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Abstract 
A new algorithm based on a code density test to measure 
Integral Non-linearity (INL) of Analog-to-Digital (A/D) 
converters is introduced. This algorithm uses as an input 
two related but unknown ‘ramp-like’ signals that can be 
practically generated on-chip and the corresponding code-
density histogram. The algorithm inherently characterizes 
both the A/D converter and the inconsequential input. This 
algorithm finds applications in Self-calibrating A/D 
converters as well as providing capability for Built-In Self-
Test, where generation of an on-chip ramp input test 
signal of 8bits accuracy or more is a challenge.  
 
I. Introduction 
 
Over the past decade, the semiconductor industry has 
witnessed a reduction in the average cost of ICs. With the 
emergence of advanced technologies, the cost of IC 
production has drastically reduced, thereby placing an 
upper bound on the testing cost during production. With 
the cost of silicon in many Data Converter products 
becoming increasingly dominated by testing costs, Built-In 
Self-Test (BIST) structures offer potential for not only 
reducing the direct cost associated with testing, but also 
reducing the indirect cost associated with production time. 
This requires test schemes suitable for implementation as 
BIST structures whose performance parallels the results 
obtained from conventional testing methods. 
  
Several different parameters are widely used to 
characterize Analog-to-Digital (A/D) and Digital-to-
Analog (D/A) converters. In what follows, the two main 
static parameters of the A/D converter, namely Integral 
Non-linearity (INL) and Differential Non-linearity (DNL), 
are being considered and test schemes suitable for BIST 
implementation are described. 
 
The traditional method for linearity measurement of an 
A/D converter is the code density test [1],[2],[3],[4]. A 
periodic signal with a known probability density function 
(pdf) is converted by an A/D under test at sampling times 
that are not synchronous with the input signal. The 
histogram obtained at the output is then compared to the 

ideal expected value and the difference is used as a 
measure of the converter non-linearity. For example, with 
a linear ramp input signal, the number of occurrences for 
each code (bin) should ideally be equal and variations 
correspond to both DNL and INL errors. Differential non-
linearity is the deviation from one least significant (LSB) 
of the range of input voltages that give the same output 
code. The total number of samples (N) divided by the 
number of bins (2B, where ‘B’ is the number of bits of the 
converter under test), gives the number of codes per bin, 
P(i), for an ideal converter. The number of samples in the 
ith bin divided by ideal number of samples (P(i)) gives a 
measure of differential linearity and the difference from 
unity refers to the differential non-linearity. For a 
monotonic A/D converter, Integral non-linearity of any 
code can then be obtained by the summation of DNL of all 
codes below it. 
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Though this scheme works fine conceptually, it relies on 
the generation of a ramp signal at the input that must be 
substantially more linear than the A/D converter under test. 
Any substantial non-linearity or distortion in the ramp will 
change the expected number of codes in each bin. 
Determining the expected number of codes then requires 
an accurate characterization of the non-linear input signal. 
For most existing proposed BIST structures, a ramp is 
usually generated by charging a capacitor with a constant 
current source. This method is limited by the non-idealities 
of the current source. Finite output impedance of practical 
current source limits the accuracy of the ramp to 7~8 bits. 
Even though more complex schemes to improve current 
source output impedance and to generate a more linear 
ramp have been described in literature, the problem is still 
not completely eliminated. 
In this paper, a modified histogram test is described which 
takes in multiple “ramp-like” inputs and gives multiple 
histograms as output. These outputs are then used to 
characterize both the A/D converter under test and the 
inconsequential input signal. 



 
II. System Identification Concept 

 
Let H be the transfer characteristics of the A/D converter 
under test and I be the modifying function which generates 
a ‘ramp-like” signal from a perfect ramp (Vin). The output 
of the converter is then related to the input as: 

 
Vout = H(I(Vin))          (2) 

 
It can be shown that for some fixed relationships between 
H and I, it is impossible to determine H from histogram 
outputs for any number of inputs. For example,  
 
If    H=I-1,          (3) 

 
Vout = Vin           (4) 

 
 
and hence, no additional information about H or I can be 
obtained from the output histogram. 
 
For practical H and ‘ramp-like’ I, it is possible to 
determine H from histogram outputs for two related inputs. 
Specifically, if H and I have different spacial spectral 
distributions, then by using multiple inputs, sufficient 
information to characterize the system (both H and I) is 
available in the histogram outputs.  
 

 
III. Algorithm 

 
Though many algorithms may exist that can be used to 
identify H and I, one particular scheme aimed at Flash 
A/D converters is described here. The test procedure 
consists of the following steps: 

1. A ‘ramp-like’ input (I1) is given and the output 
histogram H1 is obtained. 

2. A related input (I2), obtained by shifting I1 by a 
fixed number of LSBs (here 1LSB) is given as a 
second input and the output histogram H2 is 
obtained. 

 
H1 & H2 are used to determine the A/D converter and 
input signal characteristics as explained below: 
 For sake of simplicity, the algorithm is explained using a 
2-bit converter as a reference. Consider the transfer 
characteristics of an A/D converter as shown in Figure.1. 
 
The various notations that are used are: 

o Ii -> ith transition level of Ideal ADC. 
o Ti -> ith transition level of actual (non-ideal) 

ADC. 
o ∆i -> deviation of ith transition level (Ti) from 

ideal transition level (Ii). 
o I1 -> ‘ramp-like’ input signal. 

o I2 -> I1 shifted by a known amount (1LSB here). 
o Ci -> Number of samples in ith bin for ideal ADC 

and ‘ramp-like’ input (I1). 
o Ci

’ -> Number of samples in ith bin for actual 
ADC and ‘ramp-like’ input (I1). 

o Ci
’’ -> Number of samples in ith bin for actual 

ADC and input I2. 
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Figure.1. A/D Transfer Characteristics with Input signals 
and Histogram values
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Note that ∆0 refers to deviation of 0th transition. In reality, 
there exists no 0th transition. ∆0 has been introduced to 
obtain a simpler mathematical representation of the 
algorithm. The values of Ci

’ and Ci
’’ are obtained from H1 

and H2 respectively. The equations relating the various bin 
values and the delta values (in terms of number of 
samples) are : 
 

011
'
1 ∆−∆+= CC                     (5) 

122
'
2 ∆−∆+= CC                     (6) 

233
'
3 ∆−∆+= CC                     (7) 

344
'
4 ∆−∆+= CC                     (8) 

012
''

1 ∆−∆+= CC                     (9) 

123
''

2 ∆−∆+= CC                               (10) 

234
''

3 ∆−∆+= CC                               (11) 

345
''

4 ∆−∆+= CC                               (12) 
 
The above equations are obtained with the assumption that 
even though the input signal is not a linear ramp, for a 
small segment consisting of adjacent LSBs, the signal is 
linear to first order. 
 
The variables to be determined are 
{C1 ,C2 ,C3 ,C4 ,C5 , ∆0 , ∆1 , ∆2 , ∆3 , ∆4 } 
 



The total number of unknowns is ‘10’ and number of 
equations available is ‘8’. Hence, the system seems to be 
under-specified. An assumption of ∆0=∆1=0 is made. As 
explained earlier, since ∆0 is being introduced to simplify 
the mathematics, the assumption of it being ‘0’ is valid. 
∆1=0 implies that the first transition is perfect (DNL1=0). 
Any error in the first transition will manifest itself as gain 
error that can be corrected separately and hence the 
assumption of ∆1=0 is also valid.  
 
The Equations 5-12 are simplified to get the delta values as 
shown below: 
 

1
'''

11 2 −++ ∆−∆+−=∆ iiiii CC ; i ε {1 to 2Bits –1}       
                                 (13) 
where, ∆0=∆1=0. 
 
Once the ∆ values are available, the values of Ci can be 
obtained which can then be used to characterize the input 
signal. 
The deviations of A/D transitions in terms of LSBs is then 
given by 
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∆=∆                   (14) 

 
DNL for any code is calculated using the following 
equation, 
 

)1()( −∆−∆= iiDNL LSBLSBi ;  i ε {2 to 2Bits}      
                                 (15) 
 
and INL from Equation(1). 
The INL thus obtained is then corrected for gain and offset 
error mathematically. 
 

 
IV. Simulation Results 

 
A complete MATLAB simulation was performed to test 
the proposed algorithm and results are summarized below. 
A 10bit flash A/D converter with a unit resistance value of 
‘R’ was considered. Each of the resistors in the string 
(except the 1st one) was varied randomly between +/-10% 
following a uniform distribution. Any variation in the 
value of ‘R’ results in variation of the corresponding trip 
point of the A/D converter. Also, owing to the nature of 
the string architecture, the deviation of any trip point ‘i’ 
does not only depend on resistance Ri but also on the 
values of all resistance from ‘0’ to ‘i-1’. 
A ‘ramp-like’ input was generated in matlab using the 
following function 
 
Vin = α1V +α2V2                   (16) 

Where, α1 and α2 are two constants. Vin is a linear ramp if 
α1=1 and α2=0. A small amount of non-linearity was 
introduced by choosing the values of α1 =0.95 and 
α2=0.05. The number of samples per LSB was chosen to 
be 100. It is assumed that the second signal is shifted 
exactly by 1LSB (shift = 1LSB). The case when the ‘shift’ 
is not equal to 1LSB is considered later. Figure.2. shows 
the plot of INL values that was actually introduced in 
matlab to simulate a non-ideal ADC, and the INL values 
that was calculated using conventional histogram method 
and that using the new algorithm. As seen from the graph, 
the INL predicted by new algorithm follows closely the 
value that was actually introduced in Matlab. The plots 
almost overlap each other, indicating that the new 
algorithm gives nearly accurate results. On the other hand, 
the INL obtained by using the conventional histogram 
approach differs considerably, due to non-linear nature of 
the input signal. Once the errors in transition voltages are 
estimated by using the new algorithm, it can be used to 
correct the ADC. The INL profile, after correcting the 
transition values based on results obtained from the new 
algorithm is also given in Figure.2. It can be seen that, 
after correction, the INL of the residual transfer 
characteristics reduces to very small value (within 
0.06LSB). The process of estimation and correction can be 
repeated until the A/D converter is completely corrected. 
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Figure.2. – Plot of INL for 10bit converter with 100 
Samples per bin and second input obtained by exact 1LSB 
shift 
 
 
To consider the effect of the Number of Samples per LSB 
on the performance of the new algorithm, another 



simulation with the same parameter as in the previous case 
(Bits=10, α1=0.95, α2=0.05), but Samples-per-LSB equal 
to 250 was performed and the result is given in Figure.3. It 
can be seen from the graph that the INL after correction 
reduces to less than 0.02LSB. This is because, the more the 
number of points, the better the approximation as we move 
towards continuous input case. 
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Figure.3. Plot of INL for 10bit converter with 250 
Samples per bin and second input obtained by exact 1LSB 
shift 

 
The results given above are under the assumption that a 
perfect shift of 1LSB is achievable. But in reality, this may 
vary by 10%. Another simulation,, in which the second 
input signal (I2) is shifted by 0.9LSB instead of 1LSB was 
performed. The algorithm is unchanged, since it assumes 
the shift to be 1LSB. Figure.4. shows the INL introduced 
and that calculated using conventional and new algorithm. 
As expected, the result differs from Figure.2., but still is 
better than conventional case. 
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Figure.4. Plot of INL for 10bit converter with 100 
Samples per bin and second input obtained by 0.9LSB 
shift 

V. Conclusion 
 

A new algorithm for characterizing the Integral Non-
linearity (INL) of a Flash A/D converter has been 
described. The proposed algorithm is suitable for Built-In 
Self-Test (BIST) application, where on-chip generation of 
an input ramp of more than 7~8 bit accuracy is difficult. 
Unlike the conventional histogram approach, the new 
algorithm does not require a linear ramp as input. 
Simulations results for a 10bit A/D converter has been 
provided to confirm the functionality of the algorithm. It is 
conjectured that the multi-input/multi-histogram approach 
has applications to pipelined structures that may give even 
better results in either foreground or background 
test/calibration schemes. 
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