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Greedy Wire-Sizing Is Linear Time

Chris C. N. Chu and Martin D. F. WondJember, IEEE

Abstract—The greedy wire-sizing algorithm (GWSA) has been  For the problem of minimizing weighted sink delay under
experimentally shown to be very efficient, but no mathematical the Elmore delay model [13], a widely used technique is
analysis on its convergence rate has ever been reported. In this optimal local resizing. The basic idea is to iteratively and
paper, we consider GWSA for continuous wire sizing. We prove . . - . . .
that GWSA converges linearly to the optimal solution, which gréedily resize the wire segments. In each iteration, the wire
implies that the run time of GWSA is linear with respect to segments in the tree are examined one by one. When a wire
the number of wire segments for any fixed precision of the segment is examined, it is resized optimally while keeping the
solution. Moreover, we also prove that this is true for any starting \yidths of all other segments fixed. This technique was first

solution. This is a surprising result because previously it was . . .
believed that in order to guarantee convergence, GWSA had introduced in [11] and was later extended to many other wire,

to start from a solution in which every wire segment is set to Duffer, gate, driver and/or transistor sizing problems [1], [2],
the minimum (or maximum) possible width. Our result implies  [4]-[6], [9], [10].
that GWSA can use a good starting solution to achieve faster  |n [11], discrete wire sizing (i.e., the segment widths must
convergence. We demonstrate this point by showing that the e chosen from a given set of discrete choices) was considered.
minimization of_ maximum delay and _the minimization of area Th d algorith lled d i ldo-
subject to maximum delay bound using Lagrangian relaxation '€ PrOPOS€d algorithm was called greedy wire-sizing aigo
can be sped up by more than 50%. rithm (GWSA). GWSA does not give the optimal solution
directly as it can converge to nonoptimal solutions. Rather,
GWSA is used to get lower and upper bounds on the segment
widths of the optimal solution. Then dynamic programming
technique is used to find the optimal solution among all the
.- INTRODUCTION possible solutions satisfying the lower and upper bounds. As
ITH the evolution of very large scale integratiorthe lower and upper bounds obtained by GWSA are close to
(VLSI) fabrication technology, interconnect delay hasach other in most cases, the dynamic programming step is
become the dominant factor in deep submicron design. usually very efficient.
many systems designed today, as much as 50% to 70% ofn [2], GWSA was extended to continuous wire sizing (i.e.,
the clock cycle are consumed by interconnect delay [8]. ABe segment widths can be from a continuous range of real
technology continues to scale down, we expect the significanagmbers). It was proved in [2] that for continuous wire sizing,
of interconnect delay will further increase in the near futureGWSA always converges to the optimal solution, provided that
Wire sizing has been shown to be an effective technique falt segments are set to their minimum (or maximum) possible
interconnect optimization; see [8] for a survey of recent workgidths for the starting solution. However, if an arbitrary
In particular, the problem of minimizing weighted sink delagtarting solution is used, it is not known whether GWSA wiill
by wire sizing has drawn a lot of attention. Basically, a routingtill converge. Moreover, even for min-width (or max-width)
tree with a source, a set of sinks, and a set of wire segmestarting solution, the convergence rate is not known.
is given. Associated with each sink is a nonnegative Weightm this paper, we analyze the convergence of GWSA for
representing the criticality of the sink. The problem is teontinuous wire sizing. We prove that no matter what starting
determine the width of each wire segment so that the weighteglution is used, GWSA always converges to the optimal
sum of the delays from the source to the sinks is minimizegp|ution. Furthermore, we prove that the convergence rate of
Solving this problem is a key to solving problems with mangwSA is linear for any starting solution. This implies that
other important objectives such as minimizing maximum sinke run time of GWSA ig)(nlog 1), wheren is the number
delay or minimizing total area subject to bounds on sinf wire segments and specifies the precision of the solution
delays. It is because [1] and [3] have shown that thoggee Theorem 2). Hence, GWSA runs in time lineantéor
problems can all be reduced by Lagrangian relaxation ¥ofixed precision.
a sequence of weighted sink delay problems. Thus havinggeing able to use an arbitrary starting solution is particu-
efficient algorithms for the weighted sink delay problem igyrjy yseful in optimizing other objectives (e.g., minimizing
very important for interconnect optimization. maximum sink delay or minimizing total area subject to
) ) ) _bounds on sink delays) by Lagrangian relaxation. A problem
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Ry '\,' N, Fig. 2. The model of wire segmeit’; by a n-type RC circuit. Note that
b W‘ /A s the resistance and capacitance of the segmentigte; and é;x; + fi,
= 5 A I G respectively, where; is the unit width wire resistancé; is the unit width
W, 4 /,. wire area capacitance,arfd is the wire fringing capacitance d¥;.
/. ] N,
W, g
CS
% j_____ 4 {}, deS(Wg) = {Ng}, anc(Wg) = {W;), W(;, W7}, and

path(Ng) = {W;), W(;, W7, Wg}

Forl < i < n, let z; be the width of wire segmerit;,
andL; andU; be, respectively, the lower bound and the upper
maximum) possible widths to form the starting solution fopound on the width ofi¥;. Therefore,L; < z; < U; for
GWSA. However, since two consecutive weighted sink delay < i < n. Let x = (1,2, ++,x,), which is referred
problems in the sequence are almost the same (except thatiéhas a wire-sizing solution. A wire segment is modeled as
sink weights are changed by a little bit), the optimal solutiog r-type resistor-capacitor (RC) circuit as shown in Fig. 2.
of the first weighted sink delay problem is close to the optimghe resistance and capacitance of wire segriénare #; /x;
solution of the second one and, hence, a good starting solutigitl ¢;; + f;, respectively, where; is the unit width wire
to the second one. So it is better not to reset the wire-sizipgsistanceg; is the unit width wire area capacitance, afid
solution before solving each weighted sink delay problem. V¥¢ the wire fringing capacitance o¥;.
experimentally verify that our new approach of not reseting is et
much better than the previous approach of reseting each time.

We show that our approach can speed up the minimization of Wi = Z
maximum delay and minimization of area subject to maximum
delay bound using Lagrangian relaxation by more than 50%e., 1i; is the total downstream sink weight of segmé¥.

The rest of this paper is organized as follows. In Section I, Let
we present the weighted sink delay problem and the algorithm .

GWSA considered in [2]. In Section lll, we analyze the By(x) = Z Pit5 /%

convergence of GWSA. In Section IV, experimental results to W, canc(W;)

show the linearity of the run time of GWSA and the speeduge., R;(x) is the weighted upstream wire resistance of segment
on optimizing other objectives using Lagrangian relaxation a#;.

presented. Let

Fig. 1. An example of a routing tree.

Ak
Ny Cdes(W;)

CZ(X) = Z éja:j

Il. THE WEIGHTED SINK DELAY
W; Edes(W;)

PROBLEM AND THE ALGORITHM GWSA

In this section, we first present the continuous wire-siziri Ci(¥X) is the total downstream wire area capacitance of

problem with weighted sink delay objective and then th%egmentW
algorithm GWSA considered in [2]. Let

Assume that we are given a routing tré&eimplementing ol = Z fi+ Z e,
a_signa_ll net WhiCh consists of a source (at the root) W, Cdes(W)) Ny Cdes(W5)
with driver resistanceRp, a set of n wire segments

{Wy,Wo,---,W,}, and a set ofm sinks N' = i.e.,CifS is the total downstream wire fringing capacitance and

{N1,Na,---,N,,} (at the leaves) with load capacitancg ~Sink capacitance of segmet;.
1 < k < m. Associated with each sink,, is a nonnegative  Let
weight A, representing the criticality of the sink. Assume Cr(x) = Z &z

without loss of generality tha}~;" , A\x = 1. Basically, the
problem is to minimize the weighted sink delay for the routing
tree by changing the widths of the wire segments. See Figl-&., Cr(x) is the total wire area capacitance of the routing
for an example of a routing tree. tree 7.

Let des(W;) be the set of descendant wire segments or Let
sinks of WZ (excluding W;). Let ar}c(Wi) be the set of C%s _ Z £+ Z e
ancestor wire segments &F; (excludingW;). Let path(Vy)
be the set of wire segments on the path from the driver to
the sink N,. For example, for the routing tree as showme., C{f is the total wire fringing capacitance and sink
in Fig. 1, des(W1) = {Wy, W3, Wy, N1, N}, anc(W7) = capacitance of the routing treE.

W,cWw

VVj cw Ny CN
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The ITZImo.re. delay model [13] is used for delay calculation. _ Z /MT_i <czavZ + Ci(x) + ﬁ 1 Cifs>
For a wire-sizing solutiorx, the EImore delay from the source 2 2
to the sink NV is given by

; Zq
W,ew

+ Rp(Cr(x) + C4)

Di(x) = Rp(Cr(x) + CF) 7 czwz i f
=D Y Gut g+l
2

+ Z ;—Z(% + Ci(x) + % + Cifs> 1) Wiew Wjedes(w;-)
W, Cpath(Ny,)

. . . + Rp Z i + CLF
Then the weighted sink delay problem can be written as Woow
follows: .

=i Z Nj% + Rp
Minimize D(x Z MeDi(x Wj€anc(Wi)
Subjectto L; < z; SUZ, 1<i<n. —i—uii Z éja:j+%+cif5
’ W;cdes(W;)

Now we present the algorithm GWSA proposed in [2] for solv- + terms independent of;

ing the weighted sink delay problem. The algorithm GWSA R piti fi s

is a greedy algorithm based on iteratively resizing the wire = Gai(f(x) + Bp) + Z; <Ci(x) + 2 + Cif )
segments. In each iteration, the wire segments are examined + terms independent af;

one by one. When a wire segméfit is examined, it is resized

optimally while keeping the widths of all other segments fixedNote that R;(x) and C;(x) are also independent af;. So

This operation is called an optimal local resizingéf. by the Kuhn-Tucker conditions [14], the optimal valuexof
The following lemma gives a formula for optimal IocalbetweenL and U; which minimizesé;z;(R;(x) + Rp) +
resizing. This lemma is similar to [2, Lemma 1 and Lemmé; Y+ L+l is
2]. However, wire fringing capacitance was not considered
in the original proof and the notation used in [2] were quite . i fs
- - S pits  Ci(x) + 5 + C;
different from those in this paper. So the proof is included forz; = min< U;, max< L;, — -
Ci R;(x)+ Rp
completeness.
Lemma 1: For a wire-sizing solutiox = (x1, 2, -, &y), O
the optimal local resizing oW, is given by changing the
width of W; to Let children(WW;) be the set of all children wire segments
of W, and letp; be the index of the parent wire segment
Ci(x) + % N qfs of W;. Then the algorithm GWSA is given at the bottom of

the next page. Note that sin¢g(x) and R;(x) are computed
incrementally in step S3 and S4, each iteration of GWSA takes
only O(n) time.

. it
z; = min< U;, max<{ L;, 1/ == -
\/ i R;i(x) + Rp

Proof:
lll. CONVERGENCEANALYSIS OF GWSA
X) = Z e D (%) We discuss the convergence of GWSA in this section. In the
past, in order to guarantee convergence, GWSA always sets all
m segments to their minimum (or maximum) possible widths for
_ Z)"“ RD(CT(X) + quf) the starting solutio‘n.. For exan_1p|e, the. origin.al GWSA ir_1 [2]
et setsz; to L; for all 4 in the starting solution. With this starting
solution, it can be proved inductively that segment widths
Pi [ G fi are nondecreasing after each optimal local resizing operation.
+ Z < 2 +Ci(0)+ +Cf ) Since each segment width is also upper bounded (by;),
WL eparh(v)” the wire sizing solution must converge. We can prove similarly
by (1) that the wire sizing solution will also convergesf is set to
7 U, for all ¢ in the starting solution. However, if an arbitrary
= Z Z Ak T starting solution is used, it is previously not known whether
Wi €W \ Ny €des(W);) ' GWSA will still converge. Moreover, even for min-width (or
&z f7¢ ’a m max-width) starting solution, the convergence rate of GWSA
: < +Ci(x)+ 5 +C, ) > M is not known.
In the rest of this section, we first prove that the algorithm
-Rp (CT(x) + quf) GWSA always converges to the optimal solution for any start-
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ing solution (Theorem 1). Then we prove that the convergenceLemma 2: For anyp > 0, if ﬁ < z— < 1+ p for all 4,
rate for any starting solution is always linear with convergengg., 1 o 4 1 ¥ par
=~ qL =~ .

ratio upper bounded by the parametedefined as follows: Ltpa L )
Proof: If % < x; < (1+ p)w; for all ¢, we have
_ Ip 1
“= B {1/ <1 + W cane(Wy) f’i/Li> ’ mRk(X) < Rp(x) < (14 p)Ru(x)
1/ {1+ s : e 1
2w canc(wy) Gilli ka(x) < Or(x') £ (1 +p)Cr(x).

Note thatw is a constant such that< « < 1. This implies that Since0 < u; < 1 andxz; > L; for all 7, we have
the run time of GWSA i€ (n log 1) for any starting solution " "
o NN , ! Ry(x) = iTi/ T < i/ Li.
wheree specifies the precision of the solution (Theorem 2). K(x) ] Z ] piti/ ] Z ] i
. W; €anc(Wy) W; €anc(Wy)

For the following two lemmas, we focus on segmétit, o )
for some fixedk. Note that during the: optimal local resizing BY the definition ofe, « > 1/(1 + Rp/Ri(x)), or equiva-
operations just before the local resizing1df, at a particular lently,
iteration (except the first iteration), each wire segment is Ry(x) < o Ri(x) + Rp).
resized exactly once. Intuitively, the following two lemmas
show that during these resizing operations, if the changedience
in_ all the segment widths are small, then th_e cha_lnge ?n the Ry (x') + Rp < (1+ p)Ri(x) + Rp
\t/)v(lad?vaé; dSl:Tr]lglglgeihe local resizing of¥; at that iteration will = pRu(x) + (Ri(x) + Rp)

For somet > 1, letx = (z1,---, ), X' = (2, ) < pa(By(x) + Bp) + (Ri(x) + £p)
and x” = (zf,---,z") be, respectively, the wire-sizing = (1+ pa)(RBi(x) + Rp) 2)

solutions just before the local resizing &f, at iterationt, and

1
t+ 1 andt + 2 of GWSA. Let Rk(x’)+RD21+ka(x)+RD
A Ch Ly of
g = u;:m_ W(x)+ 5 +C IRk(X)—i—RD—LRk(X)
Cp. Rk(x) + Rp 1+p
and > Ru(x) + Rp — 2 (Ru(x) + Rp)
1+p
= T C(x)+ L4 +f = <1 - %)(Rk(x) + Rp)
k Cr Rk(X/) + Rp ’ P
So by Lemma 1z} = min{U, max{Ls,q},}} and z} = > 1 +pa(Rk(X) + Rp)
min{ly, max{Ly, g} }}. asp>0 and 0<a<l. (3)

ALGORITHM GWSA:

S1. Letx be some starting wire-sizing solution.
S2. Computeu;’s and Cifs’s by a bottom-up traversal df’ using the following formula:

. {)\k, if W, connects directly to sinkV;
" 2w, echidrenow 14, Otherwise
ofs {cz, if W; connects directly to sinkVy
F ZWJ-Echildrer(w;) (fj + ijs)v otherwise

S3. Compute allC;'s by a bottom-up traversal df’ using the following formula:
Ci(x):= Y (Ci(x)+&u;)
W Cchildren(W;)

S4. Perform a top-down traversal @f:
For each W,

R; (X) = Rpi (X) + Hp, fpi /xpi

z; ;== min < U;, max< L;, @ i(x) + 5 +C;

S5. Repeat Step S3-S4 until no improvement.
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Similarly, since z; < U for all i, we have Cx(x) = | emma 4:For anyt > 0 andp > 0, if 1 < wﬁt(t)” <
YW, canc(wy) G%i < L, cancewy) GUi- B the definition of . r iz
a, @ > 1/(1+ (& + ¢f*)/Cu(x)), or equivalently 1+ p for all 4, then 70 < “ey < 1+ pav for all 4.
I fo Proof: Assume without Zloss of generality that the wire
Ci(x) < CY(Ck(X) + B} + G, ) segments are indexed in such a way that a top-down traversal

of T is in the order ofiW;, Wy, .- -

proved by induction or.

+ O < (14 pa) <Ck(x) Ju +Cf5> (4) Base Case)  Consider the wire segmen¥,. Before
the local resizing ofit’;, the wire-sizing

. ,W,. The lemma can be
Hence, we can prove similarly that

Ck(X/) —+ %

and f 1 fi solutions at iteratiort + 1 and¢ + 2 are
: s t t t t+1 t+1
Co(x) + 15 4 ¢f >—<C’k(x) k +Cf) (5) (7,28 -+ 2) and (af*, 20T,
2 L+ pa ~, 2™y, respectively. Sincer <
By definitions ofgj, and ¢}/, and by (3) and (4), we have LD r
—7— < 14 p for all 4, by Lemma 3,
"o_ NUk ) Ok x') + fk + Ofs i (D)
k= Ri(x) +RD we have1+pa < <t+1> <1+ pa.
; - Induction Step) Assume that the induction hypothesis is
< Uk O+ Poé)(ck( )+ 4+ C%) true fori = 1,---,k —1. Before the local
- 1+pa (Rix(x) + Rp) resizing of W, the wire-sizing solutions
—a at iterationt 4+ 1 andt + 2 are (2",
= (1+ pa) Qk I(f+11) (t) B (t)) and (<! (t+2)
Similarly, by (2) and (5), we can prove thef > 1+paq D) a:(“’l) a:(“’l)) respec-
Y1 Yk ) 14 ’
As a result, o < Z—i < 1+pa. U tively. By induction hypothesis;
z! - (?+2)
Lemma3.F9,ranyp>0|fm_ i§1+pforaIIL, (M) <14pafori=1,-- k-1
then 0 < 2+ < 1+ pa 272
k < < i =
Proof: By Lemma 2, if 2= % S x; < (14 p)a; for Hence,1+ f.*'*” = 1—.|—'pf0.l’ i=1,
all 4, then gt < ¢/ < (1 +poe)qk By Lemma 1,2}, = R 1(:1304 < 1. Also, it is given that
lnln{Uk,maX{Lk,qk}} andz} = min{U, max{Lz, ¢} } }. 11Tp < (t> <l+pfori==k,-
In order to provera:k g xf,, we consider three cases. — 3 1 2+ <
Case 1) ¢, < Ly. 0 by Lemma 1+Pa = “*” 14pee.
Thenz) = L. So 1+pa = 1+,,aLk < Ly < Hence, the lemma is proved O
g;’k’ Let A = 1nax1<z<n{ —L;
2D
Case 2) ¢ > [i’“ Lemma 5: For anyt > 0, o < o <1+ Aat for
T/r)ena:k_Uk S°1+a xf, < 1erUk<Uk: all i
Case 3) zk > L, andq! < Up. Proof: This can be proved by induction an
Tkhe_n d > Ly = xk < qk andq <Up=q) < Base Case) C_o_nsidert = 0. Note that for any wire-
— .. <
So 1+pa$k < 1+paqk < gl <zl sizing solutionx = (1, 1 xn), Ly £

U
In order to provex’f < (1 + pa)z),, we consider another z; < U; for all i. For all ¢, (0) <=
three cases.

14 Urli < 14 A, Similarly, we can
Case 1) q, > Us.

e
1

Thenz!, = Uy. S0z < Uy, < (1 + pa)U, = | prove that for alli, W > ey .

(1 4 pa)xs. Induction Step) Assume that the induction hypothesis
Case 2) ¢! < Ly. is true for t. Therefore, o7 <

_ _ (t+1)

Thenay = Ly. Soay = L < (1+pa)ly < S sl + Aqt for all i. By Lemma 4,

(1 + pa)z. )
Case 3) ¢, < U andgy > L. ﬁ < “’(M) < 1+ Attt forall i.

Thenqk < U, :> qk <gzj andgl > Ly = af <

by Hence, the lemma is proved. O
b SOy < g < (L4 pa)gy < (14 pajay. Theorem 1: GWSA always converges to the optimal wire-
As a result,1+ <2 <1+ pa U sizing solution for any starting solution.

The following two ’lemmas give bounds on the changes of Proof: Since0 < o < 1, 1 4+ Aat — 1 ast — co. So
segment widths after each iteration of GWSA. &) = py Lemma 5, it is obvious that the algorithm GWSA always
@V, 2, - ) be the startlng wire-sizing solution, andconverges for any starting wire-sizing solution. [2, Theorem 1]
fort > 1, letx® = (2", 28" ... 2 be the wire-sizing proved that if GWSA converges, then the wire-sizing solution
solution just after the- th |terat|on of GWSA. is optimal. So the theorem follows. O
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Let x* = («f,z%,---,z5) be the optimal wire-sizing Therefore, for both cases
solution. The following lemma proves that the convergence 1 (t) 1t AVAn!
rate of GWSA is linear with convergence ratio upper bounded - < <1+ M
by a. 1+ R8T = I-a

2 ) AJAat .
I < WHRIR for gl 4,
Proof: For any¢ > 0 and for anyi

Case 1) {2l >

20 y t
ThenZi- < ¥ <14 A <14 AT

(t)

T, 1
S|m|larly, we can prove - > DAt
Case 2) ()l < 1.

Then = w

)
_ e e] Z; 1
=1l T So by Lemma 5 <

o (14 Ack).

lnP= Z In(1 4 Aca®)

k=t
1 1
_Z Aak__A2a2k+_A3a3k
f 2 3
1 4 4k
S PIEE
k=t j=1J
=) AJ =) '
-3 Sy
J=1 J k=t
p] Jg l—-—o
AT ot
< — : 7
>4 )
1
—n— ®
l—

where (6) is becaude(1+x) = v — 227+ £2° —
jz*+- -+, (7)is becausé < « < 1, which implies
O<(l-af <l—-a<l-oforj>1,
and (8) is because < % < % < 1and

lnﬁ:x—i—%ﬁ—l—%x?’—i—---if0<a:<1.
So
1
P
—_ Aat
1_1—a
_1+Aat 1 Aot
o l—« l—«
Aot A
<1 1-—
s /(- 178)
_ (1+ A)Aa!
l—«
Hence
1 a:y) <1 (14+ A)Aat
1+ A£2dal = gr = A

It is easy to see that

(14+ A)Aat < 1
- 1+ (1+A)Aat ;

—Q

l—«

So for anyt > 0 and for all¢
- azgt)

€Ly

< (1+ A)Aat.

l—«

O

Since the convergence rate of GWSA is linear and the run
time of each GWSA iteration i©(n), we have the following
theorem.

Theorem 2: The total run time of GWSA for any starting
solution isO(nlog 1), wheree specifies the precision of the
final wire-sizing solution (i.e., for the optimal solutiott, the
final solutionx satisfies|(z} — x;)/x}| < e for all ¢).

Proof: By Lemma 6, for anyt > 0 and for all¢,
*_ xz(t)

€Ly

< (1+ A)Aat.

x! l—«

In order to guarantee thatz? — z{”)/z7| < ¢ for all 4, the
number of iterationg must satisfy

t
1+ A)Aa <
l-« -

or equivalently

14+ AA

In other words, at mosftlog_ ((1+A)A1 iterations are enough.

Since each iteration of GWSA také¥(n) time, the total run

time is O(nlog 2). O
Therefore, to obtain a solution with any fixed precision,

only a constant number of GWSA iterations are needed. This

implies that the run time of GWSA i©(n). As suggested by

the proof of Theorem 2, the number of iterations required for

convergence depends on the parametets, ande. The effect

of these parameters on the number of iterations is discussed

in the next section. We also demonstrate in Section IV that

GWSA usually takes only a few iterations in practice.

IV. EXPERIMENTAL RESULTS AND CONCLUDING REMARKS

In this section, we demonstrate the linearity of the run time
of GWSA in practice and the use of better starting solutions to
speed up the optimization of other objectives using Lagrangian
relaxation. We run the algorithm GWSA on a PC with a
200-MHz Pentium Pro processor and 32 MB of memory.

Fig. 3 shows the linearity of the run time of GWSA. We
use the clock trees obtained by applying the routing algorithm
in [12] to the datar1—5 in [15]. The number of segments in
these trees range from 533 to 6201. In order to have more data
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TABLE |
DEMONSTRATION OF THE ADVANTAGE OF BEING ABLE TO USE ANY STARTING SOLUTION. THE RUN TIME FOR THE OLD APPROACH
(ReSeT TO MIN-WIDTH BEFORE EACH CALL TO GWSA) AND OuR NEw APPROACH (Do NoT RESET) ARE LISTED

Circuit Objective CPU time (s)
Name | Size || to minimize Old approach | Our approach || Improvement

rl 533 [ Max. delay 1.95 0.88 54.9%

Area with delay bound 3.09 1.12 63.8%

r2 1195 || Max. delay 7.85 3.32 57.7%

Area with delay bound 12.23 5.31 56.6%

3 1723 || Max. delay 11.97 5.09 57.5%

Area with delay bound 12.93 6.24 51.7%

4 3805 || Max. delay 55.34 22.54 59.3%

Area with delay bound 41.52 20.58 50.4%

5 6201 || Max. delay 71.59 29.41 58.9%

Area with delay bound 78.43 39.18 50.0%

Average: 56.1%
CPU Time (s) which will result in faster convergence. On the other hand, the
4.50 7 ] ratio of the driver resistance to the wire resistances will be-

come smaller, which will result in slower convergence. To find
out which of these two factors is dominating, we run GWSA
3.50 - B with different sets of technology parameters listed in [7]. We
observe that for more advanced technology, the convergence

4.00 |- -

200 ratio is smaller. For example, for the 0.1 technology, the

2.50 - 7 actual convergence ratio is only around 0.006-0.015.

2.00 i To demonstrate the advantage of being able to use an
50 arbitrary starting wire-sizing solution, we optimize the clock

treesr1—r5 using two different objectives. The first objective
1.00 is to minimize the maximum sink delay. The second objective
is to minimize the total wire area subject to a delay bound

0501 h of 10% more than the minimized maximum sink delay. These

0.00 1 1 i problems are reduced by Lagrangian relaxation to a sequence
0 20000 10000 eoooo oP9meMS  of weighted sink delay problems. Previously, before solving

Fig. 3. Run time of GWSA verses number of segments. Run time of GWS%\aC,h W,el_ghted sink .delay.problem, all segment§ are res_et to
is linear. their minimum possible widths to form the starting solution

of GWSA. Our result implies that GWSA will still converge

) . even if we do not reset the segment widths. So in our new
points, we .construct ten trees from each tree by dividing ea&Bproach, we do not reset and, therefore, the optimal solution
tree edge intd: segments wheré = 1,---,10. So we have ¢ o \eighted sink delay problem is used as a better starting
50 trees with the number of segments ranging from 533 §9)tion to the next one in the sequence. The run time of the
62010. The run time is plotted against the number of segment,ious approach and our new approach are listed in Table |.
in Fig. 3. It can be seen that the run time of GWSA is linegtq; the old approach, each weighted sink delay problem takes
In practice. o _ 3.67 iterations of GWSA on average. For our approach, each

The number of iterations required for convergence depenggighted sink delay problem takes only 1.12 iterations of
on the parameters, A, ande¢ as suggested by the proof ofg\sa on average. The overall improvement on the run time
Theorem 2 For the experiment abou®,equals nine and 5 56.19 on average.
equals 10”. « is defined at the beginning of Section llland its  For future research, an interesting problem to look at is
value may be large (close to one) if it is calculated accordiRghether our work can be extended to discrete wire sizing.
to the definition. Howeverq is defined in such a way thatanother interesting problem is to analyze the convergence of
it can be conveniently used in the proofs. It is just a loosgher local resizing based algorithms by our analysis technique.
upper bound on the convergence ratio. For the data shownTife local resizing idea has been successfully applied to
Fig. 3, we observe the actual convergence ratio is only aroumny other wire, buffer, gate, driver and/or transistor sizing
0.015-0.03. The number of iterations is just six for most casggoblems [1], [4]-[6], [9], [10]. All these algorithms have
In fact, even for some very extreme parameters dike 0.7, been shown experimentally to be very efficient. However,
A =99, ande = 10~7, the number of iterations is at mostjust like the case of wire sizing alone, these algorithms are
[log1((1+ A)A)/((1 — a)e)] = 75 only. known to converge only for min-width/size or max-width/size

We also investigate the dependency of the convergerstarting solution, and the convergence rates are not known even
ratio on the technology parameters. If we use more advanded min-width/size or max-width/size starting solution. In the
technology, the ratio of the wire fringing capacitances and sifilsture, we would like to investigate the convergence rates of
capacitances to the wire area capacitance will become largbese algorithms with arbitrary starting solution.
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