 rad/sec. For
the one mode model, the stiffness kg was found to be
4 N/m.
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Figure 5: The plot of the maximum cantilever tip deflec-

tion with respect to piezo extension.

A sinusoidal voltage with its frequency equal to the res-
onant frequency wq of the cantilever was applied to the
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Figure 7: sin(¢) Vs. piezo extension.

dither piezo (see Figure 1). The sample (slicon wafer)
initially was sufficiently far from the cantilever so that
it did not affect the cantilever motion. Once the can-
tilever reached its steady state (after &~ 1ms), the sam-
ple was slowly moved towards the vibrating cantilever
by extending the piezo (see Figure 1).

The motion of the cantilever tip at various values of the
piezo extension, was recorded using HP 89410 Vector
Signal Analyzer. Time series plots of the steady state
behavior of the cantilever tip at different piezo positions
are shown in Figure 4. As established by Theorem 1
and Theorem 2 we see that the cantilever tip is on a pe-
riodic orbit. The time period of the orbits determined
from the plots is equal to f}—’; A spectrum analysis of the
data shows that the orbits are nearly sinusoidal when
the cantilever sample separation is large. When the
cantilever separation is smaller, the cantilever motion
deviates slightly more from a sinusoidal behavior.

The piezo extension with respect to the voltage applied
to the piezo scanner is linear in the relevant range (less



than one percent deviation). It needs to be stressed
that the only quantifiable control on the sample and
the cantilever tip separation is through the piezo ex-
tension. There is no separate measure of the cantilever
and the sample separation. However, it can be assumed
that there is a constant offset between piezo extension
and the cantilever sample separation. With this under-
standing the horizontal axis is labeled “separation” in
Figures 5, 6 and 7.

The amplitude of the cantilever at various values of
the separation are given in Figure 5. Since the oscil-
lations are nearly sinusoidal the amplitude can be ap-
proximated by the maximum displacement. The phase
between the cantilever tip motion (approximated by a
sinusoid) and the forcing was also obtained experimen-
tally (see Figure 6). It is evident from Figure 5 that
the maximum deflection of the cantilever varies linearly
with respect to the separation, in the region between
points B and C (see Figure 5). Also, in Figure 7, sin(¢)
is plotted against the separation. As can be seen, the
experimental data shows that the plot is linear between
the points B and C.

When the piezo extension is between the points marked
A and B the cantilever tip barely (if at all) penetrates
the repulsive region of the potential. The attractive
region of the potential (see Figure 2) has considerable
influence on the cantilever motion. For values of the
piezo extension less than that given by A the cantilever
is not influenced by the sample and for values of the
piezo extension more than that given by C the tip prob-
ably never leaves the moisture layer present on the sur-
face. For purposes of the analysis presented here the
appropriate region of the piezo extension is between the
points B and C. As is evident the plots of sin(¢) and the
maximum displacement are linear in this region which
corroborate the analytically obtained expressions in re-
lations (9) and (11). Experiments conducted on a wide
variety of samples show similar characteristics as illus-
trated in the experiment described in this paper.

This study has anlaytically shown, with support from
experimental data that sin(¢) and the maximum mag-
nitude of the cantilever displacements can be effectively
utilized to map the topography of the sample. This
study also suggests that material properties like coeffi-
cient of restitution can be obtained by utilizing the plot
of sin(@) with respect to cantilever sample separation
though better models for cantilever sample interaction
need to be employed.

4 Conclusions
In this paper a nonlinear dynamic model was intro-

duced to describe the Tapping Mode atomic force mi-
croscope. Based on the model the existence of periodic
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orbits under mild conditions was proven. Using the
Poincare method the asymptotic orbital stability of the
periodic solution was established. The sensitivity of the
amplitude and the sine of the phase of the cantilever vi-
bration revealed a linear relationship with respect to a
parameter £ which characterizes the cantilever-sample
distance.

Experiments using a silicon cantilever were performed.
The parameters for the cantilever model developed
were found using the response of the cantilever to ther-
mal noise. Under a sinusoidal forcing the cantilever
response was periodic with the period equal to that of
the forcing; corroborating the theoretical results. Fur-
thermore, as predicted by the analysis, the amplitude
and the sine of the phase of the cantilever vibration
were linear with respect to cantilever sample separa-
tion.

Ongoing research has indicated that other tools (e.g.
harmonic balance and averaging) from dynamics and
control literature can be very useful in understanding
the Tapping Mode dynamics and for developing newer
modes of imaging.
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