PHYSICAL REVIEW B VOLUME 61, NUMBER 2 1 JANUARY 2000-11

Linearity of amplitude and phase in tapping-mode atomic force microscopy
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In this article tapping-mode atomic force microscope dynamics is studied. The existence of a periodic orbit
at the forcing frequency is shown under unrestrictive conditions. The dynamics is further analyzed using the
impact model for the tip-sample interaction and a spring-mass-damper model of the cantilever. Stability of the
periodic orbit is established. Closed-form expressions for various variables important in tapping-mode imaging
are obtained. The linear relationship of the amplitude and the sine of the phase of the first harmonic of the
periodic orbit with respect to cantilever-sample offset is shown. The study reinforces gentleness of the tapping-
mode on the sample. Experimental results are in excellent qualitative agreement with the theoretical predic-
tions. The linear relationship of the sine of the phase and the amplitude can be used to infer sample properties.
The comparison between the theory and the experiments indicates essential features that are needed in a more
refined model.

[. INTRODUCTION sample interaction have reproduced the experimental obser-
vations(see Refs. 3, 8—21However, there is a lack of the-
The atomic force microscop@FM) has revolutionized oretical analysis on why the cantilever behaves in such a
imaging in the past decade and has contributed significantlynanner. To bridge this gap we first establish the existence of
to the physical and biological sciencege Ref. 1 Since its a periodic orbit with unrestrictive assumptions on the dy-
invention in 1986(see Ref. 2 a wide range of imaging namics.
modes of operation have emerged. These were primarily mo- One of the simplest tip-sample interactions that can be
tivated by the drawbacks of the original contact-mode imagimagined is an impact interaction where the sample behaves
ing. as a reflecting surface. The energy losses in this interaction
Arguably, tapping mode is the most widely used mode inare characterized by a coefficient of restitutianUsing this
AFM imaging that overcomes most of the difficulties presentmodel, analytical expressions for parameters important for
in the contact-mode operation. In this mode the cantileveimaging are obtained. In particular, expressions for the peri-
base is subjected to sinusoidal forcing at the first resonanaedic orbit, the velocity with which the cantilever tip hits the
frequency of the cantilever, inducing a periodic oscillation ofsample, and amplitude and phase of the first harmonic of the
the cantilever. The sample properties are inferred by analyzseriodic orbit are derived. Given that the orbit is nearly sinu-
ing the changes in the cantilever's oscillations due to thesoidal, only three variables are required to describe the peri-
interaction between the sample and the tip that is mounted oodic orbit; the dc offset, the amplitude and phasdth re-
the free end of the cantilever. spect to the forcingof the sine wave. A way to obtain these
The interaction between the tip and the sample is highlyariables is given.
nonlinear. Unlike contact mode, in tapping mode the tip For tapping-mode AFM'’s operating in air, the air damp-
moves through the whole range of the tip-sample potentialing is small. By expanding the analytical expressions in
Thus, a linear model of the interaction is inadequegee terms of the damping ratio and ignoring the higher-order
Ref. 3. Furthermore, the existence of chaotic behavior isterms, useful relationships between various parameters are
established for models of such an interactisee Refs. 4 and obtained. Such a study predicts that the amplitude and the
5). Experimental evidence for such behavior is also presergine of the phase of the first harmonic of the periodic oscil-
(see Ref. B lation of the cantilever vary linearly with respect to the offset
Under normal operating conditions, in spite of the com-between the cantilever and the sample. Such relationships
plex nature of the nonlinear interaction between the tip anaffer new ways of inferring sample properties.
the sample, the cantilever is found to evolve into a stable Experiments conducted have corroborated the theoretical
periodic orbit with a period equal to the period of the forc- studies. Such a comparasion has confirmed the linearity of
ing. Experimental data also reveal that when the offset bethe amplitude and the sine of the phase of the first harmonic
tween the sample and the cantilever is relatively large, thef the cantilever’'s periodic oscillations. The analysis of the
periodic orbit is nearly sinusoidétee Ref. V. discrepancy between the experimentally evaluated energy
Numerical simulations of complex models of the tip- lost to the sample and the theoretically predicted values pro-
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FIG. 1. The cantilever is modeled by a spring and a mass. The :
base of the cantilever is subjected to a sinusoidal motion given by - !
b(t). The air damping is proportional to the velocity of the mass
with respect to an inertial frame. FIG. 2. Sketch of a typical tip-sample force. The force on the

cantilever due to the sample is given By The sample has a long-

vides significant insights into the tapping-mode dynamicgange attractive force that can be neglected after a separdtion (

and indicates essential features that need to be incorporatecf)- For short separations the forces are strongly repuliisthe
in a more refined model. difference in the separations at which the repulsive and the attrac-

tive forces become significant.

Il. MODELING applications of the tapping mode it is assumed thi equal

In the tapping-mode operation of an AFM a dither piezo!© the first natural frequency of the free cantilever.

attached to the substrate that forms the support of the cantj- EXPerimental data has indicated that a force curve of the
lever is forced sinusoidallysee Fig. 5 beloy In most ap- form shown in Fig. 2 well characterizes the force on the

plications the first-mode approximation for the cantilever vi-cantilever due to the sample. It indicates long-range attrac-
bration is adequate for explaining the experimentallytVe forces and short-range strong repulsive forces. Accord-
observed characteristics. In this article we will assume thd9 10 this model, the sample has negligible influence on the
one-mode approximation and hence, the dynamics of Fig. 1€antilever when the separation between the tip and the
In this case, the dynamical equation for the displacement of@mple is larger tharl {-d) [that is,p=— (I —d)]. We will

the cantilever is given by use this observation in the next section to establish the exis-
tence of the periodic orbit with unrestrictive assumptions on
mp+cp+kp=kb(t)+F(t), (1)  the tapping-mode operation.

In most tapping-mode applications the cantilever-sample

wherem, ¢ andk are the effective mass, the viscous d‘"’mp'separation is large when compared to the length scale of

ing coefficient, and the spring constant, respectively, of th‘?nteraction (>d) (see Fig. 2 Also, the fraction of the time

free cantileverF is the force_on the cantilever due to the that the cantilever tip spends inside the samjges — (|
sample and describes the displacement of the base of the d)] is small compared to the fraction of the time it spends
cantilever. The nominal position of the cantilever tip is de-in air [p=— (I —d)]. The small amount of time spent inside
fined to be the the equilibrium position the cantilever tip b= S : per
takes when there are no forces due to the sanfle) and the sample motivates the impact model of the tip-sample
when the cantilever-base is stationaty=(0). p(t) is the interaction, where we assume that the sample can be mod-
instantaneous position of the cantilever tip rﬁe%sured from iteled as a hard wall. In this model, whenever the mmassts
nominal position. p is considered positive when the e wall with a velocityv it reflects off the wall with a
. ) L velocity —\v (see Fig. 3. \ is often called the coefficient of
cantilever-tip position is farther away from the sample whenrestitution
COEDE;?% rg(()l;hfagogg lr;:::ggtsgg)n of the cantilever tip. Another motivating factor in studying the impact model is
q that this model is tractable and explicit analytical expressions
P+ 2&wp+ w2p+h(p,p,l)=g(t), (2)  for various parameters important for imaging can be ob-
tained(as will be seen Such expressions seem unlikely for

where w=k/m, 2éw=c/m, g(t)=[kb(t)]/m, and h  a more detailed model of the tip-sample interaction.
= —(F/m). The parametelr characterizes the separation be-

tween the tip of the cantilever and the sample when the tip of IIl. ANALYSIS

the cantilever is at the nominal position. We will also use the )

term cantilever-sample separatioio meanl. Note that this A. Existence

phrase should not be confused with the instantaneous sepa- It is experimentally observed that for a wide variety of

ration between the tip and the sample. operating conditions the tapping cantilever settles into a pe-
The sample force per unit mass is assumed to be depefiodic orbit with the same period as that of the forcing. Even

dent on the position of the cantilever, the velocity of thethough the tapping mode has been used and researched ex-

cantilever, and the parameterin most tapping-mode appli- tensively there is a lack of analysis on why the cantilever

cationsb(t) is a sinusoidal function. Consequently, we as-settles into such a periodic orbit. In particular the existence

sume thatg(t) = — y coswt. Further, to conform with most of the periodic orbit has not received attention.
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construction of such a set are unrestrictive. For the remainder
of the work we will assume that there existsTaperiodic
orbit for the tapping-mode dynamics.

B. Impact model

kbt In this section we model the sample by a hard wall. Con-
sider the masm in Fig. 3, which hits the sample modeled as
a hard wall for thenth time with a velocityp,, at time instant

"""""" [ O t,. The masan reflects off the wall with a velocity-\p,
il instantaneously. For the purposes of intuition, a common
é macroscopic system that is modeled by this dynamics is a

rubber ball bouncing off a hard floor. The motion of the mass
FIG. 3. The figure depicts the impact model of the tip-sampleiS governed by Eq(4) given by
interaction. In this model the sample is modeled as a hard wall. The .
massm reflects off the sample with a velocity \v when the mass (Xl)
displacement equals | and the velocity with which the mass hits X2
the sample is given by. Note that the displacement is positive . . .. . . . . .
P g y P P with initial conditions at timet,, given by (—1,—\p,) till a

upwards; that is, it is positive when the mass is farther away from, . . .
the sample when compared to the nominal position. timet,,; when the mass hits the sample again. The solution

of Eq. (4) with initial conditions at time instartt, given by

The cantilever dynamics given in E¢L) can be trans- P(to)=—1 andp(to)=p is solved to be
formed into a first-order state equation;

X2
- (1)2X1_ 25(1))(2

0
+<1)g<t), (4

p(t)=—lysinot+e (" 10/C, cosw(t—ty)

X1 Xz 0 p——
)=y 26 hox o) (250 FCasinelt o)) ®
where
=f1(x) +f2(x)g(t), ©)
C1:_|+|Osinwto,

wherex;=p is the position of the cantilever with respect to
an inertial frame, anc,=p. Note that if the sample is far 1
away from the tip, then the influence of the sample on the Co=—={&w(—1+lysinwty)+ po+low coswty},
cantilever dynamics can be neglected and the cantilever be- w

haves as a damped linear oscillator. More specifically, we

assume thah=0 if x;=—(I—d). Note that estimates of _ Y — 2

(I—d) andl can be obtained from experimental data. |°_2§w2 and w=wyl=-¢"

We will denote the period of the sinusoidal forciggt)
by T. We first argue that it is not possible for any orlpift),
of Eq. (3) to be periodic with period less thah Suppose
¢(t) is a solution to Eq(3) with ¢(t)=@(t+T’) for all t

Iy is the amplitude of the free cantilev@hat is, the ampli-
tude at steady state with no sample prepdbifferentiating
Eq. (5) with respect ta we obtain,

with T'<T. Then it follows thate(t) = ¢(t+T') for all t, b(t)=—l o COSwt + e~ (1t
which implies thatf [ ¢(t)]+ fo[ #(t)1g(t)=f1[ H(t+T')] B o
+,[p(t+T)]g(t+T'), for all t. As ¢(t)=p(t+T'), X{Czcosw(t—ty) +Cysinn(t—ty)},  (6)

filop(t)]=F1[H(t+T')], and becausd,[ #(t)]=(0,1)" it
follows thatg(t)=g(t+T’) for all t. This is a contradiction
to the fact thatg is sinusoidal with periodl. Thus, if we
establish the existence of afyperiodic orbit then we have
established the existence of a periodic orbit with least period °
T (for example ar/2 periodic orbit is alsdr' periodic orbit, Cy=— ={w(—1+lysinwty) + &(po+ | ow cOSwty)}.
but, is ruled out by the above arguments @

For establlghlng the existence oﬂ'epenodm orbit we USE  On theT periodic orbit(whose existence was established in
a result by Poincare that addresses the existence of a periogj¢, previous sectiont,,;=T+t, andp,.,=p,. Thus on
solution for a dynamical systenx=f(x,t), wheref(x,t) o Herindic orbit, if the time immediately after impact is

[for Eq. (3), f(x,t) =f,(x) +f5(x)g(t) ]is aT periodic func-  yongteq pyt, then taking advantage of the instantaneous
tion. This result says that if there is a suitable Bein the -+ e of the impact, we have that

phase spacex(,x,) in R?, which has the property that any
trajectoryx[t,0x(0)], starting at time O and stai€0) in D p(to+T)=—1 7
remains inD for all t=0 (such a set is said to be positively-
invariant under the given dynamigshen there is & peri- and
odic solution ofx=f(x,t) in D (see Ref. 12 Such a seb is
constructed for the tapping-mode dynamics in the Appendix.
As explained in the Appendix, the assumptions made in the

where

C3=(pg+!ow coswty),

1
plto+T) =~ < Plto). ®
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Upon substituting Eqs(5) and (6) into Egs.(7) and (8) where
we observe that casty, sinwty, py, andl appear linearly in
Egs.(7) and(8). By eliminatingp, from Eqgs.(7) and(8) we

. X ¢
obtain SIN(0) = ———— =~ +0(£?). 12
| n(o) KEy? 2 (&) (12)
X coswty+Y sinwty=D, 9
whereX, Y, D are provided in the Appendix. Thus it follows that
From Eq.(9) we have that
I
D I Y sinwty=—[1+0(£2)]+0(¢). 13
Sin( 0+ wtg) = = . (10 0T T OENITO® (
VXZ+YZ Lo\ X2+ Y2

By expanding the right-hand side in powers of the parameteBY €liminating sinwt, from Egs.(7) and(8) we obtain
& we can show that
p(): — Ml ow COSwtO, (14)

|
Sin( 0+ wtg) = E[H 0(&)], (11 where

1+e %7 2e %7 g2 \1- &) _ 2méN
1-Ae M7+ (A —1)e %#7coq2m1- &)~ (N +1)e %7sin2m\1-£7) 14\

M=—X\ +0(£5). (19

Thus we have that the velocity of impact on the periodic Based on the impact velocity given in E(L6) we can

orbit is given by evaluate the energy lost upon impact to be
b =p| to+ 2| = + =Ml cosot E = 2m2kg?(12—12) =~ (17)
. o o N0 0 ! 0 14
2mé Thus the energy lost due to impact is proportionaléto

m+0(§2)) low coswty. (160 Note that wher\ =0 (inelastic impactthe energy loss dur-
ing impact is 27%k&£2(15—12). We will elucidate more on the

Thus the periodic orbit is defined by E@) with t, given ~ energy lost in the next section.
by Eq.(11), po=—| andp, given by Eq.(14). Thus we have We now study the stability of the periodic orbit using
an explicit solution for the periodic orbit in the impact case.another result by Poincalgee Ref. 12 Suppose the canti-

Note that we have provided expansions of the various
guantities derived, in terms of the paramefeFor tapping- 0
mode AFM'’s that operate in aig is small. Thus we can
ignore the higher-order terms gfto assess the behavior of ~0.02
the dominant terms.

The velocity of impact on the periodic origiven in Eq. &~
(16)] is proportional to& Thus the velocity of impact is 2‘0'04
small in general and is particularly small if the cantilever- &
sample separatidnis large[note that costy~1/4/I 02— 12 in :—0-06'
Eq.(16)]. It is also evident that the impact velocity varies by g
only a factor of 2 and remains small over the whole range of %—0.08-
the parameteh (0<\=<1), where no energy is lost upon
impact if \=1, and all the energy is lost upon impactif
=0. It needs to be stressed that the analysis here indicate
that irrespective of the sampleharacterized by) the state ; ; : :
of the system evolves into a periodic orbit that is gentle on 913 5 10 15 20 25
the sample provided that the air damping of the cantilever is separation (nm)
small. This explains the experimentally observed gentleness
of the tapping-mode operation on the sample. In Fig. 4, @ FiG. 4. This figure shows a plot of the impact velocity versus
plot of the impact velocity versus the tip-sample separaltion the cantilever-sample separatibfor various values of. It can be
for various values ok is presented. As can be clearly seen,seen that as the factaris decreased the impact velocity increases.
the velocity at impact increases with decreasing tip-sampl@owever, over the whole range of the possible values\ dhe
separation and with decreasiing impact velocity is small and varies only by a factor of 2.
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lever tip is at a certain initial condition that is close to the Note that the amplitudé of the first harmonic is given by
periodic orbit established earlier. With this initial condition

let the map from thenth impact time and theth impact — —I11+ 214 2

velocity to the @+ 1)th impact time and then(+ 1)th im- A=2| Y1 =I[1+O0(£9]+0(£9. (19

act velocity for the orbit resulting from the given initial ) . .
P y ¢ g Thus the analysis of the impact model predicts that the

condition be given byP. Thus, cantilever-sample separatibean be accurately predicted by
(Dn+1) (pl(pn ) _ the amplitudeA (_)f the _first harmoni_c_of the periodic_orbit. _
= . )==P(pn,tn). This conclusion might seem trivial as the cantilever-tip
tn+1 Pz(pn-tn) di
isplacement towards the sample cannot be more than the
Poincarés result says that the periodic orbit is stable if all distance between its nominal position and the sample mod-
the eigenvalues of the Jacobian of the nPapn the periodic eled as a hard wallotherwise the cantilever tip would pen-
orbit have modulus less than one. The Jacobian is given bgtrate the hard wall Thus if the sample moves byl the
maximum displacement of the cantilever towards the sample

P, P, also has to change b¥l. Thus the linear relationship be-

5 ? tweenl and the maximum displacement of the cantilever tip
DP= n "l towards the sample can be argued in this way. However, Eq.

P, dP, (19) predicts a linear relationship between the amplitude of

T ? the first harmonicof the periodic orbit and. If the wall is
Pn n found at a distance-w, what is surprising and nonintuitive

Note that we have derived the analytical expression of théS that the tip never goes a distanseabovethe cantilever's
periodic orbit. However, we have not derived the form of therest position. That is, there is a physical reason to expect the
orbit resulting from initial condition not on the periodic or- 0scillation to be bounded by w, but no reason to expect it
bit. This task is impossible due to the transcendental form ofo be bounded by-w. The fact that the orbit stays symmet-
the equations involved. However, the element®Bfcan be  ric means that the average deflection of the cantilever tip is
obtained by implicit differentiation that is provided in the always small and all the surface information is carriga-

Appendix. In the limité— 0 the eigenvalue of the Jacobian is €arly) in the amplitude. Note that the periodic orbit whose
given by —\e~ 27, Thus the periodic orbit will be stable if €xistence was established earlier could be nonsinusoidal and

A<1. thus could have higher harmonics. Indeed the spectral analy-
sis of experimental data reveals such harmonics. The impor-
tant insight offered by Eq(19) is that the higher harmonics
can be safely neglected and thus the periodic oscillation of
the cantilever tip can be approximated by a sinusoid. This
Tapping-mode AFM’s provide the amplitude and phase ofresult also gains significance because it is experimentally
the first harmonic of the periodic orbit as measured quanticonvenient to obtain the amplitude and the phase of the first
ties. These quantities can be used for imaging sample prograrmonic of the periodic orbit rather than obtaining the com-
erties if their relationships to the properties are establishecslete time history or even the data on higher harmonics. The
In a recent result, based on the assumption that the steadjardware needed to extract the amplitude and phase of the
state cantilever oscillations can be approximated by a purfirst harmonic is less involved and costs less because of the
sinusoid, a method has been devised for imaging energywer bandwidths of the equipment needed. Note that the
losses to the sample using the amplitude and phase of thaformation on the dc offsefthe average deflection of the
sinusoid(see Ref. J. With this motivation we study the first cantilever tip is lost when evaluating the first harmonic of
harmonic of the periodic orbit resulting from the impact the periodic orbit. However, this can be evaluated by finding
model of the tip-sample interaction. the constant term in the Fourier expansion of the periodic
Note that we have obtained an analytical expression fogo|ution.
the periodic orbit in the impact case in the previous subsec- This implies that amplitude can be effectively employed
tion. Thus we can obtain the Fourier coefficient of the first-to image the topography of the sample, particularly when the
harmonic component by performing the integral damping is small. In a way, the amplitude is used to image
the topography in a standard tapping AFM because zthe
feedback loop(see Fig. % keeps the amplitude constant.
However, this would still work even if the amplitude versus
| were nonlinear. The result here is even stronger. If no feed-
_ ie,jwtOJ'(Z’T’“’)“Op(t)e,jw(t,to)dt back was used the amplitude signal would accurately mea-
2 o ' sure_sample topography._ To employ this practically would
require much larger amplitudes than are commonly used.
wherep(t) is given by Eq«(5). We can evaluate the integral  The phase of the first harmonic with respect to the forcing
to be is given by¢=arg(Y,)— 7= —wty+0O(£). Therefore we have

C. Relation of the amplitude and phase of the first harmonic
with respect to the cantilever-sample separation

w (27 w)+tg

-2 ~jot
Yi=5_ . p(t)e ietdt

1, a+M M |
2 Amén sin¢=—sinwto+0(§)=—E[1+O(§2)]+O(§)-

— efj“)to
(= 31[1+0(&H)]+]jO(&)e 1", (18) (20)

|

) Iy coswty
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""""""""" FIG. 6. This figure shows the plots of the tip deflection for two

o ) ) different values of cantilever-sample separatioifhe plot on the
FIG. 5. This figure describes the experimental setup used. Thg,, shows the time plot of the tip deflection for a large cantilever-
sample is positioned using a piezotube. The cantilever is oscillated; msje separation whereas the plot below shows the time plot of the
using a sinusoidal voltage applied to the dither piezo. The displace;, geflection for a smaller value of the cantilever-sample separa-
ment of the cantilever is recorded by a laser that reflects off thgjn |t js evident that in both cases the cantilever tip is on a periodic
cantilever surface and is incident into a split photodiode sensor. it This is also confirmed by a spectral analysis of the time plots.
It can be seen that the cantilever-tip oscillations are almost sinu-
The relationship above says that the sine of the phase of th@jdal. The spectral analysis also shows that when the cantilever-
first harmonic(the phase with respect to the forcjnearies  sample separation is small the orbit deviates more from a sinusoidal
linearly with respect to the cantilever-sample separation. Traerbit.
ditionally, most researchers have focused on the plots of the
phase versus the cantilever-sample separation. However, tid@e position of the base of the cantilever can be controlled
analysis presented leads to an important observation; studiy applying a voltage to the dither piezo. The displacement
ing the sine of the phase versus cantilever-sample separati@f the cantilever is recorded by using a laser that reflects off
curve can be more illuminating than phase versus cantilevethe cantilever surface and which is incident on a split photo-
sample separation curve due to the linear nature of thdiode. A silicon cantilever of length 22bm was used. The
former. model parameters were evaluated by analyzing the cantilever
Recently in Ref. 7, a method was devised to estimate theesponse to thermal noise in similar ways to the those sug-
power dissipated in the tapping-mode AFM. This wasgested in Refs. 14 and 15. The quality fac@of the canti-
achieved by equating the energy input from the forcing andever was evaluated to be 13@ is given by\/mc). Thus,
the energy lost to the damping and the sample. The assumpre have £=1/2Q=1/260=0.0038. The first model fre-
tion made is that the periodic orbit is sinusoidal. Using thisquency of the cantilever was at= 27X 73881 rad/sec. For
method it is found that the power lost due to the interactiorthe one-mode model, the stiffnekswas found to be 4.0
with sample is given by N/m.
A sinusoidal voltage at the resonant frequeneywf the
cantilever was applied to the dither piezo attached to the
. (2D cantilever base. The samplglicon wafej initially was suf-
ficiently far from the cantilever so that it did not affect the
Note that the prefactor in Eg21) is the power loss due to air cantilever motion. Once the cantilever reached its steady
damping. Since the impact model predicts thatArel and  state(=1 m9, the sample was slowly moved towards the
that sing~—(l/ly), the loss of energy due to the tip-sample vibrating cantilever by extending the piezo on which the
interaction is always small compared to air-damping lossessample sits.
This is also evident from Eq17). Note that Eqs(17) and The motion of the cantilever tip at various values of the
(21) can be equated to evaluate the coefficlerithis means piezo extension was recorded using an HP 89410 vector sig-
that images of amplitude and phase could be used to makeal analyzer. Time series plots of the steady-state behavior of
images of\. However, as will be seen in the next section, thethe cantilever tip at different piezo positions are shown in
losses seen experimentally for most samples are much larg€ig. 6. As established by the analysis we see that the canti-

lo

Asin¢+1

§kA2w(

than the limit 272k&2(13—12). lever tip is on a periodic orbit. The time period of the orbits
determined from the plots is equal tor2w. A spectrum
IV. EXPERIMENTAL METHODS AND DISCUSSION analysis of the data shows that the orbits are nearly sinu-

soidal when the cantilever-sample separation is large. When

An atomic force microscopéMultiMode, Digital Instru-  the cantilever-sample separation is smaller, the cantilever
ments, Santa Barbara, CAvas operated in tapping mode motion deviates more from a sinusoidal behavior. However
(see Ref. 1B The experimental setup is described by Fig. 5.the net deflection of the nonsinusoidal motion is still at most
The sample is positioned vertically by a piezo ceramic tubeone percent of the total motion. This agrees well with the
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o ] ] FIG. 8. The figure shows a plot of the phase between the first
FIG. 7. This figure shows the plot of the amplitude of the first harmonic of the cantilever tip’s oscillation and the forcing. The
harmonic of the periodic oscillation of the cantilever tip with re- \arious regions are explained in Fig. 7. It is difficult to extract any

spect to the piezo extension that is a proportional measure of thgjationship between the phase and the cantilever-sample separation
cantilever-sample separation with an offset. In the region maaked from this plot.

the cantilever is not influenced by the sample at all. In the region
indicated byb the cantilever is influenced only by the attractive

regime of the tip-sample interaction, whereas in the region betwee df i fthe bi . h h - b
c andd the tip is influenced primarily by the repulsive forces. The and for values of the piezo extension more than that given by

impact model is well suited to model the repulsive part of the tip-d the tip probably never leaves the moisture lajsse Ref.
sample separation. As predicted by the analysis, the amplitude 9 Present on the surface. The region betwbeandc can
the first harmonic varies linearly with the cantilever-sample separab® explained by a model that includes the attractive part of
tion in the region betweeh andc. Note that in the plot there is an the tip-sample interaction. Numerical modeling that includes
offset between the amplitude and the separation. This is becaugk finite range attractive force in the tip-sample interaction
there is an offset between the cantilever-sample separation and tig9es show this jumgsee Ref. 8 For purposes of the analy-
piezo extension. sis presented here, the appropriate region of the piezo exten-
sion is between the pointsandd (the repulsive interaction

predictions made by assuming a impact model of the tip-reg'me' As is evident the plots of sih and the amplitude

sample interaction are linear in this region, which agrees with the analytically
. " . . obtained expressions in relatio(&9) and(20). Experiments

The piezo extension with respect to the voltage applied to
the piezo scanner is linear in the relevant rafigss than
one-percent deviatignlt needs to be stressed that the only
guantifiable control on the cantilever-sample separation is 0ol
through the piezo extension. There is no separate measure of ™
the cantilever-sample separation. However, it can be as- 0
sumed that there is a constant offset between piezo extension MV\!\
and the cantilever-sample separation. With this understand-
ing the horizontal axis is labeled “separation” in Figs. 7
and 8.

The amplitude of the cantilever at various values of the
separation are given in Fig. 7. The phase between the first _ggl
harmonic of the periodic orbit and the forcifdenoted byp)
was also obtained experimentallsee Fig. 8 Systems like _o.8t
this that evolve to small impact velocities are known as graz- «cC 3
ing impact oscillators. It is evident from Fig. 7 that the am- -1 ; ne b
plitude of the first harmonic of cantilever’s oscillation varies 0 0.5 1 " 1.5 2
linearly with respect to the separation, in the region between 0

pointsc andd (see Fig. 7. Also, in Fig. 9, sing is plotted FIG. 9. This figure shows a plot of sig( versus scaled separa-
against the separation. As can be seen, the experimental dgjg, |/, wherel,, is the amplitude of the free cantilever ards the
shows that the plot is linear between the poin@sndd. phase between the first harmonic of the periodic oscillation of the
When the piezo extension is between the points maktked cantilever tip and the forcing. The various regions are explained in
andc the cantilever tip barelyif at all) penetrates the repul- Fig. 7. The linear relationship between si@nd cantilever-sample
sive region of the potential. The attractive region of the po-separation is evident in the region corresponding to the repulsive
tential (see Fig. 2 has considerable influence on the cantile-part of the tip-sample interactidie., the region betweenandd).
ver motion. For values of the piezo extension in the regionThis was predicted by the impact model.

Henoted bya the cantilever is not influenced by the sample

0.4

-0.21

sin(¢)

-0.4¢
«d
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conducted on a wide variety of samples show similar char-
acteristics as illustrated in the experiment described in this
paper.

The sample influences the amount of energy pumped into
the system by the external forcing by changing the phase
between the forcing and the orbit of the cantilever (tigre
we are assuming with support from the analysis and experi-
mental data that the periodic orbit can be approximated bya X
sinusoid and that the higher harmonics can be neglected
The sample also induces energy losses due to dissipative
terms. When the energy lost to the samfilee dissipative
energy loss (estimated by using the method given in Ref.
17) is compared with the theoretically obtained result given
by Eq.(17) we see that the energy lost due to impact cannot
account for the net energy lost to the sample. The impact
model predicts maximum energy losses ten times smaller
than are observed experimentally. It is important to note that

t_he same C_onclusm_)n cf’:\n.be reachedalioy model Wh.ere. the . FIG. 10. RegiorD used in proving the existence of the periodic
tip-sample interaction is instantaneous. To see this, imaging, ..
a periodic orbit with any instantaneous interaction. Since the
orbit is periodic, the tip will always have the same velocity
p, before impact. Also the velocitp, after impact will be
the same. Thus by defining the factorto be the ratio of
these velocities the model is equivalent to the impact mod
on the periodic orbit and the relevant analysis carried ouf
will apply.

Thus even though the fraction of the time the tip is inter-
acting with the sample in a tapping AFM may be small, it is
not negligible. This implies that any model that successfully  This work was supported by NSF under Grant Nos. ECS-
predicts the energy losses will include finite interaction9733802 and ECS-9410646.
times. For hard samples, it is likely that the presence of the

A

This will aid the development of more refined models.

The existence of a periodic orbit is established with as-
umptions that are met by most tapping-mode operation con-
itions. Future research will develop models incorporating
he insights obtained by this work.
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attractive forcegnot included in the model analyzed in the APPENDIX

papej increase the interaction time. For soft samples like

polymers, the repulsive forces are weak enough for the tip to 1. Results on existence of periodic orbits

spend significant time in the sample. In this section we will construct a positively invariant set

It should be noted that simulations have shown more rep o the tapping-mode dynamics described by E8)
fined models that include the attractive regime of the tip'whereh(xl %,) =0 if x;=— (I—d). We will first construét

sample inlteraction and account for the energy lost lo th setD that is positively invariant under the dynamics of a
sample still preserve the linearity of amplitude and sine odamped oscillator described by Ed).

phase predicted by the impact model. Analysis on experi- Denote the total energy of the mass EF%sz§+%X§_

mental data over a wide variety of samples also conﬂrmiet V be the modified energy function given By(x; .x,)
these conclusions.
1:E+ §wX1X2. Then,

V. CONCLUSIONS (1-§E<sV=(1+{)E.

In conclusion this work has shown that a very SimpleThe derivative ofV(x) along a trajectory of Eq4) satisfies

model, the impact model, provides remarkable insights into .
the tapping-mode dynamics. It predicts linearity of amplitude Vs-28wV(X)+ Zy\N'

and the sine of the phase of the first harmonic of theCchoose anyC=(y/éw)? and let Do(C)={x:V(x)<C}.
cantilever-tip oscillation with respect to cantilever-sampleNote thatD,(C) defines a region enclosed by an ellipsoid.

separation. Experiments conducted on a wide variety oflso D,(C;) lies entirely insideDo(C;) if C;<C,. Atanyx
samples corroborate the results obtained. The linear relatiogy, the boundary oDy, V(x)=C, and

ships obtained can be used to devise new ways of imaging

material. They also lend support to the assumption that the V< —2\/V(§w\/V— y)<O0.
periodic orbit is nearly sinusoidal. This assumption has been
used by many in the literature. Thus on the boundary dd,(C), x(t) is always moving in

The impact model cannot account for the energy lost tdhe direction of smalle¥. Hence no trajectory of E¢4) can
the sample. One of the important insights obtained resultingross the boundary dd, outward.
from the analysis of this discrepancy is that any model that Now we construct the sdD that is positively invariant
quantifies energy losses to the sample cannot ignore the immnder the dynamics of Ed3), that is, we will construct a
teraction time between the sample and the cantilever tipsuitable seD which has the property that no solution starting
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in D leavesD. Consider the regio® enclosed by the closed
curve P,P,P;P,PsP; in Fig. 10. The ard?,P,P5 is given
by the set

{(X1,X9):x,=—(I—d), and V(x)=C}.

Note that forx in the interior of the region enclosed by the
curve P,P,P;PsPsP,, the dynamics are governed by Eq.
(4). Therefore on the the curvd®;P,P;, the vector
f(X1,X5,t), wheref=f,+f,g, is directed as shown in Fig.
10.

The arcP;P,Ps5 is given by the orbit of

Xy
X2

X2
— X~ 2EwX— h(Xy %) + 7 SGN(X2)

::f(

X),
(A1)

which passes through the poiRt. We make an assumption
that the mass under the dynamics given by Bl) with
initial condition P5 will exit the sample at some poirRg
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[X2(P1)| = [X2(Ps)|=x2(P1)| = N|x2(P3)|
=(1-N)[x(P3)| —2éwl’
=(1-M)[x2(P3)|+2&w(l —d)>0.

It follows that the pointP5 is inbetweenP; and Pg as
shown in Fig. 10. Finally, for all pointx=(x4,X,) on the
line segmenP,Ps, the valuex;<0 andx,>0. This implies
that no trajectory of Eq(3) can leaveD throughP,Ps.

Thus no trajectory of Eq.3) starting in the regiorD can
leaveD. Thus we conclude that the dynamics given by Eq.
(3) has aT periodic solution lying entirely irD. Thus there
exists a periodic solution with its period equalTo

In arriving at the existence of a periodic orbit with period
T we made the assumption that if the mass whose dynamics
is governed by Eq(Al) enters the sample’s region of influ-
encelthe region{(x;,X,):x;<—(I—=d)}], then it leaves the
same region with a velocity whose magnitude is smaller than
the magnitude of the velocity with which it entered it. For a

with a velocity whose magnitude is smaller than the magnitypical tapping-mode operation, the tip-sample separation

tude of the velocity with which it entered the samptleat is
[X2(Ps)|=X\|x5(P3)| with 0<A=<1]. We will give justifica-
tion for this assumption later.

For any pointx on the arcP;P,P5, at any timet, the
angle made by the vectd(x,t) with the positivex; axis is
given by

/f=tan?!

—w?X;—2éwx,—h(X;,Xp) 7y COSwt
X2 X2 '

whenx,# 0. Similarly, for any pointx on the arcP5;P,Ps,

excluding the pointP,, the angle made by the vectbfx)
with the positivex; axis is given by

- wle— 2§(1)X2_ h(Xl ,X2)
X2

+L).
X5

As tan ! is a monotonically increasing function we have

/f=tan!

Af_(xl,xz)zAf(xl,xz,t)

for all x on the arcP3;P,Ps [note that for the poinP,,
£ f(P,)=2f(P,)=m/2]. Thus no trajectory of E¢3) can
leave the regioD through the ard;P,4Ps.

The last part of the closed curve to be considered is the

straight lineP,Ps5. Note thatV(P,)=V(P3)=C. Also, for
both P; and P4, thex; coordinate is equal te- (I —d). Let
|"'=—(I—d). Thus we have

30224+ 3X5(Py) + wél "Xo(Py)
=30%1"24 3%5(P3) + 0€l 'Xo(P3),
which implies that
3[X5(P3) = X5(P1) 1= — éwl'[Xo(P3) = Xa(Py)].
This implies that
Xo(P3) = =X3(P1) = 2fwl’.
As |X2(Ps)| =\ |x2(P3)], it follows that

close to the resonant amplitude of the cantilever without the
sample present. We denote the resonant amplitudé, by
Thus|w?x;|~ w?l, in the region of samples influence. Also,
y is given by @?l,)/Q where Q=1/(2¢). Typically the
quality factorQ is above 100. It should also be noted ti§at

is a small number and the attractive parhdk,,x,) is com-
paratively small in relation to the repulsive part. Thus it is
expected that

— w?x;— 2EwXy—h(Xq,Xp) — >0,

in the region of sample’s influence. This means that the mass
governed by Eq(Al) will leave the region of samples influ-
ence. Also, the only way the mass can have a greater velocity
when it leaves the region of sample’s influence is if it has
gained energy during the time it has spent there. The forcing
v is the only source by which the mass can gain energy. The
variabled is small, thus the energy that the mass can gain
due to the forcing while inside the sample is small with
respect to the losses to the sample. In particular, the energy
gained due to forcing is zero in the limit that the mass spends
no time in the region of sample’s influence. This justifies the
assumptions made.

2. Results related to the impact model

The coefficientsX, Y, andD are given by

1 1
X:_(XH \/1__§2e’2§”sin(27r\/l—§z)
A1
=== ag+0(8), (A2)
1 1
Y=-e ¥ | - —+1]e #Tcog2m 1)
— %+1 e %7 _1_§2Sin(277\/1——§2)
N+1 ,
=2m¢ T +0(&9), (A3)
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| oP 1

D=—Y. (A4) T2 2§11'( : — 2
I —=—e sin2m\1-—§° |,
0 apn wpl \ 1_ 52

The elements of the Jacobian matb® are given by
P oém
_1—e*2§1T —\cos2r\V1— &2 =-e % +O(§2))
JPn
+ . (b—l+§)sin2ﬂ- 1-¢&° f9P2
/ ‘ 2w / 2
1-£2\ op) atn —ANCOS2m\1-§
I
=e 27 —\+ —0(£€)+0(¢) 1 Py
lo + ——xg sin2m\1— &2
5 V1-¢g2\wp;
Py
—=e 25”{ N cos 2m\1—EX(—\p,—Py)
" ‘25“[ A+ — O(§)+O(§)}
A P (P +Ewpy)
- sin 2#\/1—§2<;.T
V1-¢2 wp,
wherep, andp, denote the acceleration and velocity of the
) . mass on the periodic orbit before impact, whergaandp,

+top+Epy denote the acceleration and velocity of the mass on the peri-

odic orbit after impact.
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