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Abstract 

In this paper we use harmonic balance and averaging 
techniques to analyze the tapping mode dynamics of 
the atomic force microscope. A model for the cantilever 
sample interaction is developed. Experimental results 
show that the analysis and the model predict the be- 
havior of the tapping cantilever. 

1 Introduction 

The AFM (atomic force microscope) has revolutionized 
imaging in the last decade, having significant impact in 
diverse fields like physics, biology, and chemistry. The 
AFM has made it practical to achieve nanometer scale 
resolution in topography imaging. 
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Figure 1: A schematic of an atomic force microscope. The 
sample to be imaged sits on a piezo tube which 
moves the sample in all the three directions. 
As the sample is moved beneath the micro- 
cantilever, the cantilever tip's deflection is reg- 
istered by the resulting deflection of the laser 
incident on a position-sensitive photodiode. 

The operation of a typical AFM is described in Fig- 
ure 1 which consists of a micro-cantilever with a sharp 
tip, a sample positioning system, a detection system 
and a control system. One of the widely used modes 
of XFM imaging is the tapping-mode, where the can- 
tilever is vibrated near its resonant frequency. The in- 
teraction between the tip and sample alters the ampli- 
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tude, phase, and resonant frequency of the cantilever 
oscillation which is monitored to infer properties of the 
sample. The dynamics of tapping-mode is considerably 
more involved than that of contact mode. Research 
has indicated that chaotic behavior is possible in cer- 
tain parameter regimes [2, 71. However, in most oper- 
ating regimes the mode offers a robust way of imaging 
samples with high resolution. 

Extensive research has been done on characterizing the 
tipsample interaction and elaborate models have been 
developed in the scanning probe literature (e.g. [l]). In 
contrast to such methods, in this paper our focus will 
be to obtain as simple a model of the tip-sample inter- 
action, as possible which predicts the essential features 
observed in experiments on the dynamics of tapping- 
mode. The dynamics of the amplitude and phase vari- 
ables (which are important for imaging) are obtained by 
using the averaging method. It is shown that the fixed 
points of the averaged dynamics satisfy the harmonic 
balance equations. Time simulations of the dynamics 
assuming a piecewise linear sample-cantilever interac- 
tion are presented. Finally, experimental observations 
that have guided and that were prompted by the theo- 
retical analysis are presented. 

2 Tapping mode dynamics: 
analysis 

modeling and 

P 
P 

Figure 2: Sketch of a typical cantilever-sample force. 

2.1 Modeling 
In the tapping mode a dither piezo attached to the sub- 
strate that forms the support for the cantilever is forced 
sinusoidally. 

The cantilever model dynamics are described by Fig- 
ure 3.  The dynamical equation of the tip of the can- 



Figure 3: Model of the cantilever 

tilever, p(t), 

ii + 2twoP + w;p + h(p ,  P )  = g(t), (1) 

WO = &, 2two = 2 and g(t) = and h is the 
force due to the sample per unit mass. A block diagram 
depicting the dynamics is given in Figure 4, where G is 

Figure 4: Block diagram 

any linear model of the cantilever. 

Experimental data has indicated that a force curve of 
the form shown in Figure 2 well characterizes the force 
on the cantilever due to the sample. It indicates long 
range attractive forces and short range strong repulsive 
forces. 

2.2 Harmonic balance 
We will assume that for the dynamics depicted by 
Figure 4 there exists a periodic orbit with the same 
period as that of g where g is sinusoidal (see [6]). 
We will denote such a periodic orbit by p,(t). Be- 
cause the nonlinear force on the cantilever due to 
the sample is assumed to be time-invariant it fol- 
lows that h ( p , , p , )  is also periodic with period T. 
Thus p , ,  h(p,,lj,) a n i  g(t) all admit expansions of 
the form p*(t) = xk=-apkejkwt,  h(p*(t),p*(t)) = 
E,"==_, hkejkwt and g(t) = E,"=-, gkejkwt, where 
21, = xkr + jxki are the exponential Fourier coefficients 
of x. Note that on the periodic orbit Figure 4 can be 
viewed as illustrated in Figure 5. LFrom the linearity of 

Figure 5: Harmonic balance. 

the cantilever model G and the fact that p ,  and h ( p , )  

are real signals it follows that 

G(jkw)(gk - hk) = pk for k = 0, 1 , 2 , .  . . . (2) 

One of the intriguing features observed in experiments 
is that under normal operating conditions irrespective 
of the cantilever or the sample characteristics the peri- 
odic orbit is nearly sinusoidal. This can be explained as 
follows. The thermal noise response plots (both exper- 
imental and theoretical) of a typical cantilever indicate 
that IG(jkw)I (where G is a multimode mode model of 
the cantilever) is very small. This can be deduced from 
the study of thermal noise response in [5]. Thus one 
can assume that IG(jkw)l M 0 for all k = 2 , 3 ,  . . . . It 
now follows immediately from Equation (2) that pk = 0 
if Jkl  2 2. Thus onecan writep, t )  = acos(wt++)+po, 
where a = 21~11 and p l  = (plleji.  Thus the filtering ef- 
fect of the cantilever transfer function results in a nearly 
sinusoidal orbit of the cantilever. We will assume that 
p k  is zero for (k( 2 2. The harmonic balance equations 
reduce to 

ho - go + w;po = 0 

hlr - glr + a' 2 cos 4 - 2tWwo - 2 sin 4 = o 
hli - Si; + ~ ~ W W O '  2 COS 4 + Q' 2 sin 4 = 0. 

(3) 

(4) 

(5) 

where Q = W O "  - w2 and let A := (WO" - w ' ) ~  + 4<w2w02. 
Note that plr = +cos4 and p l i  = 4 sind. 

a .  

2.3 Connection to averaging 
Consider a system of the form 

x = cf(x,t,E), x E R", 0 5 E << 1, ( 6 )  

where f : R" x R x R+ -+ R" is periodic in t with 
period T. The associated autonomous averaged system 
is given by (see [4]) 

(7) 
l T  

x, = E ~ L  f(x,t,O)dt =: Ef,(x). 

Note that the tapping mode dynamics is described by 
the equation p + wip = ~ f ( p , P , t ) ,  where f ( p , i , t )  = e - - q. We will assume that g1 2twop and h 
are quantities proportional to E. Define new variables U 
and U by 

coswt -$sinwt ) ( p a p 0  ) .  (8) 

Let a = d w  and4 := arctan(:). Then we have 
p =  acos(wt+4)+po a n d p =  -wasin(wt+d). Assum- 
ing that the variables a, 4 and p are slowly varying, the 
averaged equations are given by 

( ) = ( -sinwt --coswt 
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Relating the harmonic balance equations given by (4) 
and (5) to equations (9) and (10) we see that the har- 
monic balance equations indeed yield the fixed points 
of the averaged dynamics. Thus by solving the har- 
monic balance equations for the variables u , d  and po 
and finding out the stability type of the related fixed 
point we can determine the amplitude, phase and the 
stability of the periodic orbit. 

If we further assume that the cantilever-sample interac- 
tion is conservative and that the cantilever-sample force 
is given by the derivative of a potential V ( p )  (that is 
h = F) then it follows that hl, sin 4 - hli cos 4 = 0. 
Similarly it can be shown that hl, cos 4 + hli sin 4 = &Jtr %(PO + ucos$)cos$d$ =: g(a,po). Note that 

is independent of the variable 4.  With these relations 
we have 

Solving for the fixed points we see that 

(13) 
Setting the right hand side of Equation (11) we obtain 

a, = - sin4, 
%WOW 

which predicts a linear relationship between s in4 and 
the amplitude a (see [3] also). 

2.4 Piecewise linear model of the sample inter- 
action 
In this part of the paper we will assume a piece- 
wise linear cantilever-sample force curve (see Figure 6). 
Specifically we assume that 

7///////,///,// 

Figure 6: Model with the piecewise linear cantilever sam- 
ple force interaction. 

h(p) = 0 if p 2 -e+ d (15) 
=-w;(p+d-d) if - e < p < - ( e - d )  (16) 

= W b 2 ( p + e ) - ~ ~ ( ~ + e - d ) i f p <  -e. (17) 

The coefficients ho and hl are given in Equation (18) 

, Using where s1 = and s2 = - -e + d - PO -e - Po 
a a 

I 
a n 

Figure 7: The time simulation plots resulted in solid 
curve (which coincided with the harmonic so- 
lutions obtained by harmonic balance) when 
the sample was slowly moved towards the can- 
tilever and the dotted curve when the sam- 
ple was moved away from the cantilever. The 
bistable behavior is clear from the hysteric be- 
havior. The plot of the sine of the phase versus 
the amplitude shows the linear relationship be- 
tween the two parameters. 

Simulink the response of the system shown in Fig- 
ure 6 was obtained for fo = 299.95 IiHz, WO = w = 
2rfo,w, = 0.5W0,wb = 10w0,d = Inm and Q = = 
275. The forcing magnitude was such that the steady 
state amplitude of the cantilever tip oscillation in the 
absence of the sample was 24.5nm with k M 29 N l m .  
In the simulation the variable e was slowly decreased 
from 30nm to 15nm (the approach), and then increased 
slowly from 15nm to 30nm (the retract). As is evi- 
dent from Figure 7 when the sample is approaching 
the cantilever, the phase and amplitude (shown by the 
solid line) show a discontinuity at a lesser value of e 
then when the sample is retracting from the cantilever 
(shown by the dotted line). It is also evident that the 
sine of the phase varies linearly with respect to the am- 
plitude (no signature of hysteric behavior is present in 
this plot). This was predicted by Equation (14). It was 
also verified that the amplitude and the phase variables 
satisfied the harmonic balance Equations (3), (4) and 
(5). Note that in deriving the parameters ho and hl in 
the harmonic balance equations, it was assumed that 
the cantilever motion was purely sinusoidal. In the time 
simulation no such assumptions are made where the 
amplitude and the phase of the first harmonic of p are 
obtained. That the amplitude and the phase of the first 
harmonic in the time simulations agree with the ampli- 
tude and phase of harmonic balance equations indicates 
that the assumption on ignoring the higher harmonics 
of p in obtaining the harmonic balance equations is jus- 
tified. 

2E 
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3 Experimental methods 

Figure 8: Experimental data when the sample, positioned 
by the piezo tube, approaches and retracts from 
the cantilever. The amplitude and phase of 
the cantilever motion while approaching and 
retracting are the same except for the part be- 
tween points A and B. This bistable behavior is 
characteristic of the Tapping mode operation. 

An atomic force microscope (Multi-Mode, Digital In- 
struments, Santa Barbara, CA) was operated in the 
Tapping Mode. A silicon cantilever of length 225 mi- 
crons was used. The model parameters were evaluated 
by analyzing the cantilever response to thermal noise in 
similar ways to those suggested in [5]. The cantilever 
parameters were found to be W O  = 27r x 73881 rad/sec, 
[ = 0.0038 and IC0 = 4N/m. A sinusoidal voltage with 
its frequency equal to the resonant frequency W O  of the 
cantilever was applied to the dither piezo (see Figure 1).  
The motion of the cantilever tip at various values of the 

Figure 9: Sine of the phase plotted against amplitude. 

piezo extension was recorded using an HP 89410 Vector 
Signal Analyzer or a Stanford Research SR530 2-phase 

lock-in amplifier. A feature of the experimental data 
is illustrated by Figure 8. It is seen that as the sam- 
ple is moved (relatively slowly) towards the cantilever 
(moved upwards in Figure 1) the oscillation amplitude 
decreases linearly with decreasing average cantilever-tip 
sample separation. The decay is monotonic for most of 
the traversal except for a discontinuity at a value A .  At 
the same point there is a jump in the phase also (the 
phase is the amount by which the sinusoidal deflection 
of the cantilever tip lags behind the forcing). On re- 
tracting the sample away from the cantilever (the sam- 
ple is moved downwards in Figure 1) the same behavior 
is observed except that the discontinuity appears at a 
larger value B (for experimental details see [3]). The 
hysteresis effect is indicative of the bistable behavior in 
the system typical of the tapping mode dynamics. Note 
that this bistable behavior was also predicted by the 
model with a piecewise linear cantilever sample force 
interaction (compare Figure 7 with Figure 8). The sine 
of the phase versus amplitude plot is shown in Figure 9. 
For most of the sample traversal the plot is linear. The 
linear relationship is predicted by Equation (14) assum- 
ing a conservative sample cantilever interaction. The 
deviation from the linear relation and the fact that the 
slope is slightly smaller than predicted by (14) are at- 
tributed to non-conservative terms in the tip-sample 
interaction. The mismatch of the experimental data in 
satisfying the harmonic balance equation can be used 
to infer sample properties. Also, the parameters e, d ,  w, 
and wb in Figure 6 can be identified using experimental 
data. 

4 Estimation 

A linear relationship can be established between the 
coefficients ho and h l  and the spring constants w: and 
w t  using Equations (18). This allows us to estimate 
the spring constants given amplitude, phase and po for 
different values of 1. However PO is very difficult to 
measure due to it's relatively small magnitude. Thus 
it becomes essential to ascertain if various parameters 
in the model can be estimated by letting po to be zero. 
The simulation data was used to study the impact of po 
on the coefficients ho and h l .  It was found that po af- 
fects wb. However it's effect on w, is negligible. Similar 
plots were obtained for ho and hl,. Hence a reasonable 
estimate of w, can be obtained. But the estimation of 

235 



Figure 10: The imaginary part of hl is plotted against 2 
for the simulation data for two cases. In one 
case po is assumed to be known whereas in the 
second case is set to zero. It can be seen 
that the plots almost overlap in the attractive 
region. 

wb is difficult without knowing PO. An estimation of 
w, was made using the simulation data for the attrac- 
tive region without using po to verify the observation. 
Estimates were very close to the w, value used for the 
simulation. This idea was extended to the experimental 
data. It was assumed that the amplitude of vibration is 
approximately equal to the distance of separation in the 
repulsive region. This assumption is reasonable because 
the repulsive forces are strong enough and do not allow 
any significant penetration into the sample. The strong 
dependence of the coefficients of h on po (which is very 
small in magnitude) in the repulsive region is an added 
justification. 1 was fixed by the above argument. When 
amplitude is plotted aginst 1, there is a distinct change 
in slope between the attractive and repulsive regions. 
This is used to fix d .  The real and imaginary parts of 
hl were evaluated using the part of the experimental 
data corresponding to the attractive region alone. The 
harmonic balance equations were used for this purpose. 
ho couldn't be evaluated due to the explicit dependence 
of ho on PO. A least square estimate of w, was obtained 
using the hl  values. w, was estimated to be 1.4061e5 
which is approximately 0.3029 * W O .  The estimated w, 
value was used to simulate the model.The amplitude 
and phase plots thus obtained were compared (in the 
attractive region) with the plots obtained using exper- 
imental data. Using the estimated value of w, we can 
evaluate ho using Equation (18) .  Since in the attrac- 
tive region ho values do not change much by letting po 
to zero, the harmonic balance equations combined with 
Equation (18)  were used to arrive at an estimate for PO.  

5 Conclusions 

In this paper it is shown that many of the experimen- 
tally observed features in tapping mode atomic force 
microscopy can be explained by the harmonic balance 
technique. It is also shown that the same conclusions 
can be reached via averaging techniques. Also both 
predicted behavior which was later confirmed by ex- 
perimental data. A piecewise linear model was con- 
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Figure 11: Using the estimated wo,  plots of amplitude and 
phase are obtained for the attractive region 
and are compared with plots obtained using 
experimental data. Also shown is a plot of 
the estimated PO. 

structed for the cantilever-sample interaction which 
captured the essential characteristics of the experimen- 
tally observed behavior of the tapping cantilever. The 
harmonic balance provides a computationally efficient 
method for evaluating the phase and the amplitude for 
such a model. 
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