
Unambiguous characterization and specification of D/A converter performance* 
Kumar L Parthasarathy & Randall Geiger 

Department of Electrical and Computer Engineering  

Iowa State University, Ames, IA 50011, U.S.A. 
Email : rlgeiger@iastate.edu 

 

                                                 
* This work was supported, in part, by Texas Instruments Inc., Rocketchips Inc, and the R. J. Carver trust. 

Abstract – Existing parameters used to characterize the 
performance of D/A converters are often not rigorously 
defined or are based upon ambiguous nested definitions. This 
makes it difficult for the user to determine how a particular 
D/A will really perform in a specific application and leaves 
some room for uncertainty when testing D/As. Key 
performance parameters that affect the static and low 
frequency performance of Nyquist Rate Converters are 
unambiguously defined in this paper. Emphasis is on 
definitions that realistically predict how a D/A will perform 
and that make parameter measurements in the laboratory 
practical. 
 

I. INTRODUCTION 
 

The exponential growth witnessed recently in the area 
of digital communication equipment used in wireless 
communications has resulted in a great deal of interest in 
the design of data converters. This has led to a rapid 
growth of data converter markets, with the availability of 
devices having a wide range of performance parameters. 
Even though all D/A and A/D converters of a given 
resolution ideally exhibit identical transfer characteristics, 
they differ in practice by considerable amounts. 

Often the appropriate selection of hardware for a given 
application becomes a difficult task due to the 
shortcomings in the way these devices are characterized. 
Though many manufacturers/authors have tried to define 
even the most basic performance parameters, there still 
exists considerable ambiguity in the way the parameters 
are specified. The need exists to precisely define converter 
performance parameters to enable the user to choose an 
appropriate device based on their actual performance 
requirements. 

Another factor driving the need for a standard 
performance characterization is the pending emergence of 
Built-In-Self-Test (BIST) structures for data converters. 
With the cost of silicon in many data converter products 
becoming dominated by testing costs, Built-In-Self-Test 
(BIST) structures offer potential for not only reducing the 
direct cost of testing, but also reducing the indirect cost 
associated with production time. Although some variants 
in performance characterization parameters may not 
adversely affect the characterization of a converter, the 
implications of these variants on testing algorithms and 
testing time on existing testers can be substantial but the 
implications on BIST implementations can be even more 
significant. For BIST for data converters to become viable, 
it is desirable that testing schemes and structures be as 

simple as possible. Since data converters traditionally have 
a long product life, it is also desirable to have the data 
converter design community agree on specifications that 
will not change often. This requires identification of the 
key parameters and precise definitions of these parameters. 

Several different terms are widely used when 
discussing the performance of D/A converters. These 
include “Resolution”, “Integral Nonlinearity (INL)”, and 
“Differential Nonlinearity (DNL)” along with several 
others. These terms are so commonly used that one would 
be tempted to assume that there is universal agreement on 
what they mean and how they should be defined. However, 
not only are there differences in definition from one source 
to another, but also, most attempts to define these 
parameters involve parameters that are not precisely or 
unambiguously defined. Of course, if these alternate 
definitions resulted in differences in perception about the 
overall performance of the D/A that were inconsequential, 
the imprecise nature or ambiguity would be only of 
academic interest. Unfortunately, the differences are of 
sufficient magnitude to cause possible misinterpretation of 
the real performance of a D/A in some applications. 

In what follows, several key performance features for 
D/A converters are discussed, comparisons are made 
between alternate parameters that are used to characterize 
these features and unambiguous and consistent definitions 
of parameters are proposed that both capture the basic 
essence of key performance features and make 
measurement of the parameters manageable. 
 

II. SPECIFICATIONS 

A.  Resolution 

This is one of the most basic terms.  In [1] it is defined 
as  
 
“…the number of distinct analog levels corresponding to 
the different digital words. Thus, an N-bit resolution 
implies that the converter can resolve 2N distinct analog 
levels";  
 
In [2] it is defined as  
 
"An N-bit binary converter should be able to provide 2N 
distinct and different analog output values corresponding 
to the set of N-bit binary words. A converter that satisfies 
this criterion is said to have a resolution of N bits",  
 



whereas in [4] it is defined by 
 
" Resolution is the smallest level separation (input levels 
for A/D and output levels for D/A) that is unambiguously 
distinguishable over the full-scale range of the converter".  
 

The first two definitions imply more or less the same 
central idea; a converter with N-bit resolution has 2N 
outputs (in the case of a D/A). The first two definitions are 
totally determined by architecture and need not be 
measured. They provide little insight into performance. 
They are also dimensionless. The third is much different. It 
requires measurement and will have units of either volts or 
amps. 

In the first two definitions, no mention is made about 
whether N is an integer although that assumption is often 
made as well. Though almost all D/A converters available 
in the market today deal with an integer number for 
resolution ('N' input bits and 2N output levels), the concept 
of 'N' being an integer is traditional. Applications abound 
in which the number of distinct levels required at the 
output of a D/A is not an integer power of 2. A device 
which outputs a temperature value in 1oC degree 
increments from 0oC to 100oC or a percent value is an 
example where the number of required output levels equals 
100. While using a 6-bit converter is not sufficient due to 
the maximum availability of 64 output levels, the use of 7-
bit converter will result in an extra 28 levels which are not 
required and the quantization levels of the N-bit converter 
will likely not be aligned with those of the 100-level 
system. 

A slightly modified definition based upon the 
philosophy behind the first two definitions which is 
suitable from a testing perspective is to define resolution 
based upon the number of transitions encountered while 
testing by the relation  

 R = log2(S+1)  (1) 

where S is the number of distinct transitions. With this 
definition, R can be either an integer or a real number 
depending on the value of S.  

B.  Effective Resolution 

The resolution as defined by (1) gives little indication 
about the resolving capability of a D/A. The concept of the 
effective resolution which is conveyed in the third 
definition [4] above does address the resolving capability. 
We will define the resolving capability as the smallest 
increment that can be guaranteed to be resolved with 
increasing input codes or the smallest decrement that can 
be guaranteed to be resolved with decreasing input codes.  

This definition of resolving capability is motivated by 
the philosophy on which many control applications operate. 
These applications are based upon algorithms which 
increase the output of the DAC by increasing the input 
code or decrease the output of the DAC by decreasing the 
input code. The effective resolution will now be formally 

defined. To do this, consider the output levels for 
consecutive input codes as depicted in Fig.1. that are given 
by the sequence δ . 

 δ  = < Χ 0, Χ 1, Χ 2,………… Χ k, Χ k+1 … Χ S> (2) 

where the element Χ k  corresponds to input code Ck . 
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Fig.1.  DAC Transfer Characteristics  
 
In an ideal DAC, the sequence δ  is not only monotonic 
but also the elements in the sequence increase linearly with 
the input code. In an actual DAC, the linear increase with 
input code is not guaranteed and the sequence may actually 
become non-monotonic. Consider now the two new 
sequences obtained from δ  by rank ordering the elements 
of δ  in increasing order and decreasing order. Denote 
these two sequences by  

 δ I  = < Υ 0, Υ 1, Υ 2,……… Υ S>  (3) 

and  

 δ D  = < Ζ S, ……… Ζ 2, Ζ 1, Ζ 0> (4) 

Note the arbitrary elements Υ k and Ζ k no longer 
correspond to the input code Ck. Since the input codes 
corresponding to the elements of the sequence in δ I   
may not be in increasing order, a new monotone sequence 

δ̂ Inc is derived from δ I. The new sequence, δ̂ Inc  has the 
property that both the output levels and the corresponding 
input codes show an increasing trend. The new sequence 

δ̂ Inc will be obtained by the following iterative procedure: 
(1) Let  h  = 0 

(2) Define the sequence δ̂ Inc (0) = δ I  



(3) Check the input code of δ̂ Inc(h) for monotonicity 

(assume the elements of δ̂ Inc(h) are denoted as Υ hi for 
i = 1,2,………,Sh) 

(a) If the input code of δ̂ Inc(h) is monotonically 

increasing, define δ̂ Inc  = δ̂ Inc(h). 

(b)  If the input codes for δ̂ Inc(h) are not in increasing 
order, then 

(A) Locate Υ hi which is the smallest element of the 

sequence δ̂ Inc(h) where there exists a Υ hj, , j > i, 
where the input code of Υ hj  is less than the 
input code of Υ hi . 

(B) Define the new sequence δ̂ Inc(h+1) to be the 
sequence obtained by eliminating Υ hi  from the 

sequence δ̂ Inc(h). 
(C) Increase h by 1. 
(D) Return to the start of  Step 3.  

 
The new sequence obtained is then,  

 δ̂ Inc   = < Υ̂ 0, Υ̂ 1, Υ̂ 2,……… Υ̂ L-1> (5) 

Define the sequence of step sizes by 

 Step+ = <S0+, S1+, S2+,……Sk+, ……S(L-2)+>  (6) 

where Sk+ = Υ̂ k+1 – Υ̂ k,  k ∈ {0,1,…L-2} 

and define Stepmax+  by,  

 Stepmax+ = Max { S0+, S1+, S2+,… Sk+, ……S(L-2)+}  (7) 

We now define the effective resolution (for increasing 
input code) by 

 Reff+  = log2(( Υ̂ L-1 – Υ̂ 0 )/ Stepmax+  + 1) (8) 

and the number of effective transitions to be  

 Teff+  = L – 1   (9) 

Similarly, a new sequence δ̂ Dec is obtained from δ D 
such that the output levels and the corresponding input 
codes show a decreasing trend. The new sequence obtained 
is then,  

 δ̂ Dec = < Ζ̂ M-1,……… , Ζ̂ 2, Ζ̂ 1, Ζ̂ 0> (10) 

Define the sequence of step sizes by 

 Step- = <S(M-2)-, ………, Sk-,……S1-, S0-> (11) 

where Sk- = Ζ̂ (k+1) – Ζ̂ (k),  k ∈ {M-2,…,1,0} 

and define Stepmax-  by,  

 Stepmax- = Max { S(M-2)-, ………, Sk-,……S1-, S0-} (12) 

We now define the effective resolution (for decreasing 
input code) by 

 Reff-  = log2(( Ζ̂ M-1 – Ζ̂ 0 )/ Stepmax-  + 1) (13) 

and the number of effective transitions to be  

 Teff-  = M – 1   (14) 

The effective resolution of the converter is then defined to 
be  

 Reff = Min{Reff+, Reff-} (15) 

and the number of effective transitions to be 

 Teff = Min{Teff+, Teff-} (16) 

C.  XLSB 

Χ LSB is a term closely related to resolution and is 
defined in [1] as 
 
"….the voltage change when 1LSB changes" 
 
where Χ  is a voltage signal, and is mathematically given 
by  

 X̂ LSB = Χ ref/2
N (17) 

Even though the definition is seemingly simple, whether 
this relationship between a reference signal and the 
constant N really represents an LSB is not apparent. Χ ref is 
usually the input reference signal (can be any physical 
quantity like voltage, charge or current). Ideally the output 
voltage of a D/A converter for maximum input (all bits '1') 
is related to the reference signal by  

 Χ omax  = Χ ref(1-2-N)  (18) 

But when a device is tested, seldom does the output of the 
converter actually equal this value of Χ ref(1-2-N) for 
maximum input code. Thus the definition of Χ LSB, based 
on the ideal Χ ref value is not quite correct. It is more 
reasonable to relate Χ LSB to the maximum signal value 
reached at the output of the converter while testing. Χ LSB 
can be defined as 

 Χ LSB = ( Χ max - Χ min)/Teff  (19) 

where Χ max is the maximum output, Χ min is the minimum 
output and Teff is the number of effective transitions as 
given in (16). This definition, although similar to the 
existing ones, deals more clearly with the practical case 
and is convenient to measure from a testing point of view.  

D.  Offset Error & Gain Error 

Offset error is defined in [1] as  
 
"In a D/A converter, the offset error, Eoff, is defined to be 
the output that occurs for the input code that should 
produce zero output” 
mathematically   

 X̂ Off  = Χ out |00...00/ X̂ LSB  (20) 

A minor modification would be to define this in terms of  
Χ LSB  as per  (19), and the new definition is  



 Χ off  = Χ 0/ Χ LSB  (21) 

Gain error in LSB is defined in [1] as  
 
"…the difference at the full-scale value between the ideal 
and actual curves when the offset error has been reduced 
to zero.” 
 
 For a D/A converter, the gain error, in units of LSBs, is 

 Ε̂ gain = ( Χ out |11…1  - Χ out |00…0)/ X̂ LSB  –  (2N – 1) (22) 

or equivalently, 

 Ε̂ gain  = ( 012 XX )( N −− )/ X̂ LSB  –  (2N – 1) (23) 

Since the number of transitions in a D/A may not 
necessarily be one less than an integral power of 2, we will 
define the gain error by  

 Ε gain = ( Χ S  - Χ 0)/ Χ LSB –  Teff (24) 

E.  Differential Nonlinearity (DNL) 

INL and DNL are two closely related parameters which 
are usually specified and are considered as critical 
performance parameters. In [1] the author defines DNL as  
 
"DNL is defined as the variation in analog step sizes away 
from 1LSB (typically, once gain and offset errors have 
been removed)"  
 
while in [2] the author states it as  
 
"In a D/A converter, any two adjacent digital codes should 
result in measured output values that are exactly 1LSB 
apart (2-N of full scale for an N-bit converter). Any positive 
or negative deviation of the measured “step” from the 
ideal difference is called Differential Nonlinearity, 
expressed in (sub)multiples of 1LSB."  
 
Often, DNL is specified as the worst case deviation 
obtained from 1LSB. In terms of the modified definition of 
Χ LSB,  DNL of  ith  element is defined as  

 DNLi = (Stepactuali/ Χ LSB) - 1,  (25) 

where  

 Stepactuali = Χ i+1 - Χ i   (26) 

DNL is then  

 DNL = Max{DNLi} (27) 

F.  Integral Nonlinearity (INL) 

INL is defined in [1] as  
 
"INL error is defined to be the deviation from a straight 
line"  
 

where two different methods of obtaining straight line 
based on either end points of the converter’s transfer 
characteristics or a best-fit line such that the mean 

squared error is reduced, has been described. 
 
and in [3] as  
 
"….the deviation of the output signal or output code of a 
converter from a straight line drawn through zero and full 
scale. Output signals or output codes must be corrected 
from a possible zero offset".  
 
The straight line drawn can either be "end-point line" 
connecting the end points of the characteristics or a "best-
fit line". There can be different “best-fit” lines but the 
minimum mean square fit is often used. Each one has its 
own pros and cons, and there is no single factor specifying 
one to be superior to the other. While the "end-point line" 
is easy to measure (from testing perspective), it does not 
provide good insight into converter operation. On the other 
hand, the "best-fit line", though more tedious to measure, 
gives a better indication of the Total Harmonic Distortion 
(THD) that will be exhibited. DNL and INL are related as  
 
The INL of any code is the summation of DNL of all codes 
below it. 
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INL is then, 

 INL = Max{INLi} (29) 

Both DNL and INL are important as they are sensitive to 
different issues. INL is more sensitive to cumulative 
effects while DNL is more sensitive to individual codes.  

G.  Monotonicity 

Monotonicity is one another parameter usually 
specified for any converter. Monotonic converter as 
defined in [1] is  
 
"A monotonic D/A converter is one in which the output 
always increases as the input increases. In other words, 
the slope of the D/A converter's transfer response is of 
only one sign. If the maximum DNL error is less than 1LSB, 
then a D/A converter is guaranteed to be monotonic " 
whereas in [3] it is defined as 
 
"Monotonicity of a converter means that the output of, for 
example, a D/A converter never decreases with an 
increasing digital input code. A minimum increase of zero 
is allowed for a 1LSB increase in input signal in a D/A 
converter".  
 



Monotonicity is guaranteed if the DNLi is not more 
negative than -1LSB for all ‘i’ but it can be more positive 
than 1LSB. Equivalently, a D/A is monotonic iff, 

 Stepactuali >= 0; i = 1….S  (30) 

 
III. CONCLUSION 

 
A comparison of basic specifications of Data Converter 

performance has been made and the ambiguities related to 
them has been addressed. An attempt has been made to 
present a precise, realistic, easily measured and 
unambiguous definitions of the key performance 
parameters. Although not all the parameters have been 
dealt with, most of the key issues relating to a converter’s 
static performance (in particular D/A’s) have been 
considered.  
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