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Abstract-Existing approaches to modeling
mismatch effects in matching-critical circuits are based
upon models derived under the widely accepted premise
that distributed parameter devices can be modeled with
lumped parameter models. It is shown in this paper that
the lumped parameter models do not consistently reflect
device performance and introduce substantial errors in
matching-critical circuits if either systematic or random
parameter variations occur in the channel.

I. Introduction

It is well recognized that the performance of many
linear and mixed-signal integrated circuits such as current
mirrors and differential amplifiers is limited by how well the
I/V characteristics of transistors can be matched. The
shrinkage of feature sizes and the reduction of supply
voltages generally worsen the matching performance. In
most matching research [1-3], the matching characteristics
are attributed to systematic and random variations in both
geometric parameters and process parameters. It has been
reported and is widely accepted that the mismatch due to
random parameter variations is inversely proportional to the
active area of the matching critical transistors and thus,
tradeoffs can be made between area and performance to
compensate for random variations in these parameters. It is
also widely accepted that the systematic variations can be
modeled as a stochastic process with a long correlation
distance and can be reduced or eliminated by placing the
matching-critical transistors closely to one another using
segmented common centroid layout techniques. With the
existing approaches to predicting matching characteristics,
considerable discrepancies between predicted performance
and actual measured performance exist. These discrepancies
are inherently attributable to limitations of the models used
to predict the matching performance. In this paper,
consistency and limitations of existing models and their
impact on predicting the performances of analog circuits will
be discussed. A new stochastic model is presented that offers
improvement in predicting the effects of random parameter
variations on device matching.

II. Parameter Variation Modeling

Process parameters vary from batch to batch, wafer
to wafer, die to die and from transistor location to transistor
location on a die. To characterize the location-dependant

parameters, a parameter Pi can be represented by the
expression
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where x and y represent the position on the die. In (1), PiNOM

is the nominal value of the parameter Pi and the five
remaining terms are themselves random variables that some
authors choose to combine together into a single random
variable.  For notational convenience, the subscript “i” will
be suppressed in the following discussions. The variable
PPROC characterizes the variation of the parameter P from
one lot of wafers to another.  The parameter PWAFER

characterizes the variation of P from one wafer to another
wafer in a “lot” of wafers and the parameter, PDIE,
characterizes the variation of the parameter from die location
to die location.  The parameter PSYS characterizes the
systematic variation of the parameter from one location to
another on the die and is position dependent. The variable
PRAN characterizes the random part of the parameter at the
position (x,y). When considering devices in close proximity
to each other on a die, the values of the random variables
PPROC, PWAFER and PDIE are nearly constant throughout the
region. Thus, almost all the matching-related research focus
only on the effects of the two rightmost terms in (1).

For using a SPICE-type simulator, the performance
of a device is characterized by a set of model parameters.
The model parameters for a MOSFET include the threshold
voltage (VT0), the mobility (µ), the gate oxide capacitance
density (Cox), etc. Some of these model parameters are
determined from well-known relationships between the
process parameters and others are more empirical in nature.
Since the process parameters are position dependent, the
model parameters are position dependent as well and thus
since the underlying process parameters are stochastic, the
model parameters are stochastic. Although many of the
process parameters are uncorrelated or weakly correlated, a
single process parameter often affects more than one model
parameter causing correlation between the model
parameters.  This correlation is often neglected when
characterizing the matching characteristics of linear circuits.
Following this standard approach for characterizing the
process parameters, the device model parameters can be
expressed in the form
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where γ represents the model parameters.
Implicit in the functional form of (2) is the

distributed nature of the model parameter. Essentially all



device models and, in particular, the device models used in
Spice-type simulators are based upon lumped parameter
models. In most works [1-2], it is assumed that the actual
values of the lumped model parameters can be obtained by
integrating the position-dependent distributed model
parameters over the area of the channel region of the device
as given by the equation.
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where (xA,yA) is a point representation of the location of the
device on the die. Although not critical in what follows, it is
convenient to define (xA,yA) to be the geometrical centroid
of the device. We will refer to this lumped parameter
extraction from a distributed parameter domain as the
integral model through this paper. This approach of mapping
from a distributed stochastic parameter to a single lumped
model parameter has been used almost exclusively for well
over a decade and the issue of validity of this mapping is
generally not questioned. Since both systematic effects and
random fluctuations in device parameters are known to play
key roles in matching performance, it is particularly
important that the lumped device models effectively
incorporate these fluctuations. Unfortunately, it has been
recently shown that the integral model leads to errors when
used to predict the actual performance of distributed devices
[4]. In the next section, we will focus on the inconsistencies
of the integral model and show that the lumped integral
model can result in substantial modeling errors.

III. Model Consistency

The invalidity of the integral model can be
demonstrated by considering the non-conventional transistor
depicted in Fig 1 by looking at the affects of a single
positionally dependent model parameter, the threshold
voltage. In this figure, it will be assumed that d is very small
compared to L so that the channel region is decomposed into
two parts, the left part of area A1 and termed the A1 region
and the right part of area A2 and termed the A2 region. If it is
assumed that the threshold voltage in the A2 region is VT2

and in the A1 region it is VT1, it follows from the integral
model that the equivalent threshold voltage of the device is
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If A2 >> A1 it follows from (4) that the threshold voltage can

be expressed as 2TT VV ≈ . However, since the distance d is

assumed to be small compared to the length L, almost no
current flows in the A2 region and thus the actual device will
have a threshold voltage of VT ≈ VT1.  It is apparent from
this example that the integral model can result in large
model errors. The structure of Fig 1 is admittedly an
impractical transistor layout but does demonstrate that the
integral model can lead to substantially erroneous results.
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Fig 1. Non-conventional transistor

Validity of a model is often difficult to ascertain.
The concept of model consistency or equivalently
inconsistency is often useful for identifying problems with a
model.

We define a device model to be consistent if
alternate but equivalent representations of a device by the
model result in equivalent predicted device performance. If
equivalent representations of a device by a model predict
different performance, we say the model is inconsistent.

An accurate or correct device model must be
consistent. Consistency is not sufficient to guarantee validity
of a model but inconsistency of a device model does flag
significant problems with a model. We will now show that
the integral model of (2) is inconsistent if systematic
parameter variations, γSYS(x,y) are present. This
inconsistency limits the applicability of the integral model in
predicting the effects of systematic parameter variations. To
show its inconsistency, consider the parallel connection of
two geometrically identical MOS transistors shown in Fig 2.
This kind of segmented structure is commonly used in
layouts. The transistor on the left is assumed to have
threshold voltage VT1 and the transistor on the right assumed
to have threshold voltage VT2.  If we treat the devices as a
single transistor operating in the saturation region and apply
the integral model, it follows from (2) that the equivalent
threshold voltage is
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With the integral model and the standard square-law model
which can be shown to be consistent, the current of parallel
connection of Fig 2 is given by
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If, however, we treat the parallel connection as two separate
devices and use the integral model to obtain the equivalent
threshold voltage of each of the devices, it follows trivially
that VT1EQ=VT1 and VT2EQ=VT2.  Thus, using the same square
law model we obtain the three equations
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These equations can be solved to obtain
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Since ID as modeled by (6) differs from ID as modeled by
(10) if VT1 ≠ VT2, it follows that the integral model is
inconsistent.
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Fig 2. Parallel connection of two transistors

 We will also show that the integral model is not
consistent with experimental results. From the integral
model, it is apparent that the effects of random parameter
variation on parameter extraction are independent of the
current or device orientation. Experimental data relating to
device orientation and matching was presented in [2].
Although these results show no significant shift in the
averages of the current factor, β=(µCOXW/L), between
parallel and 90° rotated transistors, the standard deviation of
β is significantly affected by the orientation as shown in the
experimental data which is repeated here in Fig 3. This data
indicates the mismatch in β is affected by device orientation
in contrast to the independence predicted by the integral
model. The authors of [2] suggested that the effect observed
in Fig 3 was due to local mobility variations presumably the
γSYS(x,y) dependence of (2). One can argue that the local
variation noted in [2] is typical of the variation of other
parameters across the active region of a distributed device.
By using the integral model in extracting lumped model
parameters, the information about the local variations will be
suppressed or skewed.
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Fig 3. Standard deviation of β with parallel and rotated
placement (from Fig. 4(b) of [2])

IV.  Model Inconsistency with Random Parameter
Variations

The integral model does not only suppress or skew
information about local systematic variations, it also skews
prediction of the effects of the random mismatch, the
γRAN(x,y) term in (2). Applying the integral model to model
the variance of a parameter γ(xA,yA) between two rectangular

devices of length L and width W it follows that the variance
can be expressed as [2]
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where Aγ and Sγ are the area and spacing proportionality
constants for the parameter γ and DX is the distance between
the centroids of the two devices. We will now show that the
integral model is inconsistent if used to model the effects of
random parameter variations.

Fig 4 shows a simple current mirror comprised of
two transistors of length L and width W. The mismatch in
the mirror is defined as (ID2-ID1)/ID1 where it is assured that
VD1=VD2. Alternate and equivalent representations of a
transistor are shown in Fig. 5. In these equivalent
representations, the transistor is decomposed into the series
connection of N transistors each of length L/N. To test the
consistency of the integral model with random parameter
variations, all model parameters except the threshold voltage
were assumed to be equal to their nominal value and only
the random part of the threshold voltage was assumed to be
non-ideal, i.e. Sγ in (11) was assumed to be 0. M1 and M2
were each represented as a series connection of N transistors
and the threshold voltage of each of the transistors was
modeled by the integral equation, specially with the
threshold variance for a transistor pair predicted by (11) with
DX=0 or equivalently, with the threshold variance of an
individual transistor given by the equation,
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where W, L and AVTO are assumed 100µm, 100µm, and
42.43 (mV)(µm) respectively. It should be noted that there is
some possible confusion about the definition of the
parameter AVTO. In this work, we have assured AVTO is
defined by (11) which characterizes the difference in the
threshold voltage of two devices, each of area W⋅L. With
this definition, the scaling factor of 0.5 appears in the
variance expression for a single transistor as indicated by
(12). Alternatively, the parameter “AVTO” could be defined
to characterize the variance of the threshold voltage of a
single transistor. In this case, the factor of 0.5 would have
been absent from (12) but the parameter AVTO itself would
have been reduced by 2  factor. A Monte Carlo simulation
of the current mirror mismatch, σ(∆ID)/ID, was done in
Matlab with a Level 2 device model and the results have
been verified by Hspice. Fig 6 shows the simulation results
for σ2(∆ID)/ID

2 as a function of the number of segments, N.
In these simulations, it was assumed that VG=2.5V,
VD1,2=1.7V, VS=0V and VTN=0.8V. Each value of N
corresponds to an alternate and equivalent representation of
the transistors in the current mirror. If the integral model
were consistent at predicting the effects of random
parameter variations, σ2(∆ID)/ID

2 would be independent of
N. The simulation results in Fig. 6 show a curve that starts
from 4.9913e-4 when N=1 and then diverges when N
becomes larger. A routine analysis [5] of the standard



deviation of the drain current mismatch based upon the
integral equation gives the relationship
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For the parameters used in the present simulation, it follows
from (13) that σ(∆ID)/ID =4.9913e-4 which is in considerable
discrepancy from the simulation results even for relatively
small N. These results show the inconsistency of the integral
model in the presence of random parameter variations.
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model (12)

V. A New Model for Random Parameter Variations

A new model for the effects of random parameter
variations of the threshold voltage in rectangular transistors
that is consistent has been introduced [6]. Details about how
the model was developed can be found in [6]. In this model,
the variance of the threshold voltage of an incremental
segment of the channel of length dy at position y, 0≤y≤L, is
given by
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where 
VTOA

~ is a constant and V(ys) is the voltage at position

y in the channel to the source of the transistor. The
parameter 

VTOA
~ was intentionally used to draw a direct

relationship with the parameter AVTO used in (12). If a
transistor is decomposed into N segments, each of length

∆y=L/N, it follows from (14) that the variance of the
threshold voltage in segment n, 0≤n≤N-1, can be expressed
as
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where V((nL/N)s) is the voltage between the channel and the
source at a distance of n(L/N) from the source.

The simple current mirror of Fig. 4 in which both
M1 and M2 were segmented into N segments as depicted in
Fig. 5 was simulated for current gain mismatch using the
model of (15) for different values of N. The simulation
results are shown in Fig 7. From the simulation results, it is
apparent that the curve converges very quickly. Of course,
convergence does not necessarily imply a consistent model.
To verify the consistency of the new model, we will consider
the series connection of each of the two MOS transistors as
shown in Fig. 8. In this representation, all four transistors
were assumed to be of length L/2 and of width W. The
model of (14) approximated by (15) was used for modeling
each of the transistors and simulations were run for a large
number of values of N. The simulation results are shown in
Fig 9. The curves labeled MS and MS1+MS2 which
represent a single equivalent transistor and the series
connection of two transistors are essentially coincident for
large N supporting our contention that the new model is
consistent.

Although the modified σ(VT) model of (14) can
make the model consistent, the converged value of 2.4968e-
4 differs from the value of 4.9913e-4 obtained by using the
equation (13) with N=1 by a fact of 2. The difference is
because of limitations in the mapping from the distributed
domain to the lumped domain.

Some comments on obtaining the parameter

VTOA
~ are in order. If measurements of VTO are made directly

or, if threshold voltage variations dominate current mirror
mismatch so that current mirror mismatch can be measured
and threshold voltage statistics can be inferred, the
measurements will inherently be made on a distributed
device and the asymptotic values depicted in Fig. 7 or Fig. 9
will be obtained. The parameter 

VTOA
~ in (14) that gives an

asymptotic value that agrees with the measured results is
what is needed. We are not in a position at this time to give a
simple closed-form expression for 

VTOA
~ . The simulation

results, however, suggest that for rectangular devices there is
a factor of 2 difference in σ(∆ID)/ID between the value
predicted using a single segment lumped model and the
distributed model. Formally,
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where σVT is the standard deviation of the threshold voltage
for a single transistor. Substituting (15) into (16) with N=1
and n=0, it follows that
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or, equivalently, from a plot of σVT Vs (1/ LW ⋅ ), 
VTOA

~ is

2 times the slope.
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Fig 7 Standard deviation of current mirror mismatch using
the modified model (14)
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VI. Conclusion

 It has been shown that existing approaches to
modeling both systematic and stochastic mismatch based on
using the integral model to predicting matching
characteristics have considerable discrepancies between
predicted results and actual measured performance. These

discrepancies are inherently attributable to limitations of the
models used to predict the matching performance. The
commonly used mapping from the distributed parameter
domain to a lumped parameter model is the cause of these
discrepancies. A modified consistent model of random
mismatch has been proposed that results in simulation
convergence.
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