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Abstract—This paper discusses switching schemes for gradient
error compensation in unary (thermometer-decoded) arrays of
digital-to-analog converters (DAC’s). The absolute lower bound
of integral nonlinearity (INL) by optimizing switching sequences
is established and optimal switching sequences that meet the
lower bound of INL are presented for linear error compensation
in one-dimensional arrays. A rapidly converging algorithm is
developed to obtain INL bounded switching sequences for any
given type of gradient error compensation. Simulation results
show that the new switching sequences substantially reduce the
nonlinearity of DAC’s due to gradient errors.

Index Terms—Digital-to-analog converter, gradient error, non-
linearity, switching sequence, thermometer decoding.

I. INTRODUCTION

SEGMENTED architectures are widely used in high-con-
version-rate and high-accuracy digital-to-analog converters

(DAC’s) [1]–[6]. Generally, the least significant bits (LSB’s)
steer a binary weighted array, while the most significant bits
(MSB’s) are thermometer decoded and steer a unary array. The
static performance of a segmented DAC is strongly dependent
on the linearity of the unary array.

Linearity can be achieved by overcoming all possible random
and systematic errors [1]. The random errors are determined by
the inherent matching properties of the technology used. In a
given process technology, for architectures that do not incorpo-
rate trimming or tuning, increasing the active area of each unit
element in the arrays of DAC’s is the most effective method
for reducing random errors. When only random errors are con-
sidered, for each extra bit of DAC accuracy, the active area of
the unary array increases by a factor of four. In high-accuracy
DAC’s, this results in large dimension arrays. The gradient er-
rors in these arrays can become very significant and must be
correctly compensated to keep the random error dominate.

Optimizing switching schemes can reduce the nonlinearity
due to gradient errors. This potential has been seen in many
current-steering DAC designs [1]–[6]. A switching scheme
is actually a layout technique. In a current-steering DAC, the
switching scheme determines the interconnection between
the outputs of the thermometer decoder/latch and the control
terminals of the switches in the current matrix. As an example,
an 8-bit thermometer-decoded current-steering DAC is shown
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Fig. 1. Architecture of an 8-bit current-steering thermometer-decoded DAC

in Fig. 1. The unary array contains 256 current sources that are
ideally identical. The switching scheme determines the order
the current sources are switched on as the digital code increases
from 1 to 255. The current sources are numbered
in the order they are switched on. The unused current source is
a dummy current source. Instead of inserting a dummy current
source there, that area is often used for the biasing circuits. In
a segmented DAC, this “dummy” area of the unary array can
be used for the binary weighted array. For the unary array in
Fig. 1, there are totally 256! possible switching sequences.

Several switching schemes and sequences have been heuris-
tically derived in literature for gradient error compensation in
unary arrays of DAC’s [1]–[5]. However, no real analytical
treatment has been attempted to verify whether these switching
schemes and sequences are sufficient to compensate for the
gradient errors, and the issue of whether better solutions exist
has not been addressed. A general approach is necessary to find
optimal or near optimal switching sequences under any given
type of gradient condition.

An absolute lower bound of integral nonlinearity (INL)
through optimizing the switching sequence is established in
this paper. It will be shown that the conventional switching
sequences result in linearity errors that are higher than this
lower bound.Optimalswitching sequences that meet the lower
bound are presented for one-dimensional (1-D) arrays with
linear gradient errors. A general approach is developed to find
optimal or near optimal switching sequences for any given type
of gradients.

Even though current-steering DAC’s are used as examples in
this paper, a similar analysis can be easily applied to other types
of thermometer-decoded DAC’s, such as capacitor array DAC’s
where charge rather than current is used. Even for resistor-string
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DAC’s, where the resistor strings are often laid out in several
segments (e.g., a 10-bit resistor string containing 1023 resis-
tors are laid out in 32 columns, each column, except one, con-
taining 32 resistors), the order to interconnect the segments (or
columns) can also be optimized using the approach described in
this paper.

Before switching schemes are discussed, the linearity errors
(INL and DNL) of thermometer-decoded DAC’s are formulized
in Section II. This formalization shows a strong dependence
of INL on switching sequences. In Section III, typical gra-
dient error distributions are illustrated and normalized. The
conventional switching schemes are reviewed in Section IV.
In Section V, an absolute lower bound of the INL for arbitrary
switching sequences is derived and optimal sequences which
meet this lower bound are given for 1-D linear error arrays.
The idea is then expanded to any type of error arrays including
two-dimensional (2-D) arrays and a rapidly converging al-
gorithm—the INL bounded algorithm—is developed to find
optimal or near optimal switching sequences for any given
type of gradients. Simulation results are given in Section VI to
compare different switching sequences.

II. L INEARITY ERRORS

In an -bit thermometer-decoded DAC, the unary array gen-
erally consists of ( ) elements that are ideally iden-
tical. However, mismatches between the elements always exist.
For example, in a current-steering DAC, the actual current pro-
vided by current source( ), can be expressed as

(1)

where is the average current provided by all the current sources
in the array and is the relative deviation of from . Hence

(2)

and the average value of ( ) is equal to zero.
For a real DAC, only elements are required while the

extra element in the unary array is a dummy element. However,
in some simplified DAC’s as discussed later in this paper, the
elements in the unary array are all used and the digital input is
in the range of instead of . For notation conve-
nience, the linearity errors of thermometer-decoded DAC’s will
be formulated in two cases: first for DAC’s without dummy el-
ement, second, for DAC’s with one dummy element.

A. DAC’s without Dummy Element

Assume the actual analog output for a digital code(
) is denoted as , hence the offset of the DAC is . The

linearity errors are generally in units of LSB’s. The actual value
of 1 LSB is defined as

(3)

After the offset is removed, the integral nonlinearity (INL) at
each digital code is defined as the deviation of the analog output

(in LSB’s) at that code from the ideal transfer response which
is a straight line from the output at 0 LSB to the output at
LSB. The differential nonlinearity (DNL) is the deviation of the
analog step size from 1 LSB. Formally, the INL (in LSB’s) at
digital code ( ) is given by

INL (4)

It is easy to see that INL INL . Similarly, the DNL
(in LSB’s) at digital code ( ) is given by

DNL

(5)

In a current-steering DAC without a dummy element, if all
the current sources are numbered in the order
they are switched on, the actual output current for digital code

( ) is thus given by

(6)

where is the offset current. It follows from (1)–(6) that
INL and DNL (in LSB’s) of the current-steering array can be
expressed as

INL (7)

DNL (8)

Therefore, both the INL and DNL are independent of the av-
erage current and can be determined only by the relative errors

( ) of the current sources in the array. The INL and
DNL of the overall DAC are defined as

INL INL (9)

DNL DNL (10)

From (8) and (10), it is apparent that thermometer-decoded
DAC’s can achieve very low DNL . For each element in the
array, 50% variation is good enough to obtain a DNL of 0.5
LSB.

However, it can be shown that with a poor switching se-
quence, the INL can be very high when gradient errors are
present. Our goal is to minimize INL by optimizing the
switching sequence.

B. DAC’s with One Dummy Element

In this case, only elements in the unary array are re-
quired. The INL and DNL (in LSB’s) at digital code(

) are given by

INL (4')
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DNL (5')

In the current source array, current sources are used and
numbered in the order they are switched on.
If the dummy current source is numbered, again the actual
output current for digital code is given by

(6')

Following from (1), (2) and (4’)–(6’), INL and DNL for
an array with one dummy element can be expressed as

INL (7')

DNL (8')

and the INL and DNL of the overall DAC are

INL INL (9')

DNL DNL (10')

Comparing (7’)–(10’) with (7)–(10), the DNL and INL of
DAC’s in both cases are almost the same. Their minor differ-
ence depends on which current source is chosen as the dummy
current source. This “dummy” effect is often so small that it can
be ignored.

As we mentioned before, the DNL of a thermometer-decoded
array is quite small while the INL may be quite high when gra-
dient error accumulates. The switching sequence is optimized to
minimize the error accumulation in the INL. Before addressing
the switch sequence optimization, we will characterize the error
distributions across the unary arrays of the DAC’s.

III. GRADIENT ERRORS

If the errors or mismatch of the elements in a unary array
are totally random and uncorrelated, the INL and the yield
of the DAC can be estimated by Monte Carlo simulations
[1], [2], [7]. With this estimation, the minimum requirement
for the matching precision of the elements can be determined
to meet given accuracy and yield specifications. Pelgrom [9]
showed that random error can be reduced by increasing element
area. For 1-bit accuracy improvement, the element area has
to increase by a factor of four. When matching parameters
for a given technology are available, the minimum active area
required for the unit elements can be determined.

If only uncorrelated random errors are present, the INL and
the yield of a DAC are independent of the switching sequence.
However, as mentioned above, to reduce random errors so as
to achieve high accuracy, the unary arrays of high-resolution
DAC’s generally occupy quite a large area, which results in
large distances between elements. Large distances between el-

ements introduce significant gradient errors [9]. To make the
unary array compact, matrix configurations are often used and
a square matrix is especially preferred. But even with compact
layout, the distances between elements are still large.

A. Gradient Error Distributions

Gradient error distribution across a unary matrix can be ap-
proximated by a Taylor series expansion around the center of
the unary array [1]. The gradient error of the element located at
( ) can be expressed as

(11)

It is generally assumed that the linear (the first order) and the
quadratic (the second order) terms are adequate to model gra-
dient effects [1], [2]. That is, the error distribution is typically
linear or quadratic or the superposition of both as illustrated in
Fig. 2. For example, in a current source matrix, the doping and
the oxide thickness over the wafer or the voltage drop along the
power supply lines have been reported to cause approximately
linear gradient errors [1], [2], [4]. Temperature gradients and
die stress may introduce approximately quadratic errors [8]. The
overall systematic error distribution is given by superimposing
these error components [4].

Assume in a matrix layout ( elements in the
direction and elements in the direction), the location of
each element is represented by its geometrical center and the
spacing between two elements is in the direction and
in the direction. Hence, the total layout area of the matrix is

. If we use the center of the matrix as the
origin as depicted in Fig. 2, then three typical gradient error dis-
tributions in this matrix can be formulized as follows.

1) Linear Error Distribution: The linear gradient error for
an element located at ( ) can be expressed as

(12)

where is the angle of the gradient and is the slope of the
linear gradient. Apparently, the average error of the elements in
the matrix is zero.

If the linear gradient is due to wafer gradient, and since the
position of a die on the wafer is unknown, the gradient can occur
in any direction, i.e., the gradient anglewill vary randomly
from 0 –360 .

2) Quadratic Error Distributions: It has been observed that
the mismatch due to die stress is commonly a symmetrical func-
tion of the distance from the die center and that matching sen-
sitivity to die stress is lowest at the die center [8]. As a design
rule of thumb, the matching sensitive circuits are suggested to
be placed symmetrically at the center of the die. It has also been
reported that the stress in thedirection is nearly independent of
the coordinate [8]. In this paper, we assume that the matrix of
the DAC is located at the center of the die and the quadratic gra-
dients in both the and directions are independent and equal.
Therefore, the quadratic gradient error for an element located at
( ) can be expressed as

(13)
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(a)

(b)

(c)

Fig. 2. Model of gradient error distribution. (a) Normalized linear error
distribution. (b) Normalized quadratic error distribution. (c) Normalized joint
error distribution.

where and are technology parameters determined
dominantly by the die bonding techniques. Notice that by
definition, the average error of the elements in the matrix
is zero.

3) Joint Error Distribution: In this case, the gradient error
for an element located at ( ) can be expressed as the super-
position of a linear error component and a quadratic error com-
ponent

(14)

Notice that (14) keeps the average error equal to zero.

B. Normalized Error Distributions

From (7), it can be seen that if the gradient errors in a unary
array all scale by a common factor, then for any switching se-
quence, the INL of each digital code also scales by that same
factor, i.e., the efficiency of switching sequences is independent
of the scaling factor. If a sequence is good for a given error array,
it is also good for any scaled version of this error array. There-
fore, the comparison between different switching sequences can
be made in normalized gradient error arrays.

In this paper, a square matrix (for an 8-bit array,
16) will be normalized as an example. Since the layout of this
matrix is square, the element spacing in thedirection is equal
to that in the direction, i.e., . The geometric
position of this matrix layout can then be normalized so that all
the elements are spatially distributed in the interval in
both the and directions as shown in Fig. 2, i.e.,

Hence, the geometric position of a real matrix can be obtained
by multiplying the normalized position matrix by the scaling
factor

(15)

In the normalized matrix, the gradient errors are
normalized so that the maximum error magnitude is equal to
one. The denormalization scaling factors will be given under
the three typical error distribution conditions.

1) Linear Error Distribution: Assume the linear error com-
ponent is all due to wafer gradient. From die to die, the angle of
the wafer gradient may vary randomly from 0to 360 . The
maximum possible magnitude of the linear errors occurs when

and 135, which is equal to [see (12)]. As shown
in Fig. 2(a), we can normalize this magnitude as 1, i.e. in (12)

. The overall denormalization scaling factor in this
case, including the position matrix scaling factor in (15), is

(16)

2) Quadratic Error Distribution: The maximum magnitude
of the quadratic errors is equal to [see (13)]. As shown
in Fig. 2(b), if we normalize this magnitude as 1, then the de-
normalization scaling factor is

(17)

3) Joint Error Distribution: The maximum magnitude of
the overall gradient errors is equal to the summation of the
maximum magnitudes of the linear and quadratic error compo-
nents. If the linear error component is due to wafer gradient,
the maximum possible magnitude of the overall gradient errors
occurs when the linear gradient angleis 45 or 135 , and
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is equal to . As shown in Fig. 2(c), if we
normalize this magnitude as one, then the denormalization
scaling factor is

(18)

Optimization of switching sequences becomes rather compli-
cated if both linear and quadratic errors are present. We have to
consider not only the direction of the linear gradient, but also
the ratio of the linear component to the quadratic component,
which is defined as

(19)

This ratio can be estimated since the gradients of different types
of errors have been experimentally quantified for the technology
used.

The actual INL of the DAC can be obtained by multiplying the
INL based on the normalized error array by the denormalization
scaling factors given in (16)–(18).

IV. CONVENTIONAL SWITCHING SCHEMES

For a given type of gradient, the INL of DAC corresponding
to a switching sequence can be calculated based on (7) and (9).
To find the best sequence with the lowest INL, one may try to
exhaust all possible sequences. However, the number of possi-
bilities arises in a factorial fashion and thus becomes incredibly
large for over 4-bit resolution. For a 4-bit unary array which
consists of 16 unit elements, there are possible
sequences, while a 5-bit array has possibilities.

A. Row–Column Switching Schemes

The well-known row–column switching scheme is com-
monly used in a heuristic attempt to optimize the switching
sequence [2]–[6]. In this scheme, the spatial gradient errors
are averaged in two directions, as shown in Fig. 3(a) and
the sequences for row and column selection are optimized
independently. The switching optimization problem is thus
reduced to a 1-D space.

One switching sequence for the overall 8-bit matrix (1616)
in Fig. 3(a), where the “symmetrical sequence” [5] is used for
row and column selection, is as follows:

1. current source at (row 1, column 1)
2. current source at (row 1, column 2)

16. current source at (row 1, column 16)
17. current source at (row 2, column 1)
18. current source at (row 2, column 2)

254. current source at (row 16, column 14)
255. current source at (row 16, column 15).

The dummy current source is at (row 16, column 16). In this
symmetrical sequence, linear errors are cancelled by every two
current sources located symmetrically about the center, but
quadratic errors accumulate.

To compensate for both linear and symmetrical (an approxi-
mation of quadratic) errors, hierarchical symmetrical sequences

(a)

(b)

Fig. 3. Conventional switching schemes. (a) Row–column scheme.
(b) Hierarchical scheme.

were proposed [4]. The hierarchical symmetrical sequences, as
well as the symmetrical sequence for the 116 array, are all
given in the lower part of Fig. 3(a). The hierarchical symmet-
rical sequence of Type A compensates for symmetrical errors
at the first level and compensates for linear errors at the second
level. Correspondingly, Type B sequence compensates for linear
errors at the first level and compensates for symmetrical errors
at the second level.

Even with good switching sequences, any of the row–column
switching schemes are inherently insufficient for 2-D gradient
error compensation. This can be seen by calculating the INL
of the 8-bit DAC in Fig. 3(a) with (7). The gradient error of
each unary array element can be divided into two parts: the
column-related error and the row-related error. As the digital
input increases from 1–16, the 16 elements in the first selected
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TABLE I
SWITCHING SEQUENCES FOR A1� 8 LINEAR ERRORARRAY AND THE INL CORRESPONDING TOTHESESEQUENCES

row are turned on successively, and the column-related error is
soon compensated due to the optimized column switching se-
quence. However, the error related to the first selected row ac-
cumulates and cannot be compensated until the second row is
sequenced. The accumulation of row related errors also happen
in other rows, which may lead to a large INL.

The advantage of the row–column scheme is its simplicity
for design and layout. It is very straightforward to use a
row–column decoder and put the local decoder and latch into
each element cell. Since, in each cell, the area occupied by the
local decoder and latch is often comparable to the active area
itself, a possible way to reduce the matrix area and correspond-
ingly the distances between elements, is to move all the digital
parts to the outside of the matrix [2]. However, this method
dramatically increases the number of matrix inputs, resulting in
complex routing and ultimately a tradeoff between routing area
and decoding area in the matrix.

B. Hierarchical Switching Scheme

An alternative to the row–column scheme is a two-step hierar-
chical switching scheme undertaken in the “Random Walk”
current-steering DAC [1]. As shown in Fig. 3(b), the 8-bit (

) current matrix is divided into 16 regions (4 4) and each
region has 16 elements (44). The switching of regions in [1]
(designated as ) is in the order of which is
intended to compensates for quadratic errors and the switching
within each region (designated as ) is in the order of

, which is intended to compensates for the re-
maining linear errors. The overall switching sequence is:

1. current source 1 in region
2. current source 1 in region

16. current source 1 in region
17. current source 2 in region
18. current source 2 in region

254. current source 16 in region
255. current source 16 in region.

The current source 16 in regionis the dummy source and pro-
vides biasing for the circuit. This hierarchical switching scheme
allows optimization in 2-D space (even though the optimization
is still constrained) with the penalty of complex interconnec-
tions.

For DAC design, a tradeoff has to be made between accuracy
and complexity. To further optimize the switching sequences

without dramatically increasing the complexity of DAC’s, we
will consider three options.

1) If the row–column switching scheme is used due to its
simplicity, optimal sequences are wanted for gradient
error compensation in 1-D arrays.

2) If the hierarchical scheme is used, optimal sequences are
wanted for 2-D gradient error compensation. Reference
[1] only gave the switching sequences for linear and
quadratic error compensation in a 4 4 array. The
derivation of the two sequences was not presented, and
a general approach to find switching sequences for
different size arrays was not described.

3) If we try to find optimal switching sequences through
unconstrained optimization over 2-D arrays, it is neces-
sary to derive a good algorithm that can find optimal or
near optimal sequences for a given type of gradient very
quickly. As a matter of fact, with such an algorithm, the
problems in 1) and 2) are also solved.

Other methods for gradient error compensation include pro-
viding separate biasing for each quadrant of the current ma-
trix [3], and splitting each current source into several units lo-
cated symmetrically in the matrix [1], [2]. These methods ef-
fectively suppress the spatial gradient errors and the linearity
of the DAC’s are thus determined by the residual errors, which
are further compensated with either the row–column switching
scheme [2], [3] or the “random walk” scheme [1]. This implies
that combining these methods with the switching schemes and
sequences described in this paper may provide more effective
gradient error compensation. However, this related topic is be-
yond the scope of this paper.

V. INL BOUNDED SWITCHING SEQUENCES

Since in the row–column switching schemes, the switching
sequences either for row selections or for column selections are
all optimized in 1-D space, we will first consider the switching
optimization of 1-D arrays. As an example, a 18 unary array
with linear gradient errors is given in Table I. Rows 1 and 2
show the actual values of the elements in the array and the rel-
ative error of each element, respectively. Three switching se-
quences are considered. For example, with the symmetrical se-
quence, as the digital input increases from 1 to 8, the element
with error 1% is switched on first and numbered 1, the ele-
ment with error 1% is switched on next and numbered 2, and
so forth. Based on (7) and (9), the INL of the DAC with dif-
ferent switching sequences can be easily calculated as shown
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Fig. 4. Illustration of INL calculation for the new switching sequence in
Table I

in the last two columns of Table I. The sequential sequence re-
sults in an INL of 16% due to sever error accumulation. In
the symmetrical sequence, the linearity error caused by a certain
element is canceled when the element located symmetrically is
switched on. It results in an INL of 7%, which is equal to the
maximum error magnitude in the error array. The new sequence
is able to further reduce INL by about a factor of two. In
what follows, it will become apparent that the new sequence in
this example is an optimal sequence. An optimal switching se-
quence means for a given gradient, no other switching sequence
can achieve an INL less than that achieved by this optimal
sequence. Note that the definition of optimality says nothing
about uniqueness. For a given type of gradient, there are often
several or even many distinct optimal sequences.

To find optimal sequences, we will first determine a lower
bound for INL . For a unary array containing elements
without dummy element, define the maximum and minimum
INL of a certain sequence by the expressions

INL INL (20)

INL INL (21)

Then, based on (9), INL can be given by

INL INL INL (22)

As the digital input increases one by one, the value of INL
moves between INL and INL , as illustrated in Fig. 4.
Each step size is determined by the error of the element cur-
rently switched on. The maximum step is equal to the maximum
magnitude of the errors (donated as ) in the error array.
Therefore, the spacing between INL and INL can be
no less than . This results in the inequality

INL INL (23)

It can be observed from (22) that INL is minimized
if INL and INL are symmetrical about zero, as
depicted in Fig. 4. In this case

INL INL INL (24)

Returning to (23), a lower bound of INL is obtained

INL (25)

This key inequality establishes an absolute lower bound on the
INL of a DAC. It is not dependent upon the type of gradient
present and applies to arrays of any dimension.

The formal proof of (25) is given as follows.
It is well known that if and are nonnegative real numbers,

then

and if and only if .
Observe that INL and INL are nonnegative real

numbers. It thus follows that

INL
INL INL

(26)

With (23), (25) can be obtained and INL is equal to the
lower bound if and only if

INL INL (27)

For a given error distribution, is an absolute lower
bound of INL . Since this is an absolute lower bound,
no switching sequence can results in an INL lower than
this lower bound. In the above example, %, thus

%. Since the resolution of the error array
is 1%, the minimum achievable INL is 4%. The new
sequence in Table I meets this lower bound, so it is optimal.

We are now in a position to make the following claim. This
new switching sequence given in Table I is optimal for any 18
linear error array, independent of both the sign and magnitude of
the gradient, because any linear gradient differs from that given
in the example only by a constant scaling factor. As mentioned
in Section III, the optimality of the sequence will not be im-
pacted by this scaling factor.

The new optimal sequence given in Table I is not unique.
There are several other optimal sequences, two of which are
obtained if the elements in the array (from the left to the right)
are numbered 3 5 1 8 7 6 4 2 and 4 6 2 8 1 7 3 5,respectively.

We can find optimal sequences by building a tree structure as
shown in Fig. 5. Start with an element, the amplitude of whose
relative error is equal to or less than the lower bound of INL.
In the above example, the lower bound of INL is 4%, so we
can start with the elements that have errors of 3%, 1%,1%,
or 3%. They are surrounded with circles in Fig. 5. If we start
with 3%, the INL for digital code “1” is also 3% shown beside
the arrow. The next element is chosen so that the INL for dig-
ital code “2” is within [ 4%, 4%]. The possible elements are
those whose errors are within [4% 3%, 4% 3%] [ 7%,
1%]. As shown in the second row of Fig. 5,7%, 5%, 3%,

1%, and 1% can satisfy this requirement. Likewise, the third
element is chosen so that the INL for digital code “3” is within
[ 4%, 4%]. The same process is repeated (if possible) until all
eight elements are selected without repetition and thus the INL
for all digital codes (1–8) are no larger than the lower bound.
This yields an optimal sequence. Otherwise, if the selection is
stuck somewhere in the middle, that is, none of the remaining
elements can make the INL meet the lower bound, then the
searching fails in this path and we have to go back to the upper
level and try another path. Any path successfully going through
all eight levels represents an optimal sequence. For example, in
Fig. 5, the high lighted path: 3%,7%, 7%, 5%, 5%, 3%,
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Fig. 5. Tree structure for searching optimal switching sequences

1%, 1%, which corresponds to the sequence 2 4 6 8 7 1 5 3, is
another optimal sequence for a 18 linear error array.

The same idea can be applied to any error arrays including
two-dimensional arrays. The general form of two algorithms are
described as follows.

A. Sort and Group (SG) Algorithm

1) Sort the whole error array in either ascending or de-
scending order. Assuming a unary array consists of
elements, after sorting, we get a new 1-D error array
labeled as

Through this step, any 2-D error matrix is reduced to a
1-D array. According to (25), the absolute lower bound
of INL is .

2) A simple method to optimize switching sequence is to
group the above sorted error array in the same way as in
the 1-D linear gradient error array, hence the name “SG”
algorithm. For example, using the grouping method of the
new sequence in Table I results in an error sequence

The corresponding switching sequence is an SG se-
quence. Likewise, using the grouping method of the
sequence obtained in Fig. 5 results in another SG se-
quence.

The optimal sequences for 1-D linear error arrays of size 8,
16, and 32 are often needed. Some SG sequences for 18 ar-
rays have already been given in the above example. The fol-
lowing are two SG sequences, one for 116 arrays and one

for 1 32 arrays, which are optimal for linear gradient of any
magnitude and sign:

array: 26 10 14, 4 8 12 16, 13 9 5 1, 15 11 7 3

array: 26 10 14 18 22 26 30, 4 8 12 16 20 24 28 12,
29 25 21 17 13 9 5 1, 31 27 23 19 15 11 7 3

Although SG sequences are optimal for 1-D linear error ar-
rays, their efficiency for other types of gradient distribution has
not been theoretically investigated. Simulation results show that
they may not be the optima if quadratic gradients present. Even
for 2-D linear error arrays, the optimality of SG sequences can
not be guaranteed, because after sorting, the 2-D linear error
matrix turns into a 1-D error array which is not simply linear. In
these cases, some of the SG sequences may perform better than
the others. However, for typical gradient distributions as given
in Section III, simulation results show that the SG sequences
can usually achieve better linearity than conventional switching
sequences.

B. INL Bounded Algorithm

A more general approach that may allow further reducing
INL is to build a tree, as shown in Fig. 5. Notice that the
lower bound given in (25) may be an overly optimistic estima-
tion. It is possible that a switching sequence meeting this ab-
solute lower bound does not exist. A practical approach using
the tree of Fig. 5 is to relax the bound of INL . For ex-
ample, a value between the absolute lower bound given by (25)
and the INL achieved by the SG sequences could be estab-
lished. This relaxed bound enhances the possibility of conver-
gence. The sequence obtained by this algorithm is hence termed
as an “INL bounded” sequence. These INL bounded sequences
are often optimal or near optimal and can sufficiently compen-
sate for any given type of gradient errors, which will be demon-
strated in the next section.

The INL bounded algorithm is a simple algorithm, which
has not been optimized to minimize computing time although
computation minimization strategies could be explored. We
have, however, succeeded in obtaining near optimal switching
sequences with small computation times for many examples.
Even for a unary array with 8-bit resolution, the simple INL
bounded algorithm converges pretty fast, and the obtained
sequences, as shown in the Section VI, achieve sufficiently low
INL .

VI. SIMULATION RESULTS

To demonstrate the application of the new switching opti-
mization algorithm and compare the INL bounded sequences
with the conventional sequences, the 16 16 matrix of
an 8-bit thermometer-decoded DAC is used as an example.
The error distributions across the matrix are normalized as
in Section III. Thus, the INL obtained in the following
simulations are normalized. They are only used for compar-
ison, the actual INL would need to be denormalized as
described in Setion III to reflect the actual gradient effects
present in the process. The simulations will be done for both
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row–column and hierarchical switching schemes and the INL
bounded sequences will be given under three typical error
distribution conditions.

A. Using Row–Column Switching Scheme

The sequences that compensate for the gradient errors in a
1 16 array serve as the row and column selection sequences.
The symmetrical sequence and the hierarchical symmetrical se-
quence for a 1 16 array have already been given in Fig. 3(a).
The INL bounded sequence described in the previous section
will be derived under three conditions.

1) Normalized Linear Gradient Error:We have already
obtained optimal switching sequences (SG sequences) for
1-D linear error array in Section V. In one SG sequence for
a 1 16 array, the elements (from the left to the right) are
numbered

An SG Sequence (also an INL bounded sequence)

If the linear gradient is due to wafer gradient, assuming the
gradient can have any direction across the array with equal prob-
ability, then the INL of the DAC versus the angle of the gradient
and the yield can be obtained as shown in Fig. 6. Here, only
the symmetrical sequence is compared with the SG sequence,
because when only linear gradients are present, the hierarchical
sequence of Type B has the same performance as the symmet-
rical sequence while the Type A hierarchical sequence performs
poorly compared to the Type B sequence.

As we expect, the SG sequence results in an INLnearly
1/2 less than that obtained by the symmetrical sequence and the
yield for a given INL can be substantially enhanced.

2) Normalized Quadratic Gradient Error:We obtained
the following INL bounded sequence to compensate for 1-D
quadratic errors

INL bounded sequence

As shown in Table II, the INL bounded sequence results in an
INL that is only 1/3 of that attained by the hierarchical sym-
metrical sequence of Type A. The Type B sequence and the sym-
metrical sequence are not well suited for managing quadratic
errors and thus are not included in the comparison.

3) Normalized Joint Gradient Error [assuming in
(19)]: In this case, if the linear gradient is due to wafer gra-
dient so that the angle of the linear gradient () is random,
the error distribution in both the row and column direction
changes with . The switching sequence that is optimal for
one angle may not be optimal for other angles. Assuming
varies from 0 to 360 with equal probability, our goal is to
find a sequence that results in a low INL with high yield.
In other words, the sequence can achieve low INL for all
possible error arrays due to the random linear gradient angle.
In the INL bounded algorithm, ideally the bound of INL
should be applied to all possible error arrays. In practice, we
can apply the bound of INL in the error arrays with some
typical values of , for example, 0, 45 , 90 , 135 , and 180.

Fig. 6. INL and yield of the DAC (with linear gradient) using row–column
switching scheme

TABLE II
INL OF THE DAC (WITH QUADRATIC GRADIENT) USING

ROW–COLUMN SWITCHING SCHEME

Fig. 7. INL and yield of the DAC (with joint gradient) using row–column
switching scheme

With this approach, we obtained the following INL bounded
sequence for a 1 8 array

INL bounded sequence

As shown in Fig. 7, if 95% yield is required, the INL of the
DAC when using the new sequence is only half of that when
hierarchical symmetrical sequences are used.
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Fig. 8. INL and yield of the DAC (with linear gradient) using hierarchical
switching scheme

B. Using Hierarchical Switching Scheme

As in the “random walk” DAC introduced in Section IV, the
16 16 array of the 8-bit DAC is divided into 16 regions (4
4) and each region contains 16 (44) elements. The switching
sequences optimized for a 4 4 matrix control the region
switching and the switching within each region. Similarly, the
INL bounded sequences are given under three conditions.

1) Normalized Linear Gradient Error:If the linear gradient
is due to wafer gradient, a low INL and high yield sequence
as shown below can be obtained by applying an INL bound
for the 4 4 error arrays with several typical linear gradient
angles

As shown in Fig. 8, if we use of the “random walk”
scheme [see Fig. 3(b)], which is claimed to have the potential to
compensate for linear gradient errors, for both the region selec-
tion and the switching within each region, the INL of the DAC
varies from 2.3–3.4 when the angle of the gradient changes from
0 to 360 . If the INL bounded sequence given above is used,
the INL of the DAC varies between 1.7–2.3.

2) Normalized Quadratic Gradient Error: of
“random walk” scheme [see Fig. 3(b)] happens to be an INL
bounded sequence. Therefore, we still use for the region
selection. We can assume the residual gradient within each
region is approximately linear. If we use the INL bounded se-
quence obtained in B–1 of this section to control the switching
within each region, the INL of the DAC is 1.29. Instead, if

TABLE III
INL OF THE DAC (WITH QUADRATIC GRADIENT) USING

HIERARCHIAL SWITCHING SCHEME

Fig. 9. INL and yield of the DAC (with joint gradient) using hierarchical
switching scheme

is used, the INL of the DAC is 1.63. These results are
summarized in Table III.

3) Normalized Joint Gradient Error [assuming in
(19)]: Assume the linear gradient has random directions, the
INL bounded sequence for region selection is shown as follows:

We still assume the gradient within each region is approximately
linear, so the INL bounded sequence obtained in VI-B-1 is used
for the switching within each region. In Fig. 9, this switching
scheme is compared with the “random walk” scheme. If 95%
yield is required, The INL of the “random walk” scheme is
2.0, while the INL of the new scheme is only 1.3.

Table IV summarizes the performance of the above switching
schemes under the three error distribution conditions. The hi-
erarchical switching schemes show a big advantage over the
row–column schemes in gradient error compensation. The INL
bounded sequences can further reduce the linearity errors. When
row–column switching schemes are used, compared with the
conventional sequences, the INL bounded switching sequences
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TABLE IV
PERFORMANCECOMPARISON OFDIFFERENTSWITCHING SCHEMES UNDERTHREE ERRORDISTRIBUTION CONDITIONS

can reduce the INL of the DAC by approximately 50%. When
hierarchical schemes are used, the INL bounded switching se-
quences reduce the INL of the DAC by about 30% compared
with the “random walk” sequences.

SG and INL bounded algorithms were introduced. With
these algorithms, optimal or near optimal switching sequence
can be obtained when some gradient information, such as the
ratio of the linear component to the quadratic component of
the gradient, is available. The “ Random Walk” switching
scheme [1] was established based on the good systematic error
profile information from a test chip. With this scheme, 14-bit
intrinsic accuracy was achieved without trimming or tuning.
It has been shown that the two-step hierarchical switching
optimization in the “ random walk” DAC provides much
more flexibility for switching optimization than the classical
row–column scheme. Unfortunately, the method of determining
the switching sequences and were not well ex-
plained in [1] making it difficult to extend this hierarchical
switching scheme to arrays of different size and different types
of error profiles. The INL bounded algorithm introduced in
this paper provides this flexibility. Furthermore, even for linear
gradient compensation, the INL of the proposed sequence
in Section VI-B-1 is lower than that achieved with the
sequence.

VII. CONCLUSION

An absolute lower bound of the INL due to gradient effects
is developed for switching sequence optimization in ther-
mometer-decoded DAC arrays. This lower bound is half the
maximum deviation of all the elements in the gradient error
array. Optimal switching sequences that meet this lower bound
for linear error compensation in 1-D arrays were introduced.
A rapidly converging algorithm was developed to provide INL
bounded switching sequences under any given type of gradient
error condition. Simulation results show that hierarchical
switching schemes outperform the row–column schemes in the
presence of linear and/or quadratic gradients. Compared with
what is attainable with the best published switching sequences,
the INL bounded switching sequences can reduce the linearity
errors due to gradient mismatch by up to 50%.
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