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Abstract-Due to the fact that a nonlinear equation has to be
solved to determine the settling time of a linear time-invariant
system, the relationship between the pole-zero constellation and
settling time is not readily apparent. This makes it difficult to
design amplifiers with optimal or near-optimal settling
performance.  This work attempts to instill a deeper
understanding of how pole-zero placement relates to the settling
performance of second-order systems.

I. INTRODUCTION

Second-order models are frequently used to characterize
the behavior of linear time-invariant systems and have been
widely studied.  However, due to the fact that a nonlinear
equation has to be solved to determine the settling time, the
relationship between the pole locations and settling time is
not readily apparent.

Excepting the facts that moving the poles further into the
left half-plane (LHP) results in faster settling and that the
characteristic equations of a systems with widely spaced
poles can often be approximated as first-order, most
designers have limited insight into exactly how pole
placements relate to settling time.

Designer intuition is especially lacking for cases that
include a finite zero in the transfer function.  In 1963, using a
normalized transfer function, Waldhauer [1] demonstrated
that a closely-spaced low-frequency pole and zero results in
an often undesirable slow-settling component in the transient
response. He derived an expression for the maximum amount
of closed-loop pole-zero mismatch that can be tolerated to
ensure that the unwanted settling component is no larger than
a specified level.  Finally, he mapped the closed-loop
mismatch requirements into open-loop accuracy requirements
using the standard negative feedback equation.  Kamath,
Meyer, and Gray [2] later extended his work to include finite
amplifier slew effects.

The treatments in [1] and [2] only consider the special case
of a second-order system with a closely spaced pole and zero
that are positioned much lower in frequency than the other
system pole.  Many other types of physically realizable and
advantageous second-order systems are frequently
encountered but several unanswered questions must be
addressed to derive optimal benefit from these systems.  How
fast will these alternative systems settle to a specified
accuracy level?  Where should the poles and zeros be placed
to obtain the best possible settling performance?  How
sensitive to process, temperature, and aging will the resultant
systems be?

To keep the following analysis simple, it is assumed
throughout that the systems are linear.  Nonlinearities such as
finite slew capabilities of amplifiers will be neglected.

Most amplifier structures that have accurate gain
requirements exploit negative feedback to stabilize the gain.
Such systems are often characterized by two sets of poles,
those of the open-loop amplifier, and those of the closed-loop
amplifier. The pole locations cited throughout this paper refer
to the closed-loop pole locations which are the positions the
poles migrate to after the feedback loop is closed.

Various definitions of settling time exist.  For this paper it
is assumed that the settling time is the minimum amount of
time that must elapse after a step change in the input before it
can be guaranteed that the present and all future values of the
output will lie within a specified tolerance of the output
signal's asymptotic value.  The specified tolerance is
characterized by the parameter h as depicted in Fig. 1.
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Fig. 1.  Graphical depiction of settling time
All-pole systems are considered in Section II.  Systems that

contain a finite LHP zero are addressed in Section III.
Separate subsections are provided in each case to consider
systems with real and complex poles.

II. ALL-POLE SECOND-ORDER SYSTEM

The settling time of an arbitrary asymptotically-stable
all-pole second-order system is considered in this section.
The cases of real and complex poles are considered
separately in Subsections A and B respectively.
A. Second-Order System with Real Left Half-Plane Poles

Fig. 2(a) depicts a linear system with two real left half-
plane (LHP) poles.  For this discussion, the lower frequency
pole is denoted as P1 while the higher frequency pole is
denoted as P2.



x
Re(s)

Im(s)

x
-P2 -P1

x
Re(s)

Im(s)

x
-ρ -1

Time Scale 
by 1/P1

(a) (b)

Fig. 2. Pole-zero map of a linear system with two real LHP
poles (a) original system (b) after time scaling by 1/P1 (the

normalized system)
The settling time, Ts, is a function of P1, P2, and the level

of settling accuracy required, h.  Thus, there are 3
independent degrees of freedom to consider.  By utilizing the
time-scaling property of the Laplace Transform to normalize
the transfer function, the number of variables required for the
visualization can be reduced from 3 to 2.  The time-scaling
property of the Laplace Transform is given by:
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Scaling the time-domain response corresponds to
frequency scaling its Laplace Transform.  Therefore, as
depicted in Fig. 2(b), time scaling by 1/P1 results in a
translation of the system poles in the frequency domain so
that the lowest frequency pole lies at
s=-1 and the higher frequency pole is located at -ρ where:
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The time-scaled system will be referred to as the
normalized system.  The number of degrees of freedom that
affect the settling time in the normalized system is one less
than that of the original system because the lowest frequency
pole is always situated at s=-1.

Fig. 3 contains a plot of the normalized settling time
obtained by simulation for values of ρ and h that are
commonly encountered in amplifier design.

The normalized tables or equivalently, the normalized data
in the plot of Fig. 3 can be used to determine the settling time
of an arbitrary second-order system with real poles simply by
reading the correct value out of the table and denormalizing
the result.  The following example illustrates the technique.
Example: Second-Order System with Real Poles

Suppose we have an application that requires settling to
0.01% accuracy and a 2nd order system with closed-loop
poles located at -18MHz and -10 MHz.  How much time is
required for settling?  Since

P1 = 10 MHz and P2 = 18 MHz ∴ P2/P1 = 1.8 (3)

The point where the pole ratio line of 1.8 intersects with
the 0.01% accuracy curve is approximately 10.  Thus 10 is
the normalized settling time.  To find the actual settling time,
the result must be denormalized:

TS = 10 / P1 = 1 µS  ♦ (4)
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Fig. 4. Pole-zero map of a linear system with
two complex LHP poles
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In Fig. 6, the region corresponding to settling is shaded in
gray.  Notice that curve B crosses the lower bound of the
settling region at 2.35 sec. while curve A barely remains
within the settling region there.  Thus curve A has a shorter
settling time because it last crosses the boundary of the
settling region at 1.35 sec.  Although these two curves
correspond to nearly equal θ's, there is a significant
difference in their settling times.  In fact, as θ is varied
continously between A and B, at some point there is a
discontinuity in the settling time as the last point in time that
the step response waveform crosses the settling region
boundary switches from the upper boundary to the lower
boundary and vice-versa.

Using Fig. 5, designers can gain insight about the
sensitivity of a system's settling time to process, aging and
environmental variations.  Consider a system that was
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intended to operate at point C marked in Fig. 5.  In the
presence of variations, the poles may be dislocated from their
desired positions.  As a consequence, the resultant angle to
the poles might be slightly smaller or larger than desired.
One can see from the slope of and the discontinuity present in
the 0.001% settling accuracy curve near point C, that slight
variations in θ result in substantial increases in settling time.
It is apparent from the plot that systems with low-Q poles and
those with very high-Q poles exhibit lower sensitivities to
variations in the phase angle θ than systems with
intermediate-Q poles.

Using Fig. 5, it is possible to determine the settling time
without solving a nonlinear equation simply by reading the
appropriate value off of the plot and denormalizing the result.
To illustrate, consider the following example.
Example: Second-Order System with Complex Poles

As an example, assume 0.01% settling accuracy is required
with closed-loop poles located at ( ) 6103 ⋅±− i  Hz.  How
much time is required for settling?  The angle to the poles is
given by:
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The point where the pole angle line of 30° intersects with
the 0.01% accuracy curve is approximately 9.2.
Denormalizing this value results in the actual settling time.
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III. SECOND-ORDER SYSTEMS WITH A LHP ZERO

In this section, the settling time for an arbitrary
asymptotically stable second-order system with a LHP zero is
considered.  The cases of real and complex poles will be
considered separately in Subsections A and B respectively.

Before proceeding, some terminology needs clarification.
For many years in the integrated circuit design literature, the
term doublet has been used to refer to a pole and zero that are
spaced relatively close to each other with respect to the
distance to the other system poles and zeros.  This is



inconsistent with the terminology used in other disciplines.
In the current context, the term doublet is more appropriately
used to denote two closely spaced poles or two closely spaced
zeros but not a pole and zero that are closely spaced.  In other
disciplines and throughout the rest of this paper, the term
dipole is used to denote a pole and zero that are closely
spaced.
A. Systems with Real LHP Poles

The pole-zero plot of a system with two real LHP poles
and a LHP zero is depicted in Fig. 7.
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Fig. 7. Pole-zero map of a linear system with two real
LHP poles and a LHP zero (a) original system
(b) after time-normalization by scaling by 1/P1

The time-normalization technique that was used previously
to simplify the visualization of the relationship between pole-
zero placement and settling time is used here.  In this case an
additional degree of freedom is introduced due to the
presence of the zero.

Designating the lower and higher frequency poles as P1 and
P2 respectively and using a time-normalization factor of 1/P1
puts the normalized lowest frequency pole at s=-1.  The zero
and the remaining pole are designated in the normalized
system as ζ and ρ respectively where 1/ Pz=ζ  and

12 / PP=ρ .

Fig. 8 contains a plot of the settling time as a function of ζ
and ρ that was obtained for a settling accuracy requirement of
0.01%. In an attempt to cover the points commonly of interest
to amplifier designers, ζ was varied from 1E-4 to 1E6 while ρ
was swept from 1 to 1E6.

The most distinguishing feature of Fig. 8 is the sharp
reduction in settling time for systems with ζ's in the vicinity
of 1.0.  Dramatic improvements in settling time occur in these
cases due to the pole-zero cancellation that occurs as the zero
passes over the low-frequency pole located at s=-1.  These
cases will be examined in more detail later.

The zero passes over and cancels the higher frequency pole
as well.  The points where this occurs do not stand out on the
plot because in those cases the settling time is dominated by
the low-frequency pole's slow-settling component.

Settling time diverges as ζ approaches zero.  As a result, it
is not advantageous to position the zero at frequencies
significantly lower than that of the dominant pole.  One can
observe that for a fixed value of P1, settling time improves as
the pole spacing is widened.

Fig. 8.  Normalized settling time as a function of
ρ=P2/P1 and ζ=z/P1 for a settling accuracy of 0.01%

Low-frequency dipoles are commonly avoided because
they result in slow-settling components in the transient
response [1][3].  Depending upon the amount of mismatch
and the accuracy requirements of the application, these
slow-settling components may or may not be significant.
Thus, to determine how much mismatch is allowable for a
given settling accuracy and speed requirement, a careful
study of the sensitivity of settling time to pole-zero mismatch
is warranted.  In this regard, we will focus our attention on
the settling behavior in a region around where ζ=z/P1=1.
Observe from Fig. 8 that in the designated region, the settling
time depends upon ρ=P2/P1.  There, the settling time
improves as the pole ratio, ρ, increases.  To more clearly
visualize the relationship, the case where the poles are spaced
closely together is first considered.  Later the case of larger
pole ratios is investigated.

Fig. 9 contains a plot of the settling time for different
settling accuracy requirements in the region around where the
low-frequency pole cancellation occurs for cases where the
poles are nearly coincident (ρ=1.001).
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The 5 horizontal dashed lines in Fig. 9 represent the
settling times that result when exact cancellation of the
low-frequency poles occurs for each of the different settling
accuracy cases (i.e. the topmost line corresponds to the
0.001% settling accuracy case, the next lower line to 0.01%,
and so on).  Contrary to statements in [1], it is observed that
settling time is not minimized when exact cancellation of the
low-frequency dipole occurs.  Rather, the settling time is
minimized when the zero is located at frequencies that are
slightly lower than the dominant pole.  This observation
indicates that if a method for accurately placing the zero
relative to the pole could be achieved, a system with a low-
frequency dipole could be built that settles faster than an
equivalent system without the dipole.

Fig. 9 depicts cases where the closed-loop poles are nearly
coincident in the s-plane, (ρ≈1).  Infinitely many other cases
are possible as well.  Since all cases can not be considered
here, it is instructive to consider a case with more widely
spaced poles.  Fig. 10 contains a blow-up of the region near
where the low-frequency pole cancellation occurs for the case
where ρ = P2/P1 =10.

When cancellation of the low-frequency pole occurs, the
system effectively becomes a single-pole system with a
settling time determined by the location of the high-frequency
pole.  As a result, the larger the pole-ratio becomes, the more
dramatic the improvement in settling time becomes when the
low-frequency pole is cancelled.  This fact is observable by
comparing Fig. 10 to Fig. 9.  For exact low-frequency
pole-zero cancellations, the settling times of the ρ=10 cases
are each 1/10'th of the ρ=1 cases.  Unfortunately, however,
accompanying the reduction in settling time for
low-frequency pole-zero cancellation due to larger pole ratios
is an increased sensitivity to pole-zero mismatch.

The sensitivity of settling time to pole-zero mismatch is a
function of the pole-ratio and the required settling accuracy.
As previously mentioned, by positioning the zero slightly
below the low-frequency pole, the settling time for a system
with a low-frequency dipole can be better than that of an
equivalent system without the dipole.

To gauge the sensitivity to mismatch, one can consider the
maximum allowable percentage dipole mismatch that results
in settling performance that is at least as good as an
equivalent system without a dipole.  Fig. 11 contains a plot of
such a sensitivity measure where dipole mismatch was
defined as:
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Fig. 10. Normalized settling time for widely separated
poles (p2/p1 = 10)
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B. Systems with Complex LHP Poles
A pole-zero plot of the system with two complex LHP

poles located at ( )21 ζζω −±p
 and a LHP zero located at s=-Z

is shown in Fig. 12(a).
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Fig. 12. Pole-zero plot of a linear system with two complex
LHP poles and a LHP zero (a) original system

(b) after time-normalization by scaling by 1/(ωpζ)

Fig. 12(b) shows the effect of time normalization by
1/(ωpζ) on the pole and zero locations in the s-plane.  After
normalization, the real-parts of the poles lie at s=-1.  The
angle to the poles, θ, is not affected by the normalization.
The post-normalization location of the zero is denoted as -η
where 0≤η<∞.

Although the normalized settling time varies for different
settling accuracy requirements, it is instructive to examine the
relationship for a particular case with the knowledge that
other cases will have similar characteristics.  Fig. 13 contains
a 2-d surface of the settling time as a function of θ and η that
was obtained for settling accuracy requirement of 0.01%. In
an attempt to cover the points commonly of interest to
amplifier designers, θ was varied from 0.01° to 89.99° while
η was swept from 0.01 to 1E6.

Assuming fixed pole locations, the effect of the location of
the zero can be observed by looking at fixed-θ slices in Fig.
13.  Accordingly, settling time degradation appears when the
zero is located closer to the jω-axis than the poles with the
initial degradation onset occurring when the zero and poles
are nearly equidistant from the jω-axis and increasing as the
zero moves toward the jω-axis.  Conversely, it is also
observed that the settling time is largely independent of the
zero location when the zero is situated at distances that are at
least ten times larger than the separation between the poles
and the jω-axis.  Therefore, in applications where settling
time is important, systems with zeros closer to the jω-axis
than the poles should be avoided and systems with zeros
located more than ten times farther from the jω-axis than the
poles can be approximated as all-pole systems.

The effect of varying pole-Q can be examined by looking
at fixed-η slices of Fig. 13.  From the plot it is observed that
varying the angle to the poles, θ, dramatically affects settling
time.

As expected, in the limit as η approaches infinity the
settling response of the two-pole system with a zero
asymptotically approaches the response of one without a
zero.  This can be observed by comparing the 0.01% curve in

Fig. 5 to a fixed-η slice of Fig. 13 for a large value of η.
Given that fact, inspection of Fig. 13 reveals that a two-pole
system with a LHP zero can settle faster than one without a
zero.  That is, if the LHP zero is positioned in the vicinity of
η=1, the presence of the zero can significantly reduce the
settling time.

Fig. 13.  Normalized settling time as a function of θ and
η=z/(ωpζ)

CONCLUSION

Due to the fact that a nonlinear equation has to be solved to
determine the settling time of a linear time-invariant system,
the relationship between settling time and the pole and zero
locations is not readily apparent.  Settling characteristics of
normalized second-order systems were examined to provide a
comprehensive graphical relationship between the pole and
zero locations and the settling time.
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