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Linearity of amplitude and phase in tapping-mode atomic force microscopy

M. V. Salapaka
Electrical Engineering Department, Iowa State University, Ames, Iowa 50011

D. J. Chen
Electrical Engineering Department, Iowa State University, Ames, Iowa 50011

J. P. Cleveland
Digital Instruments, Santa Barbara, California 93117

~Received 8 April 1999; revised manuscript received 30 July 1999!

In this article tapping-mode atomic force microscope dynamics is studied. The existence of a periodic orbit
at the forcing frequency is shown under unrestrictive conditions. The dynamics is further analyzed using the
impact model for the tip-sample interaction and a spring-mass-damper model of the cantilever. Stability of the
periodic orbit is established. Closed-form expressions for various variables important in tapping-mode imaging
are obtained. The linear relationship of the amplitude and the sine of the phase of the first harmonic of the
periodic orbit with respect to cantilever-sample offset is shown. The study reinforces gentleness of the tapping-
mode on the sample. Experimental results are in excellent qualitative agreement with the theoretical predic-
tions. The linear relationship of the sine of the phase and the amplitude can be used to infer sample properties.
The comparison between the theory and the experiments indicates essential features that are needed in a more
refined model.
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I. INTRODUCTION

The atomic force microscope~AFM! has revolutionized
imaging in the past decade and has contributed significa
to the physical and biological sciences~see Ref. 1!. Since its
invention in 1986~see Ref. 2!, a wide range of imaging
modes of operation have emerged. These were primarily
tivated by the drawbacks of the original contact-mode im
ing.

Arguably, tapping mode is the most widely used mode
AFM imaging that overcomes most of the difficulties prese
in the contact-mode operation. In this mode the cantile
base is subjected to sinusoidal forcing at the first resona
frequency of the cantilever, inducing a periodic oscillation
the cantilever. The sample properties are inferred by ana
ing the changes in the cantilever’s oscillations due to
interaction between the sample and the tip that is mounte
the free end of the cantilever.

The interaction between the tip and the sample is hig
nonlinear. Unlike contact mode, in tapping mode the
moves through the whole range of the tip-sample poten
Thus, a linear model of the interaction is inadequate~see
Ref. 3!. Furthermore, the existence of chaotic behavior
established for models of such an interaction~see Refs. 4 and
5!. Experimental evidence for such behavior is also pres
~see Ref. 6!.

Under normal operating conditions, in spite of the co
plex nature of the nonlinear interaction between the tip a
the sample, the cantilever is found to evolve into a sta
periodic orbit with a period equal to the period of the for
ing. Experimental data also reveal that when the offset
tween the sample and the cantilever is relatively large,
periodic orbit is nearly sinusoidal~see Ref. 7!.

Numerical simulations of complex models of the ti
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sample interaction have reproduced the experimental ob
vations~see Refs. 3, 8–11!. However, there is a lack of the
oretical analysis on why the cantilever behaves in suc
manner. To bridge this gap we first establish the existenc
a periodic orbit with unrestrictive assumptions on the d
namics.

One of the simplest tip-sample interactions that can
imagined is an impact interaction where the sample beha
as a reflecting surface. The energy losses in this interac
are characterized by a coefficient of restitutionl. Using this
model, analytical expressions for parameters important
imaging are obtained. In particular, expressions for the p
odic orbit, the velocity with which the cantilever tip hits th
sample, and amplitude and phase of the first harmonic of
periodic orbit are derived. Given that the orbit is nearly sin
soidal, only three variables are required to describe the p
odic orbit; the dc offset, the amplitude and phase~with re-
spect to the forcing! of the sine wave. A way to obtain thes
variables is given.

For tapping-mode AFM’s operating in air, the air dam
ing is small. By expanding the analytical expressions
terms of the damping ratio and ignoring the higher-ord
terms, useful relationships between various parameters
obtained. Such a study predicts that the amplitude and
sine of the phase of the first harmonic of the periodic os
lation of the cantilever vary linearly with respect to the offs
between the cantilever and the sample. Such relations
offer new ways of inferring sample properties.

Experiments conducted have corroborated the theore
studies. Such a comparasion has confirmed the linearit
the amplitude and the sine of the phase of the first harmo
of the cantilever’s periodic oscillations. The analysis of t
discrepancy between the experimentally evaluated ene
lost to the sample and the theoretically predicted values p
1106 ©2000 The American Physical Society
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vides significant insights into the tapping-mode dynam
and indicates essential features that need to be incorpo
in a more refined model.

II. MODELING

In the tapping-mode operation of an AFM a dither pie
attached to the substrate that forms the support of the c
lever is forced sinusoidally~see Fig. 5 below!. In most ap-
plications the first-mode approximation for the cantilever
bration is adequate for explaining the experimenta
observed characteristics. In this article we will assume
one-mode approximation and hence, the dynamics of Fig
In this case, the dynamical equation for the displacemen
the cantilever is given by

mp̈1cṗ1kp5kb~ t !1F~ t !, ~1!

wherem, c, andk are the effective mass, the viscous dam
ing coefficient, and the spring constant, respectively, of
free cantilever.F is the force on the cantilever due to th
sample andb describes the displacement of the base of
cantilever. The nominal position of the cantilever tip is d
fined to be the the equilibrium position the cantilever
takes when there are no forces due to the sample (F50) and
when the cantilever-base is stationary (b50). p(t) is the
instantaneous position of the cantilever tip measured from
nominal position. p is considered positive when th
cantilever-tip position is farther away from the sample wh
compared to the nominal position of the cantilever tip.

Equation~1! can be recast as

p̈12jv ṗ1v2p1h~p,ṗ,l !5g~ t !, ~2!

where v5Ak/m, 2jv5c/m, g(t)5@kb(t)#/m, and h
52(F/m). The parameterl characterizes the separation b
tween the tip of the cantilever and the sample when the tip
the cantilever is at the nominal position. We will also use
term cantilever-sample separationto meanl. Note that this
phrase should not be confused with the instantaneous s
ration between the tip and the sample.

The sample force per unit mass is assumed to be de
dent on the position of the cantilever, the velocity of t
cantilever, and the parameterl. In most tapping-mode appli
cationsb(t) is a sinusoidal function. Consequently, we a
sume thatg(t)52g cosvt. Further, to conform with mos

FIG. 1. The cantilever is modeled by a spring and a mass.
base of the cantilever is subjected to a sinusoidal motion given
b(t). The air damping is proportional to the velocity of the ma
with respect to an inertial frame.
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applications of the tapping mode it is assumed thatv is equal
to the first natural frequency of the free cantilever.

Experimental data has indicated that a force curve of
form shown in Fig. 2 well characterizes the force on t
cantilever due to the sample. It indicates long-range attr
tive forces and short-range strong repulsive forces. Acco
ing to this model, the sample has negligible influence on
cantilever when the separation between the tip and
sample is larger than (l 2d) @that is,p>2( l 2d)#. We will
use this observation in the next section to establish the e
tence of the periodic orbit with unrestrictive assumptions
the tapping-mode operation.

In most tapping-mode applications the cantilever-sam
separation is large when compared to the length scale
interaction (l @d) ~see Fig. 2!. Also, the fraction of the time
that the cantilever tip spends inside the sample@p,2( l
2d)# is small compared to the fraction of the time it spen
in air @p>2( l 2d)#. The small amount of time spent insid
the sample motivates the impact model of the tip-sam
interaction, where we assume that the sample can be m
eled as a hard wall. In this model, whenever the massm hits
the wall with a velocityv it reflects off the wall with a
velocity 2lv ~see Fig. 3!. l is often called the coefficient o
restitution.

Another motivating factor in studying the impact model
that this model is tractable and explicit analytical expressi
for various parameters important for imaging can be o
tained~as will be seen!. Such expressions seem unlikely fo
a more detailed model of the tip-sample interaction.

III. ANALYSIS

A. Existence

It is experimentally observed that for a wide variety
operating conditions the tapping cantilever settles into a
riodic orbit with the same period as that of the forcing. Ev
though the tapping mode has been used and researche
tensively there is a lack of analysis on why the cantilev
settles into such a periodic orbit. In particular the existen
of the periodic orbit has not received attention.

e
y

FIG. 2. Sketch of a typical tip-sample force. The force on t
cantilever due to the sample is given byF. The sample has a long
range attractive force that can be neglected after a separatiol
2d). For short separations the forces are strongly repulsive.d is the
difference in the separations at which the repulsive and the att
tive forces become significant.



to
r
th
b
w
f

rio

io

y

-

di
th

der

n-
s

on
is a
ss

ion

in

is
us

pl
Th

s
e
om
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The cantilever dynamics given in Eq.~1! can be trans-
formed into a first-order state equation;

S ẋ1

ẋ2
D5S x2

2v2x122jvx22h~x1 ,x2! D1S 0
1Dg~ t !

5.. f 1~x!1 f 2~x!g~ t !, ~3!

wherex15p is the position of the cantilever with respect
an inertial frame, andx25 ṗ. Note that if the sample is fa
away from the tip, then the influence of the sample on
cantilever dynamics can be neglected and the cantilever
haves as a damped linear oscillator. More specifically,
assume thath50 if x1>2( l 2d). Note that estimates o
( l 2d) and l can be obtained from experimental data.

We will denote the period of the sinusoidal forcingg(t)
by T. We first argue that it is not possible for any orbit,p(t),
of Eq. ~3! to be periodic with period less thanT. Suppose
f(t) is a solution to Eq.~3! with f(t)5f(t1T8) for all t

with T8,T. Then it follows thatḟ(t)5ḟ(t1T8) for all t,
which implies thatf 1@f(t)#1 f 2@f(t)#g(t)5 f 1@f(t1T8)#
1 f 2@f(t1T8)#g(t1T8), for all t. As f(t)5f(t1T8),
f 1@f(t)#5 f 1@f(t1T8)#, and becausef 2@f(t)#5(0,1)8 it
follows thatg(t)5g(t1T8) for all t. This is a contradiction
to the fact thatg is sinusoidal with periodT. Thus, if we
establish the existence of anyT periodic orbit then we have
established the existence of a periodic orbit with least pe
T ~for example aT/2 periodic orbit is alsoT periodic orbit,
but, is ruled out by the above arguments!.

For establishing the existence of aT periodic orbit we use
a result by Poincare that addresses the existence of a per
solution for a dynamical system,ẋ5 f (x,t), where f (x,t)
@for Eq. ~3!, f (x,t)5 f 1(x)1 f 2(x)g(t)# is aT periodic func-
tion. This result says that if there is a suitable setD in the
phase space (x1 ,x2) in R2, which has the property that an
trajectoryx@ t,0,x(0)#, starting at time 0 and statex(0) in D
remains inD for all t>0 ~such a set is said to be positively
invariant under the given dynamics!, then there is aT peri-
odic solution ofẋ5 f (x,t) in D ~see Ref. 12!. Such a setD is
constructed for the tapping-mode dynamics in the Appen
As explained in the Appendix, the assumptions made in

FIG. 3. The figure depicts the impact model of the tip-sam
interaction. In this model the sample is modeled as a hard wall.
massm reflects off the sample with a velocity2lv when the mass
displacement equals2 l and the velocity with which the mass hit
the sample is given byv. Note that the displacement is positiv
upwards; that is, it is positive when the mass is farther away fr
the sample when compared to the nominal position.
e
e-
e

d

dic
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construction of such a set are unrestrictive. For the remain
of the work we will assume that there exists aT periodic
orbit for the tapping-mode dynamics.

B. Impact model

In this section we model the sample by a hard wall. Co
sider the massm in Fig. 3, which hits the sample modeled a
a hard wall for thenth time with a velocityṗn at time instant
tn . The massm reflects off the wall with a velocity2l ṗn
instantaneously. For the purposes of intuition, a comm
macroscopic system that is modeled by this dynamics
rubber ball bouncing off a hard floor. The motion of the ma
is governed by Eq.~4! given by

S ẋ1

ẋ2
D5S x2

2v2x122jvx2
D1S 0

1Dg~ t !, ~4!

with initial conditions at timetn given by (2 l ,2l ṗn) till a
time tn11 when the mass hits the sample again. The solut
of Eq. ~4! with initial conditions at time instantt0 given by
p(t0)52 l and ṗ(t0)5 ṗ0 is solved to be

p~ t !52 l 0 sinvt1e2jv~ t2t0!$C1 cosv̄~ t2t0!

1C2 sinv̄~ t2t0!%, ~5!

where

C152 l 1 l 0 sinvt0 ,

C25
1

v̄
$jv~2 l 1 l 0 sinvt0!1 ṗ01 l 0v cosvt0%,

l 05
g

2jv2 and v̄5vA12j2.

l 0 is the amplitude of the free cantilever~that is, the ampli-
tude at steady state with no sample present!. Differentiating
Eq. ~5! with respect tot we obtain,

ṗ~ t !52 l 0v cosvt1e2jv~ t2t0!

3$C3 cosv̄~ t2t0!1C4 sinv̄~ t2t0!%, ~6!

where

C35~ ṗ01 l 0v cosvt0!,

C452
v

v̄
$v~2 l 1 l 0 sinvt0!1j~ ṗ01 l 0v cosvt0!%.

On theT periodic orbit~whose existence was established
the previous section!, tn115T1tn and ṗn115 ṗn . Thus on
the periodic orbit, if the time immediately after impact
denoted byt0 then taking advantage of the instantaneo
nature of the impact, we have that

p~ t01T!52 l ~7!

and

ṗ~ t01T!52
1

l
ṗ~ t0!. ~8!

e
e
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Upon substituting Eqs.~5! and ~6! into Eqs.~7! and ~8!
we observe that cosvt0, sinvt0, ṗ0 , andl appear linearly in
Eqs.~7! and~8!. By eliminatingṗ0 from Eqs.~7! and~8! we
obtain

X cosvt01Y sinvt05D, ~9!

whereX, Y, D are provided in the Appendix.
From Eq.~9! we have that

sin~u1vt0!5
D

AX21Y2
5

l

l 0
S Y

AX21Y2D . ~10!

By expanding the right-hand side in powers of the param
j we can show that

sin~u1vt0!5
l

l 0
@11O~j2!#, ~11!
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where

sin~u!5
X

AX21Y2
5

j

2
1O~j2!. ~12!

Thus it follows that

sinvt05
l

l 0
@11O~j2!#1O~j!. ~13!

By eliminating sinvt0 from Eqs.~7! and ~8! we obtain

ṗ052Ml 0v cosvt0 , ~14!

where
M52l
11e24jp22e22jp cos~2pA12j2!

12le24jp1~l21!e22jp cos~2pA12j2!2~l11!e22jp sin~2pA12j2!
52

2pjl

11l
1O~j2!. ~15!
g
-

us

s.
Thus we have that the velocity of impact on the perio
orbit is given by

ṗ↓ª ṗS t01
2p

v D51
1

l
Ml 0v cosvt0

52S 2pj

11l
1O~j2! D l 0v cosvt0 . ~16!

Thus the periodic orbit is defined by Eq.~5! with t0 given
by Eq.~11!, p052 l andṗ0 given by Eq.~14!. Thus we have
an explicit solution for the periodic orbit in the impact cas

Note that we have provided expansions of the vario
quantities derived, in terms of the parameterj. For tapping-
mode AFM’s that operate in air,j is small. Thus we can
ignore the higher-order terms ofj to assess the behavior o
the dominant terms.

The velocity of impact on the periodic orbit@given in Eq.
~16!# is proportional toj. Thus the velocity of impact is
small in general and is particularly small if the cantileve
sample separationl is large@note that cosvt0'1/l 0Al 0

22 l 2 in
Eq. ~16!#. It is also evident that the impact velocity varies b
only a factor of 2 and remains small over the whole range
the parameterl (0<l<1), where no energy is lost upo
impact if l51, and all the energy is lost upon impact ifl
50. It needs to be stressed that the analysis here indic
that irrespective of the sample~characterized byl! the state
of the system evolves into a periodic orbit that is gentle
the sample provided that the air damping of the cantileve
small. This explains the experimentally observed gentlen
of the tapping-mode operation on the sample. In Fig. 4
plot of the impact velocity versus the tip-sample separatiol
for various values ofl is presented. As can be clearly see
the velocity at impact increases with decreasing tip-sam
separation and with decreasingl.
.
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Based on the impact velocity given in Eq.~16! we can
evaluate the energy lost upon impact to be

El52p2kj2~ l 0
22 l 2!

12l

11l
. ~17!

Thus the energy lost due to impact is proportional toj2.
Note that whenl50 ~inelastic impact! the energy loss dur-
ing impact is 2p2kj2( l 0

22 l 2). We will elucidate more on the
energy lost in the next section.

We now study the stability of the periodic orbit usin
another result by Poincare´ ~see Ref. 12!. Suppose the canti

FIG. 4. This figure shows a plot of the impact velocity vers
the cantilever-sample separationl for various values ofl. It can be
seen that as the factorl is decreased the impact velocity increase
However, over the whole range of the possible values ofl the
impact velocity is small and varies only by a factor of 2.
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lever tip is at a certain initial condition that is close to t
periodic orbit established earlier. With this initial conditio
let the map from thenth impact time and thenth impact
velocity to the (n11)th impact time and the (n11)th im-
pact velocity for the orbit resulting from the given initia
condition be given byP. Thus,

S ṗn11

tn11
D5S P1~ ṗn ,tn!

P2~ ṗn ,tn! D5..P~ ṗn ,tn!.

Poincare´’s result says that the periodic orbit is stable if a
the eigenvalues of the Jacobian of the mapP on the periodic
orbit have modulus less than one. The Jacobian is given

DP5S ]P1

] ṗn

]P1

]tn

]P2

] ṗn

]P2

]tn

D .

Note that we have derived the analytical expression of
periodic orbit. However, we have not derived the form of t
orbit resulting from initial condition not on the periodic o
bit. This task is impossible due to the transcendental form
the equations involved. However, the elements ofDP can be
obtained by implicit differentiation that is provided in th
Appendix. In the limitj→0 the eigenvalue of the Jacobian
given by2le22jp. Thus the periodic orbit will be stable i
l,1.

C. Relation of the amplitude and phase of the first harmonic
with respect to the cantilever-sample separation

Tapping-mode AFM’s provide the amplitude and phase
the first harmonic of the periodic orbit as measured qua
ties. These quantities can be used for imaging sample p
erties if their relationships to the properties are establish
In a recent result, based on the assumption that the ste
state cantilever oscillations can be approximated by a p
sinusoid, a method has been devised for imaging ene
losses to the sample using the amplitude and phase o
sinusoid~see Ref. 7!. With this motivation we study the firs
harmonic of the periodic orbit resulting from the impa
model of the tip-sample interaction.

Note that we have obtained an analytical expression
the periodic orbit in the impact case in the previous subs
tion. Thus we can obtain the Fourier coefficient of the fir
harmonic component by performing the integral

Y15
v

2p E
t0

~2p/v!1t0
p~ t !e2 j vtdt

5
v

2p
e2 j vt0E

t0

~2p/v!1t0
p~ t !e2 j v~ t2t0!dt,

wherep(t) is given by Eq.~5!. We can evaluate the integra
to be

Y15F2
l 0

2
sinvt01 j S 1

2
1

~11l!M

4pjl D l 0 cosvt0Ge2 j vt0

5„2 1
2 l @11O~j2!#1 jO~j!…e2 j vt0. ~18!
y

e

f

f
i-
p-
d.
dy-
re
gy
he

r
c-
-

Note that the amplitudeA of the first harmonic is given by

Aª2uY1u5 l @11O~j2!#1O~j2!. ~19!

Thus the analysis of the impact model predicts that
cantilever-sample separationl can be accurately predicted b
the amplitudeA of the first harmonic of the periodic orbit.

This conclusion might seem trivial as the cantilever-
displacement towards the sample cannot be more than
distance between its nominal position and the sample m
eled as a hard wall~otherwise the cantilever tip would pen
etrate the hard wall!. Thus if the sample moves byD l the
maximum displacement of the cantilever towards the sam
also has to change byD l . Thus the linear relationship be
tweenl and the maximum displacement of the cantilever
towards the sample can be argued in this way. However,
~19! predicts a linear relationship between the amplitude
the first harmonicof the periodic orbit andl. If the wall is
found at a distance2w, what is surprising and nonintuitive
is that the tip never goes a distancew abovethe cantilever’s
rest position. That is, there is a physical reason to expect
oscillation to be bounded by2w, but no reason to expect i
to be bounded by1w. The fact that the orbit stays symme
ric means that the average deflection of the cantilever ti
always small and all the surface information is carried~lin-
early! in the amplitude. Note that the periodic orbit who
existence was established earlier could be nonsinusoidal
thus could have higher harmonics. Indeed the spectral an
sis of experimental data reveals such harmonics. The im
tant insight offered by Eq.~19! is that the higher harmonic
can be safely neglected and thus the periodic oscillation
the cantilever tip can be approximated by a sinusoid. T
result also gains significance because it is experiment
convenient to obtain the amplitude and the phase of the
harmonic of the periodic orbit rather than obtaining the co
plete time history or even the data on higher harmonics. T
hardware needed to extract the amplitude and phase o
first harmonic is less involved and costs less because of
lower bandwidths of the equipment needed. Note that
information on the dc offset~the average deflection of th
cantilever tip! is lost when evaluating the first harmonic o
the periodic orbit. However, this can be evaluated by find
the constant term in the Fourier expansion of the perio
solution.

This implies that amplitude can be effectively employ
to image the topography of the sample, particularly when
damping is small. In a way, the amplitude is used to ima
the topography in a standard tapping AFM because thz
feedback loop~see Fig. 5! keeps the amplitude constan
However, this would still work even if the amplitude versu
l were nonlinear. The result here is even stronger. If no fe
back was used the amplitude signal would accurately m
sure sample topography. To employ this practically wou
require much larger amplitudes than are commonly used

The phase of the first harmonic with respect to the forc
is given byf5arg(Y1)2p52vt01O(j). Therefore we have

sinf52sinvt01O~j!52
l

l 0
@11O~j2!#1O~j!.

~20!
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PRB 61 1111LINEARITY OF AMPLITUDE AND PHASE IN . . .
The relationship above says that the sine of the phase o
first harmonic~the phase with respect to the forcing! varies
linearly with respect to the cantilever-sample separation. T
ditionally, most researchers have focused on the plots of
phase versus the cantilever-sample separation. However
analysis presented leads to an important observation; st
ing the sine of the phase versus cantilever-sample separ
curve can be more illuminating than phase versus cantile
sample separation curve due to the linear nature of
former.

Recently in Ref. 7, a method was devised to estimate
power dissipated in the tapping-mode AFM. This w
achieved by equating the energy input from the forcing a
the energy lost to the damping and the sample. The assu
tion made is that the periodic orbit is sinusoidal. Using t
method it is found that the power lost due to the interact
with sample is given by

jkA2vS l 0

A
sinf11D . ~21!

Note that the prefactor in Eq.~21! is the power loss due to ai
damping. Since the impact model predicts that theA' l and
that sinf'2(l/l0), the loss of energy due to the tip-samp
interaction is always small compared to air-damping loss
This is also evident from Eq.~17!. Note that Eqs.~17! and
~21! can be equated to evaluate the coefficientl. This means
that images of amplitude and phase could be used to m
images ofl. However, as will be seen in the next section, t
losses seen experimentally for most samples are much la
than the limit 2p2kj2( l 0

22 l 2).

IV. EXPERIMENTAL METHODS AND DISCUSSION

An atomic force microscope~MultiMode, Digital Instru-
ments, Santa Barbara, CA! was operated in tapping mod
~see Ref. 13!. The experimental setup is described by Fig.
The sample is positioned vertically by a piezo ceramic tu

FIG. 5. This figure describes the experimental setup used.
sample is positioned using a piezotube. The cantilever is oscill
using a sinusoidal voltage applied to the dither piezo. The displa
ment of the cantilever is recorded by a laser that reflects off
cantilever surface and is incident into a split photodiode senso
he
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The position of the base of the cantilever can be contro
by applying a voltage to the dither piezo. The displacem
of the cantilever is recorded by using a laser that reflects
the cantilever surface and which is incident on a split pho
diode. A silicon cantilever of length 225mm was used. The
model parameters were evaluated by analyzing the cantil
response to thermal noise in similar ways to the those s
gested in Refs. 14 and 15. The quality factorQ of the canti-
lever was evaluated to be 130,~Q is given byAkm/c!. Thus,
we have j51/2Q51/26050.0038. The first model fre-
quency of the cantilever was atv52p373881 rad/sec. For
the one-mode model, the stiffnessk was found to be 4.0
N/m.

A sinusoidal voltage at the resonant frequencyv of the
cantilever was applied to the dither piezo attached to
cantilever base. The sample~silicon wafer! initially was suf-
ficiently far from the cantilever so that it did not affect th
cantilever motion. Once the cantilever reached its ste
state ~'1 ms!, the sample was slowly moved towards th
vibrating cantilever by extending the piezo on which t
sample sits.

The motion of the cantilever tip at various values of t
piezo extension was recorded using an HP 89410 vector
nal analyzer. Time series plots of the steady-state behavio
the cantilever tip at different piezo positions are shown
Fig. 6. As established by the analysis we see that the ca
lever tip is on a periodic orbit. The time period of the orb
determined from the plots is equal to 2p/v. A spectrum
analysis of the data shows that the orbits are nearly s
soidal when the cantilever-sample separation is large. W
the cantilever-sample separation is smaller, the cantile
motion deviates more from a sinusoidal behavior. Howe
the net deflection of the nonsinusoidal motion is still at m
one percent of the total motion. This agrees well with t

e
d

e-
e

FIG. 6. This figure shows the plots of the tip deflection for tw
different values of cantilever-sample separationl. The plot on the
top shows the time plot of the tip deflection for a large cantilev
sample separation whereas the plot below shows the time plot o
tip deflection for a smaller value of the cantilever-sample sepa
tion. It is evident that in both cases the cantilever tip is on a perio
orbit. This is also confirmed by a spectral analysis of the time pl
It can be seen that the cantilever-tip oscillations are almost s
soidal. The spectral analysis also shows that when the cantile
sample separation is small the orbit deviates more from a sinuso
orbit.
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predictions made by assuming a impact model of the
sample interaction.

The piezo extension with respect to the voltage applied
the piezo scanner is linear in the relevant range~less than
one-percent deviation!. It needs to be stressed that the on
quantifiable control on the cantilever-sample separation
through the piezo extension. There is no separate measu
the cantilever-sample separation. However, it can be
sumed that there is a constant offset between piezo exten
and the cantilever-sample separation. With this understa
ing the horizontal axis is labeled ‘‘separation’’ in Figs.
and 8.

The amplitude of the cantilever at various values of
separation are given in Fig. 7. The phase between the
harmonic of the periodic orbit and the forcing~denoted byf!
was also obtained experimentally~see Fig. 8!. Systems like
this that evolve to small impact velocities are known as gr
ing impact oscillators. It is evident from Fig. 7 that the am
plitude of the first harmonic of cantilever’s oscillation vari
linearly with respect to the separation, in the region betw
points c and d ~see Fig. 7!. Also, in Fig. 9, sinf is plotted
against the separation. As can be seen, the experimenta
shows that the plot is linear between the pointsc andd.

When the piezo extension is between the points markeb
andc the cantilever tip barely~if at all! penetrates the repul
sive region of the potential. The attractive region of the p
tential ~see Fig. 2! has considerable influence on the canti
ver motion. For values of the piezo extension in the reg

FIG. 7. This figure shows the plot of the amplitude of the fi
harmonic of the periodic oscillation of the cantilever tip with r
spect to the piezo extension that is a proportional measure o
cantilever-sample separation with an offset. In the region markea
the cantilever is not influenced by the sample at all. In the reg
indicated byb the cantilever is influenced only by the attractiv
regime of the tip-sample interaction, whereas in the region betw
c andd the tip is influenced primarily by the repulsive forces. T
impact model is well suited to model the repulsive part of the t
sample separation. As predicted by the analysis, the amplitud
the first harmonic varies linearly with the cantilever-sample sep
tion in the region betweenb andc. Note that in the plot there is an
offset between the amplitude and the separation. This is bec
there is an offset between the cantilever-sample separation an
piezo extension.
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denoted bya the cantilever is not influenced by the samp
and for values of the piezo extension more than that given
d the tip probably never leaves the moisture layer~see Ref.
16! present on the surface. The region betweenb andc can
be explained by a model that includes the attractive par
the tip-sample interaction. Numerical modeling that includ
a finite range attractive force in the tip-sample interact
does show this jump~see Ref. 8!. For purposes of the analy
sis presented here, the appropriate region of the piezo ex
sion is between the pointsc andd ~the repulsive interaction
regime!. As is evident the plots of sinf and the amplitude
are linear in this region, which agrees with the analytica
obtained expressions in relations~19! and~20!. Experiments

t
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n

n

-
of
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se
the

FIG. 8. The figure shows a plot of the phase between the
harmonic of the cantilever tip’s oscillation and the forcing. T
various regions are explained in Fig. 7. It is difficult to extract a
relationship between the phase and the cantilever-sample sepa
from this plot.

FIG. 9. This figure shows a plot of sin(f) versus scaled separa
tion l / l 0 wherel 0 is the amplitude of the free cantilever andf is the
phase between the first harmonic of the periodic oscillation of
cantilever tip and the forcing. The various regions are explaine
Fig. 7. The linear relationship between sin(f) and cantilever-sample
separation is evident in the region corresponding to the repul
part of the tip-sample interaction~i.e., the region betweenc andd!.
This was predicted by the impact model.
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conducted on a wide variety of samples show similar ch
acteristics as illustrated in the experiment described in
paper.

The sample influences the amount of energy pumped
the system by the external forcing by changing the ph
between the forcing and the orbit of the cantilever tip~here
we are assuming with support from the analysis and exp
mental data that the periodic orbit can be approximated b
sinusoid and that the higher harmonics can be neglect!.
The sample also induces energy losses due to dissip
terms. When the energy lost to the sample~the dissipative
energy loss! ~estimated by using the method given in Re
17! is compared with the theoretically obtained result giv
by Eq. ~17! we see that the energy lost due to impact can
account for the net energy lost to the sample. The imp
model predicts maximum energy losses ten times sma
than are observed experimentally. It is important to note t
the same conclusion can be reached foranymodel where the
tip-sample interaction is instantaneous. To see this, ima
a periodic orbit with any instantaneous interaction. Since
orbit is periodic, the tip will always have the same veloc
ṗ↓ before impact. Also the velocityṗ↑ after impact will be
the same. Thus by defining the factorl to be the ratio of
these velocities the model is equivalent to the impact mo
on the periodic orbit and the relevant analysis carried
will apply.

Thus even though the fraction of the time the tip is int
acting with the sample in a tapping AFM may be small, it
not negligible. This implies that any model that successfu
predicts the energy losses will include finite interacti
times. For hard samples, it is likely that the presence of
attractive forces~not included in the model analyzed in th
paper! increase the interaction time. For soft samples l
polymers, the repulsive forces are weak enough for the ti
spend significant time in the sample.

It should be noted that simulations have shown more
fined models that include the attractive regime of the t
sample interaction and account for the energy lost to
sample still preserve the linearity of amplitude and sine
phase predicted by the impact model. Analysis on exp
mental data over a wide variety of samples also confir
these conclusions.

V. CONCLUSIONS

In conclusion this work has shown that a very simp
model, the impact model, provides remarkable insights i
the tapping-mode dynamics. It predicts linearity of amplitu
and the sine of the phase of the first harmonic of
cantilever-tip oscillation with respect to cantilever-samp
separation. Experiments conducted on a wide variety
samples corroborate the results obtained. The linear rela
ships obtained can be used to devise new ways of ima
material. They also lend support to the assumption that
periodic orbit is nearly sinusoidal. This assumption has b
used by many in the literature.

The impact model cannot account for the energy los
the sample. One of the important insights obtained resul
from the analysis of this discrepancy is that any model t
quantifies energy losses to the sample cannot ignore the
teraction time between the sample and the cantilever
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This will aid the development of more refined models.
The existence of a periodic orbit is established with

sumptions that are met by most tapping-mode operation c
ditions. Future research will develop models incorporat
the insights obtained by this work.
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APPENDIX

1. Results on existence of periodic orbits

In this section we will construct a positively invariant s
D for the tapping-mode dynamics described by Eq.~3!,
whereh(x1 ,x2)50 if x1>2( l 2d). We will first construct
a setD0 that is positively invariant under the dynamics of
damped oscillator described by Eq.~4!.

Denote the total energy of the mass byE5 1
2 v2x1

21 1
2 x2

2.
Let V be the modified energy function given byV(x1 ,x2)
ªE1jvx1x2 . Then,

~12j!E<V<~11j!E.

The derivative ofV(x) along a trajectory of Eq.~4! satisfies

V̇<22jvV~x!12gAV.

Choose anyC>(g/jv)2 and let D0(C)5$x:V(x)<C%.
Note thatD0(C) defines a region enclosed by an ellipso
Also D0(Ci) lies entirely insideD0(Cj ) if Ci<Cj . At any x
on the boundary ofD0 , V(x)5C, and

V̇<22AV~jvAV2g!<0.

Thus on the boundary ofD0(C), x(t) is always moving in
the direction of smallerV. Hence no trajectory of Eq.~4! can
cross the boundary ofD0 outward.

Now we construct the setD that is positively invariant
under the dynamics of Eq.~3!, that is, we will construct a
suitable setD which has the property that no solution startin

FIG. 10. RegionD used in proving the existence of the period
orbit.
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in D leavesD. Consider the regionD enclosed by the close
curveP1P2P3P4P5P1 in Fig. 10. The arcP1P2P3 is given
by the set

$~x1 ,x2!:x1>2~ l 2d!, and V~x!5C%.

Note that forx in the interior of the region enclosed by th
curve P1P2P3P6P5P1 , the dynamics are governed by E
~4!. Therefore on the the curveP1P2P3 , the vector
f (x1 ,x2 ,t), wheref 5 f 11 f 2g , is directed as shown in Fig
10.

The arcP3P4P5 is given by the orbit of

S ẋ1

ẋ2
D5S x2

2v2x122jvx22h~x1 ,x2!1g sgn~x2! D5.. f̄ ~x!,

~A1!

which passes through the pointP3 . We make an assumptio
that the mass under the dynamics given by Eq.~A1! with
initial condition P3 will exit the sample at some pointP5
with a velocity whose magnitude is smaller than the mag
tude of the velocity with which it entered the sample@that is
ux2(P5)u5lux2(P3)u with 0,l<1#. We will give justifica-
tion for this assumption later.

For any pointx on the arcP3P4P5 , at any timet, the
angle made by the vectorf (x,t) with the positivex1 axis is
given by

/ f 5tan21S 2v2x122jvx22h~x1 ,x2!

x2
2

g cosvt

x2
D ,

whenx2Þ0. Similarly, for any pointx on the arcP3P4P5 ,
excluding the pointP4 , the angle made by the vectorf̄ (x)
with the positivex1 axis is given by

/ f̄ 5tan21S 2v2x122jvx22h~x1 ,x2!

x2
1

g

ux2u D .

As tan21 is a monotonically increasing function we have

/ f̄ ~x1 ,x2!>/ f ~x1 ,x2 ,t !

for all x on the arcP3P4P5 @note that for the pointP4 ,
/ f̄ (P4)5/ f (P4)5p/2]. Thus no trajectory of Eq.~3! can
leave the regionD through the arcP3P4P5 .

The last part of the closed curve to be considered is
straight lineP1P5 . Note thatV(P1)5V(P3)5C. Also, for
both P3 andP1 , thex1 coordinate is equal to2( l 2d). Let
l 852( l 2d). Thus we have

1
2 v2l 821 1

2 x2
2~P1!1vj l 8x2~P1!

5 1
2 v2l 821 1

2 x2
2~P3!1vj l 8x2~P3!,

which implies that

1
2 @x2

2~P3!2x2
2~P1!#52jv l 8@x2~P3!2x2~P1!#.

This implies that

x2~P3!52x2~P1!22jv l 8.

As ux2(P5)u5lux2(P3)u, it follows that
i-

e

ux2~P1!u2ux2~P5!u5ux2~P1!u2lux2~P3!u

5~12l!ux2~P3!u22jv l 8

5~12l!ux2~P3!u12jv~ l 2d!.0.

It follows that the pointP5 is inbetweenP1 and P6 as
shown in Fig. 10. Finally, for all pointsx5(x1 ,x2) on the
line segmentP1P5 , the valuex1,0 andx2.0. This implies
that no trajectory of Eq.~3! can leaveD throughP1P5 .

Thus no trajectory of Eq.~3! starting in the regionD can
leaveD. Thus we conclude that the dynamics given by E
~3! has aT periodic solution lying entirely inD. Thus there
exists a periodic solution with its period equal toT.

In arriving at the existence of a periodic orbit with perio
T we made the assumption that if the mass whose dynam
is governed by Eq.~A1! enters the sample’s region of influ
ence@the region$(x1 ,x2):x1<2( l 2d)%#, then it leaves the
same region with a velocity whose magnitude is smaller th
the magnitude of the velocity with which it entered it. For
typical tapping-mode operation, the tip-sample separationl is
close to the resonant amplitude of the cantilever without
sample present. We denote the resonant amplitude byl 0 .
Thusuv2x1u'v2l 0 in the region of samples influence. Also
g is given by (v2l 0)/Q where Q51/(2j). Typically the
quality factorQ is above 100. It should also be noted thaj
is a small number and the attractive part ofh(x1 ,x2) is com-
paratively small in relation to the repulsive part. Thus it
expected that

2v2x122jvx22h~x1 ,x2!2g.0,

in the region of sample’s influence. This means that the m
governed by Eq.~A1! will leave the region of samples influ
ence. Also, the only way the mass can have a greater velo
when it leaves the region of sample’s influence is if it h
gained energy during the time it has spent there. The forc
g is the only source by which the mass can gain energy.
variabled is small, thus the energy that the mass can g
due to the forcing while inside the sample is small w
respect to the losses to the sample. In particular, the en
gained due to forcing is zero in the limit that the mass spe
no time in the region of sample’s influence. This justifies t
assumptions made.

2. Results related to the impact model

The coefficientsX, Y, andD are given by

X52S 1

l
11D 1

A12j2
e22jp sin~2pA12j2!

5
l11

l
pj21O~j3!, ~A2!

Y5
1

l
2e24jp1S 2

1

l
11De22jp cos~2pA12j2!

2S 1

l
11De22jp

j

A12j2
sin~2pA12j2!

52pjS l11

l D1O~j2!, ~A3!
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D5
l

l 0
Y. ~A4!

The elements of the Jacobian matrixDP are given by

]P1

] ṗn

5e22jpF2l cos 2pA12j2

1
l

A12j2
S p̈↓

v ṗ↓
1j D sin 2pA12j2G

5e22jpF2l1
l

l 0

O~j!1O~j!G
]P1

]tn

5e22jpF2l cos 2pA12j2~2l p̈↓2 p̈↑!

2
l

A12j2
sin 2pA12j2S p̈↓~ p̈↑1jv ṗ↑!

v ṗ↓

1v ṗ↑1j p̈↑D G
y
-

l-

s,

s

c

]P2

] ṗn

52e22jpS 1

v ṗ↓A12j2
sin 2pA12j2D ,

52e22jpS j

2
1O~j2!D

]P2

]tn

5e22jpF2l cos 2pA12j2

1
1

A12j2
S p̈↑

v ṗ↓
2lj D sin 2pA12j2G

5e22jpF2l1
l

l 0

O~j!1O~j!G ,

wherep̈↓ and ṗ↓ denote the acceleration and velocity of th
mass on the periodic orbit before impact, whereasp̈↑ and ṗ↑
denote the acceleration and velocity of the mass on the p
odic orbit after impact.
er,

s
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