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Abstract

In this paper, a new adaptive learning algorithm is pre-
sented for the repetitive tracking control of a class of
unstable nonminimum phase systems. After each repet-
itive trial, Least-Squares method is used to estimate the
system parameters. The output tracking error and the
identified system model are used through stable inver-
sion to find the feed forward input, together with the
desired state trajectories, for the next trial. An adap-
tive backstepping based tracking controller is used in
each trial to ensure the regulation of the desired state
trajectories. Simulation results demonstrate that the
proposed learning control scheme is very effective in re-
producing the desired trajectories.

1 Introduction

Iterative learning control (ILC) is a feed forward control
approach aimed at achieving high performance output
tracking control by “learning” from past experience so
as to eliminate the repetitive errors from future execu-
tion [9]. This approach was motivated by the observa-
tion that human beings are able to improve performance
through repeated practice. Since learning controller is
able to eliminate the repetitive errors that exist when
using a servo controller alone, it has great potential in
future robotic systems.

The concept of iterative learning control was first intro-
duced by Arimoto et al. [1]. It is based on the use of
repeated trials to track a desired trajectory. At each
trial, the system input and output signals are stored.
The learning control algorithm then evaluates the per-
formance error. Based on the error signal, the learning
controller computes a new input signal, which is stored
for use during the next trial. The new input is chosen
such that the performance error will be reduced in the
next trial. One of the important features of iterative
learning control is that it requires little a priori knowl-
edge about the controlled system during the controller
design phase.

Arimoto’s original learning controller is called a D-type
algorithm. Since then, many researchers have proposed
various learning control schemes. Moore extended Ari-
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moto’s method to systems with relative degree higher
than one [9]. Hauser presented a nonlinear version
of Arimoto’s method for a class of nonlinear systems
[5). Application of this type of learning controllers to
robotics was reported in many studies such as [2] and
[7]- The basic and succinct exposition of ILC is surveyed
in [10].

Although existing learning algorithms have been theo-
retically proven to provide output error convergence and
have had successful applications, many such algorithms
have practical difficulties with nonminimum phase sys-
tems [3]. An adaptive learning algorithm that works for
nonminimum phase systems was recently developed by
Gao and Chen [3]. In this paper, an adaptive learn-
ing algorithm is further developed to work for unstable
nonminimum phase systems. Simulation results are pre-
sented to show the effectiveness of the proposed adaptive
learning algorithm.

The remainder of the paper is organized as follows. In
the next section we define a class of desired trajectories
under consideration and state the problem of ILC. Sec-
tion 3 presents the new adaptive learning control law.
Section 4 contains simulation results. Finally, some con-
clusion remarks are given in Section 5.

2 Problem Statement

Consider a system dynamics in the k** trial:

Iy = f(;l:k,a, ug) (1)
Yk h’("vk, 0’ uk) (2)

where z is defined on a neighborhood X of the origin
of R”, # is a parameter vector, with input u; € ™ and
output yr € RP. The mappings f and g are smooth in
zy, and ug, with £(0,68,0) = 0 and h(0,6,0) = 0.

We make the following assumptions:

(A1) The system has a well-defined relative degree r =
(r1,+,7m)T which is known. The linearization of the
system about an equilibrium point, which is assumed to
be the origin WLOG, is completely controllable.

(A2) The order of the system, n, is known.

(A3) The system parameter vector # is unknown or
known incompletely.



(A4) A desired output trajectory is given and is a suffi-
ciently smooth function of ¢ satisfying y4(¢) = 0 for any
t € (—00,0] U [T, 00) and finite for any ¢ € (0,T), where
T>0.

Note: In (A4), sufficiently smooth means that the signal
has continuous derivatives of any order up to the rela-
tive degree. (A4) also requires yq(t) having a compact
support [0, 7).

Iterative Learning Control Problems :

Given a desired output trajectory yg(t) and a tolerance
error bound ¢ for a class of system (1) and (2), starting
from an arbitrary continuous initial control input ug(-)
and initial state zg(-), iterative learning control is to find
a sequence of desired state trajectory z¢(-) and desired
control inputs uf(-), which when applied to the system,
produces an output sequence y(-) such that

(D) Nya() — (oo < €, as k — oo, where k is the trial
number and || f|lco = supyejo, 7yl f (B)]]-

@) i@l < & llzf @)l < €Vt € (—00,0] U [T, +00).
(3) ud(t), z¢(t), ur(t), and z(t) are uniformly bounded.
The system can be represented in terms of desired con-
trol input uf(-) and output yx(-) in the k** trial by
means of a nonlinear time-varying operator II as follows:

ye () = I()ug() 3

In this dynamic process, the functions have two argu-
ments: continuous time ¢ and the trial number k. In
the sequel it is assumed that the variation of the op-
erator over two consecutive trials are slow and can be
neglected. Then the operator obtained by identification
performed in the k* trial can be used to determine the
input for the (k + 1)** trial. This general description of
the problem allows a simultaneous description of linear
or nonlinear dynamics, continuous or discrete plant, and
time-invariant or time-varying systems.

For applying linear ILC, however, the plant must ful-
fill the following conditions: (1) The desired trajectory
ya(t) is identical for every trial and satisfies Assump-
tion (A4). (2) Each trial has the fixed period T. (3) The
system parameters are fixed or very slowly time-varying.

3 Adaptive Learning Control

In section 2, we have given the general setup of learning
control. In this section, an adaptive learning controller
will be presented. The block diagram of the adaptive
learning system is shown in Figure 1.

The proposed adaptive learning control strategy has
three components: a parameter estimator, a stable in-
verse system, and an adaptive backstepping feedback
controller.  The parameter estimator is in charge of
“learning” the parameterized model of the system. Dur-
ing each trial, the input and output trajectories are
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Figure 1: Block Diagram of Adaptive Learning Control
System

recorded. Then off-line Least-Squares method is applied
to obtain the optimal estimate of parameters. Also ob-
tained during each trial is the output tracking error sig-
nal. This error signal and the estimated model are used
by the stable inverse system to learn the optimal input
signal for the next trial. Although the estimated model
may be nonminimum phase which normally leads to un-
bounded inverse solutions, stable inversion guarantees a
unique and bounded inverse solution. This “learning”
action is done “off-line” between two consecutive tri-
als. Afterwards, the new feed forward input is used by
the adaptive backstepping feedback controller to stabi-
lize the system and to ensure regulation of the tracking
error. The controller is designed following a recursive
backstepping procedure and it takes advantage of the
parametric strict-feedback structure of the system. The
controller parameters are also continuously updated in
real-time using an adaptive control law. The same feed-
back control algorithm is used during every trial. In the
following, we give the implementation of the adaptive
learning algorithm for continuous-time systems.

3.1 Solution to Stable Inversion of non-
minimum Phase Systems

Consider a LTI system in the form:
Z | #=Az+ Bu
1" | y=Czx+ Du
Suppose an estimated model G is obtained. If it is min-
imum phase, one can obtain the desired feed forward

input by 4 A
u'=G"ya (4)

However, if G is nonminimum phase, this will lead to un-
bounded solutions. The stable inversion theory [4] pro-
vides an avenue to overcome this difficulty. It was shown
that under certain conditions, there exists a unique sta-
ble inverse system H of G such that the inverse solution
ﬁyd is bounded and it reproduces y4 exactly when ap-
plied as an input to G, that is,

G(Hya) = ya (5)



Here, the prochure to obtain this unique stable inverse
solution u? = Hyy is illustrated. There are four steps:

(1) Find the time-domain state space model of G :

Singe Gud = GH Yd = Yd, a state-space representation
of G yields
#4(t) = Az(t) + Bul(t) (6)
ya(t) = Czi(t) + Dud(t) (7)
where z¢ is the state and /i,f?,é, and D are matrices

with suitable sizes.
(2) Find its inverse in state space:

Differentiate y4(t) until u® appears explicitly in the right
hand side. Solve for u® and substitute into (6) and (7)
to obtain

i) = Az(t) + By (t) ®)
ul(ty = Cz?(t) + Dy{(t) 9)

where A, B,C, and D are defined according to the sub-
stitution.

(3) Decompose the inverse system into center, stable,
and unstable subsystems:

Perform a change of variables so that

4= Pz = P[2%, 2%, 2¥7 (10)

which leads to
# = A2+ By (11)
# = A2 +B%) (12)
= A%+ B4y (13)

u? = [C° C* CY[° 2° z“]T+Dy¢(f) (14)

where A, A®, and A" are real Jordan matrices of suit-
able dimensions; A€ has r eigenvalues at zero; A® has
all eigenvalues in the open left-half plane; A* has all
eigenvalues in the open right-half plane.

(4) Obtain the stable inverse system:

Pick the transformation matrix P so that the center
subsystem is a simple chain of r integrators. Solve that
and impose two boundary conditions on the stable and
unstable subsystems to yield

2= [yd’ ?jda ,y‘(;‘ 1)]T (15)
#=A2+B%Y " t>02°() =0, Vt<0 (16)
= A% + Byt <T;2%t) =0, VE>T (17)

These together with (10) and (14) define the desired
stable inverse system.

In classical inversion, (8) and (9) are treated as a dy-
namic system. Since it is unstable for a nonminimum
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phase system, it leads to unbounded solutions for u?.
In contrast, the stable inverse system always yields
bounded solutions for bounded and smooth y4. This can
be clearly seen from (15)-(17) since the center solution
z¢ is clearly bounded, the stable subsystem is in the for-
ward time, and the unstable subsystem is in the reverse
time, all leading to bounded solutions.

When the system is minimum phase, there will be no
unstable subsystem. And the dimension of z* and those
of the associated matrices will be zero. Therefore, the
proposed approach also apphes to muumum phase sys-
tems.

In this paper, we only consider LTI systems in this form:

x'i—l,k = Ti,k; 1= 273$' TN
22 :{ Epp=2ra+u
yr = Czy

Based on the stable solutions outline presented above,
to facilitate iterative learning, we modify the inversion
process slightly as follows. Referring to Figure 1, let G
denote the system operator from ug to yx. Let upy; be
the new input for the next trial. Then the new tracking
error signal will be

€k+1 =Yi— Guk+1
=Yd— G(“k+1 + Gk+1)
=€k — G(uk+1 - uk) = G(@g41 — i)
Then we get

er+1 + Gllgyr — i) = e — Guf

where uf_; = uf, ; —uf.

The goal of designing learning control law is to make
er+1(-) gradually decrease as k increases. For any re-
maining errors, the feedback control action will try to
reduce them. Therefore, we simply set ex41 = 0 and
Uk+1 — g = 0 to design uf ;. That is, we want

er = Guj,, (18)

Since G is unknown and Gy, is the best estimate model
after the k% trial, we will use

Uppr = ﬁkek (19)

25, = Pez=Py2%2%, 247 (20)

so that e = C:'kuz 4+1- Then our learning algorithm
would be

uf,, = ul+uly (21)

= ad+azl, (22)

As a further modification, one may introduce a forget-
ting factor o (0 < a < 1) and use:

d ¢
Uy, = u: +oug (23)
iy = z{+oaziy, (24)



where uf,, and zf ; are given by (19) and (20), which
are the stable inverse solutions from e; and ék. (Note
that: in the rest of the paper, u?, z%, and u® represent
uj, 1,24, and uf_ | respectively for notational conve-
nience).

However, the controller design in the next subsection
will still assume o = 1 so that u¢, z%, and yq satisfy the
dynamics of Gy, that is :

d o od g
Ti1 =Ly ’—2, y
E 19 38 =alad + 4
3 N
ya = Cyx

3.2 Adaptive Backstepping Controller
Design

There are a lot of methods to design a controller. Since
the parameters of the systems are unknown, we need to
design an adaptive controller. Here we follow a popular
approach of adaptive backstepping design [8].

Define #; = zx — z% and 4 = ux — ud. For clarity, we
will drop the subscript % in sections 3.2 and 3.3 if it does
not cause confusion. One can easily verify:

Z . mz—l—xu 7'_2"' XU
4" | Zp=3Ta+[a—a)Tz?+a
The goal is to design @ to guarantee the regulation of Z.

Since a is unknown, let J(t) be the on-line estimate of
a and rewrite the last equation as follows:

En =8T9+[W -T2zt +i+[a—9T(E+2%)
= T (2)a + il
where @ = a—9, YT (z) = z7. Then Y, is in a standard
form with matching condition, then the goal becomes to
design iy to guarantee the regulation of Z. Details of the

derivations are skipped here, but the final controller is
given by:

u = ul4iy—zT9-[9-a)Ts? (25)
Gy = an(&,9) (26)
9 = Tz, (27)

where I' is an adaptation gain matrix. The variables z;
and the stabilizing functions a;,¢ = 1,...,n, are defined
by the following recursive expressions:

Zp = i‘i - aigl(il,.. .,.’ii_l) (28)
Oai-i . .
Qi = Cj%; — Ri— 1+Z % lmﬂ_l, i=1,---,n—1(29)
T aan 1~
On = CnZn — Zn-1— Y 19+Z Zj41 (30)

J
This adaptive controller guarantees global boundedness

of #(t),9(t), and regulation of %;(t),i = 1,...,n, ie.,
Z;(t) = 0, as t = oo.
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3.3 Parameter Estimator

Off-line Least-Squares method is used to estimate the
parameters. To get @x+1, we use the method as follows:

Grp1 = drag + (1 — di)ag (31)

where di € [0,1) is a memory factor and a; is deter-
mined by using off-line Least-Squares method [6]using
data from the k** trial. First using filter for the last
equation of )5, we get

1 1 g
s+ A T st a+s+Au (32)
ap
onm— ey = T (33)
TS+ A T os+ A 2
Qp-1

where A > 0. Then we have Z = W7a,, where Z =
(¥n — 535u), and WT = 22T By solving the ordinary
differential equations (ODE), we get Z and W. Now col-
lect all the data of Z and W. Suppose there are totally

M samples for the kt* trial. Let & = [WT,--- , WE]T
and the regressor vector be ¥ = [Zy,---,Zy]7. The
Lease-Squares solution is

ay = (87e) 1eTY (34)

From this we get @. Then x4 is obtained by (31).
Similarly, for the linear model,

y=0Cz (35)

We can use the same argument to get the estimates of
C, except that no filtering is needed.

3.4 Adaptive Learning Algorithm

The process of the algorithm is as follows:

Step 0 : Given ¢, the initial conditions do, Co, the initial
input ug(t) = 0, and initial state trajectory zg(t) = 0
on t € [0,T]. Set k=0. '

Step 1: Let ex(t) = ya(t) — yx(?)- ‘Get Gk from @ and
Cy. Use stable inversion to get uk+1 = Hyey and Thy-

Use equation (23) and (24) to get uf,, and zf ;.

Step 2: uf,,(t) is used as feed forward by the adaptive
backstepping feedback controller to stabilize the sys-
tem and to ensure regulation of z¢_, (t), ie., z(t) —
z¢,,(t), as t = co. The input and output trajectories
are recorded respectively.

Step 3 : Then the tracking error signal eg41(t) is calcu-
lated. If |lex+1()lloo < €, stops. Otherwise, set k = k+1,
and go to Step 4 .

Step 4: Use off-line Least-Squares method to obta.m the
parameter estimates d; and Ck, and go back to Step 1.



Table 1: Parameter estimates and output tracking' error
in each trial for the 2" order nonminimum phase system

k| aox(3) | a1.(7) | Cox(10) | Ci k(1) | llexlloo
1| 2.8999 | 6.9235 | 9.9999 -1.0000 | 0.1021
21 29339 | 6.9636 | 10.0000 -0.9999 | 0.0003
3] 2.9510 | 6.9837 | 10.0000 | -1.0000 | 0.0002
4 | 2.9609 | 6.9980 | 10.0000 -1.0000 | 0.0001

4 Simulation Illustrations

Simulation results are provided for SISO linear nonmin-
imum phase systems with unknown parameters. Two
examples of second order and third order unstable non-
minimum phase systems are included to verify the effec-
tiveness of the proposed adaptive learning algorithm.
Examplel Consider a nonminimum phase plant:

T =T
.’i)z = [3 7]-’1? +u
y=[10 -1]z

The parameters a = [3 7|7, C = [10 - 1]. This sys-
tem has two poles at 7.4051, -0.4051, and one zero at
10. Take the initial conditions do = [2.8 6.8]T, Co =
[9 —0.8]. Let the desired trajectories yq(t) = 4.6685 —
0.4244c0s(1.5708t) —4.2441c0s(0.1571t) as shown by the
solid curve in Figure 2. Take an initial input ug(t) = 0
and initial state trajectory zg(¢) = 0. Simulation results
for the trial £ = 1 and k = 2 are shown in Figure 2. At
the 27¢ trial, the output yo(t) converges to the desired
ya(t) exactly by the dotted curve. Table 1 shows the pa-
rameter estimates and the infinity norm of the output
tracking error at each trial. We can see the estimated
parameters are very close to the true values at the 3¢
trial.

Figure 2: Tracking of 2"¢ order linear nonminimum
phase systems
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Example2 Consider a nonminimum phase plant:

T =2
i2=:L‘3
i3=[1 2 3]:1:+u
y=[-21 -4 1]z

The parameters ¢ = [1 2 3]7,C = [-21 -4 1].
This system has poles at —0.3137 £0.4211:, and 3.6274,
and zeros at 7 and -3. Take initial conditions 4o =
08 18 287,Co = [-25 —3 2]. Let the de-
sired output y4(t) = —0.2759 — 0.0424c0s(1.5708t) —
0.2122¢0s(0.3142t) —0.1061cos(0.6283¢) as shown by the
solid curve in Figure 3. Take an initial input ud(t) = 0
and initial state trajectory zg(t) = 0. Simulation results
for the trial k = 1 and ¥ = 2 are shown in Figure 3.
At the 27 trial, the output y»(t) converges to the de-
sired yq(t) exactly as shown the dotted curve. Table 2
shows the parameter estimates and the infinity norm of
the output tracking error at each trial. We can see the
estimated parameters are very close to the true values
at the 4t trial.

Figure 3: Tracking of 3"¢ order linear nonminimum
phase systems

The above results demonstrate that the proposed learn-
ing control is very effective in reproducing the desired
trajectories.

5 Summary and Conclusions

A new adaptive learning algorithm has been developed
for unstable nonminimum systems. The adaptive back-
stepping feedback control law is employed to guarantee
regulation of tracking error and a stable inverse system is
used to update the feed forward input for the next trial.
Given a desired trajectory, the learning controller is able
to learn and eventually drive the closed loop dynamics to
track the desired trajectory. Simulation results demon-
strate the effectiveness of the proposed method.



Table 2: Parameter estimates and output tracking error in each trial for 3"¢ order nonminimum phase systems

k[ aox(l) | a1 [ a24(3) [ Cox(=21) | Cru(=4) | Cor(1) | llex( Moo
k=1 0.8998 | 1.8982 | 2.9059 | -21.0000 -4.0000 0.9999 0.1678
k=2 | 0.9332 | 1.9360 | 2.9391 | -21.0000 -4.0000 1.0000 0.0007
k=3 | 0.9500 | 1.9541 | 2.9581 | -21.0000 -3.9999 1.0000 0.0004
k=4 | 0.9600 | 1.9648 | 2.9671 | -20.9999 -3.9999 1.0000 0.0002
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