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Abstract 

A new strategy for the layout of integrated resistors 
that minimizes yield loss due to random sheet resistance 
variations for a given area in ratio-critical applications is 
introduced.  The strategy is based upon the optimal 
partitioning of area between the resistors that must be 
ratio-matched and on the practical realization of the 
partitioned resistors with unit resistor cells.  This strategy 
provides substantial improvements in yield over what is 
achievable with most existing layout strategies when large 
and accurate resistor ratios are required. 
 
 
Background 
 

It is well recognized that layout plays a key role in the 
yield of matching-critical circuits and techniques such as 
using segmented devices in a common-centroid layout are 
widely used [1-3] to improve resistor ratio-matching 
accuracy.   Placement and segmentation in conjunction 
with centroiding can be used for minimizing the effects of 
first and higher-order gradients induced by process 

parameter variations, mechanical stress, temperature or 
other factors. But in precision applications where 
sufficiently large areas are used to make the local random 
mismatch effects area-dominant, the standard deviation of 
the current in two closely placed identical transistors [4], 
[6] or the standard deviation of the relative resistance or 
capacitance of two closely placed resistors or capacitors 

[4], [5] varies with the reciprocal of the area of the devices.  
Although there has been considerable effort devoted to 
statistically characterizing the matching of nominally 
identical transistors, resistors or capacitors, little attention 
has been devoted to characterizing the ratio-matching 
accuracy of these devices or, correspondingly, how area 
should be partitioned between devices that should be 
matched.  As a result, most texts and papers that discuss 
matching comment on the ratio-matching accuracy of two 
matched devices and readers generally are led to the 
conclusion that similar ratio-matching accuracy is 
achievable when ratios greater than one are required.  As a 
result, the issue of how area should be partitioned between 
the matching-critical components does not arise and an 
integer ratio of θ is generally achieved by starting with a 
unit cell and then placing θ cells in series or in parallel to 
achieve the desired ratio.  As a result, the area allocated to 
the two matching-critical components will often also be 
either 1: θ or θ: 1.  Smaller unit cells are often used to 
accommodate common-centroiding but the 1:θ or the θ:1 
ratios are generally still maintained. 

 In what follows, we will limit our discussion of ratio-
matching accuracy to resistors.  A simple example will 
show that that area partitioning does play an important role 
in yield.  Consider the case of a standard feedback 
amplifier of Fig. 1 designed for a gain of –16 where a unit 
rectangular resistor of active area AR is used to realize RA 
and where RB is the series connection of 16 of the unit 
resistors.  As will be formalized later, it can be shown that 
the effect of local random variations in the sheet resistance 
on the gain θ = -RB/RA results in a standard deviation of 

the gain given by 
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a constant characteristic of the process.  Correspondingly, 
if RB is realized as the series connection of four of the 
same unit resistors and if RA is realized as the parallel 
connection of the unit resistors, it can be shown that 
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from 17AR to 8AR.  Thus the second layout approach will 
not only reduce the standard deviation but it will also 
reduce the area by over a factor of 2 as well.  An equal 
area comparison of the two layout techniques in this 
example may be more useful. This can be achieved if the 
area of the unit resistor in the second layout technique is 
increased by a factor of 17/8 resulting in a standard 
deviation in the gain of 
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with equal active area, there is a factor of over 2 reduction 
in the standard deviation of the gain with the second 
technique or, equivalently, for a given standard deviation 
requirement, the total active area can be reduced by over a 
factor of 4 with the second layout technique.  The 
implications of this change in standard deviation on yield 
are significant.  If the equal area partitioning is used in this 
example with a Gaussian resistor distribution and the area 
is determined for a yield of 99%, then if the same total 
resistor area were used but the standard layout were 
adopted instead of the equal area partitioning layout, the 
yield would be reduced to 76%.  In what follows, the 
optimal area partitioning for minimizing the standard 
deviation of the ratio of two resistors will be developed 
and practical layout strategies that are at or near this 
optimum will be presented. 
 
Optimal Area Partitioning 
 

Following an approach similar to that used in [4], [6], 
and [7], it can be shown that the standard deviation of the 
normalized resistance of any rectangular film resistor due 
to local random variations in the sheet resistance is given 
by the expression  
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where Aρ is a process parameter characterizing the local 
random variation in the sheet resistance, ρN is the nominal 
value of the sheet resistance, W and L are the width and 
length of the resistor and AR is the resistor area.  The 
parameter Kρ is the ratio Aρ/ρN.  In this derivation, the 
contact resistances and the edge roughness of the resistor 
have been neglected. 

The statistics, specifically the standard deviation of 
the gain θ = -RB/RA is of interest in characterizing the yield 
performance of the amplifier.  It can be shown that the 
standard deviation of the gain θ can be expressed in terms 
of the normalized standard deviations of the resistors RA 
and RB by the expression  
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where θN is the nominal gain.  Trivially, the total resistor 
area AT can be expressed in terms of the areas of the 
resistors RA and RB by the expression  

RBRAT AAA +=     (3) 
It now follows from (1), (2) and (3) that the standard 
deviation of σθcan be expressed as 
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By taking the derivative of σθ with respect to ARA and 
setting to zero, it follows that the standard deviation of the 
gain is minimized when ARA = ARB and the minimum 
standard deviation is given as  
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Although the standard deviation of the gain will be 
minimized when the resistor areas are equal, the reference 
unit resistor should still be used to implement RA and RB.  
This will introduce a quantization effect that may preclude 
maintaining equal areas for RA and RB.  Since there may be 
several or even many ways to use a reference unit resistor 
to realize RA and RB, the area penalty for having a non-
optimal area partitioning is of interest for determining how 
effective a particular layout will be.  If the split factor γ is 
defined by the expression γ  = ARB/AT, it follows from (4) 
and (5) that the standard deviation of the gain can be 
expressed in terms of the parameter γ as 
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A plot of the normalized standard deviation of the 
gain versus γ is shown in Fig. 2.  From this plot it is 
apparent that it maintains a very shallow minimum but that 
the penalty goes to infinity if the area differences are large.  
If we want the standard deviation to be within 0.5% off the 
optimal value, then 0.4502 ≤ γ ≤ 0.5498.  If a 1% deviation 
is required, then 0.4298 ≤ γ ≤ 0.5702.  

Three basic resistor structures will now be considered 
for use in the layout of the resistors RA and RB in the 
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amplifier. The resistor R1 will be considered to be the unit 
reference resistor, R2 will be a parallel connection of the 
unit cells and R3 will be a series connection of the unit 
cells.  If the normalized variance of the resistors RA and RB 
are known, then the standard deviation of the gain can be 
obtained from (2).  Now if a standard layout strategy is 
used, that is, RA=R1 and RB=R2 or RA=R3 and RB=R1 to get 
a gain of - θN, then the total resistor area is AT = (1+ θN) 
A1.  It follows from (2) that in either case,  
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And for either of these layout schemes, the standard 
deviation of the gain is equivalent to that for a parameter γ 
of  
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It thus follows form (8) and (6) that if θN  = 1, the standard 
layout is optimal but if the amplifier gain is large, the 
standard layouts will be far from optimal. 

An appreciation of the magnitude of the yield loss 
associated with a non-optimal area partitioning associated 
with the standard layout scheme may be useful.  To make 
this comparison, it will be assumed that the gain has a 
Gaussian distribution and the area is determined so that a 
yield of Y is achievable with an optimal area partitioning 
for a given gain θN and that the actual yield is YACTUAL.  It 
follows from (5) and (7) that  
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It can now be shown that the actual yield related to the 
optimal yield Y by the relationship  
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where erf is the standard mathematical “error function” or, 
equivalently, in terms of the CDF of the standard N(0,1) 
random variable, F, as  
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As an example, if an amplifier is sized for an optimal 
yield of 99% and if a standard layout for a gain of 5 is 
used, the yield is reduced to approximately 95%, if the 
gain is 10,25,100, then the yield is reduced to 86%, 68% 
and 39%, respectively. 

 
Comparison of performance of different 
layouts 
 

In the following, amplifiers with gains from 1 to 4 
with different layouts will be discussed along with a 
comparison of the γ factors for these layouts.   

As observed previously, for a gain of 1, if RA = RB = 
R1, then the structure is optimal and has a value of γ = 0.5. 

The amplifier with a gain of 2 can be implemented 
with RA = R1, RB = R2 = 2R1 or RA = R2= ½R1, RB = R1. 
Obviously, the area ratio γ is 2/3 and 1/3, respectively. 
They are symmetric to the point of 0.5.  The gain error 
deviations correspondingly are denoted as 1 and 2 in Fig 3.  
It follows from (6) that the standard deviation is about 6% 
above the minimum.  This yield loss is small suggesting 
either layout is practical.  If the sizes of the resistors are 
large (so spacing and edge effects don’t cause problems), a 
modest reduction of the standard deviation is possible by a 
more complicated layout. One way to achieve this is to use 
a much smaller reference resistor and use a parallel 
combination of two series strings of 4 of these reference 
resistors to realize RB and 3 parallel strings of 3 of these 
resistors to realize RA.  This would require 17 reference 
resistors but with this approach the γ factor would become 
0.4706, which would result in a deviation of the standard 
deviation of less than 0.2% from the optimal.  The 

standard deviations of the gain for the 3 layouts are 
depicted in Fig 3. 

Similarly, there are also several methods for the layout 
of an amplifier with a gain of 3.  For example, it can be 
realized with RB = R3 = 3R1, RA= R1 with γ = 3/7 or RB = 
3R1, RA= R1, with γ = 48/97.   

For realizing a gain of 4, it is very easy to split the 
area equally.  One method is to implement RA = ½R1, RB= 
2R1with 4 unit resistor cells, which achieves a minimum 
standard deviation of the gain with γ = 0.5. 
 
Achieving Near-Minimum Gain Variance 
 

It is apparent that for some gains, the minimum value 
of γ = 0.5 cannot be achieved but by appropriately 
segmenting the resistors, layouts with γ very close to the 
optimum can be obtained as evidenced by the examples 
considered for the cases of gains of 2.  Table 1 shows some 
near-optimal solutions for some other gains. 

From the above results, a procedure for obtaining 
near-optimal standard deviation of the gain can be 
described.  If the gain θ is a square of natural number, then 

Fig. 3 Gain of 2 Amplifier 1) Series
Feedback, 2) Parallel Input, 3) variance

1
2
3

(γ)

2

0

1

3

4

 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θmin

θ

σ
σ



 

 

RB can be realized with θ  = n unit cells in series to get a 
nominal value of n R1N and RA can be realized with n cells 
in parallel to get a nominal value of R1N/n.  This will result 
in equal area partitioning and a minimum standard 
deviation of the gain.  If the gain is not a square, then RB 
can be realized as a series connection of θ unit cells and 
RA will be a parallel connection of K strings of series-
connected unit cells with each string containing K unit 
cells.  There are many other ways to achieve a given gain 
with near-equal area partitioning.  If the gain is a perfect 
square, the procedure described will provide a practical 
layout.  If the gain is not a perfect square, the method 
described may not be the best way to do the area 
partitioning even though γ will be very close to 0.5. The 
reason is the number of unit cells may be large and 
correspondingly the effects of edges and the area 
associated with cell spacing will limit performance. 
 
Table 1 some possible structures for some gains 

Gain 
value 

RBN (# of R1N) * RAN (# of 
R1N) in terms of RN 

Area ratio γ 

1 1(1)*1(1) 0.5 
2 2(8)*1(9), 2(2)*1(1) 8/17,2/3 
3 3(48)*1(49), 3(3)*1(4) 48/97,3/7 
4 4(4)*1(4) 0.5 
5 5(80)*1(81),5(5)*1(4) 80/161,5/9 
6 6(24)*1(25),6(6)*1(4) 25/49,6/10 
7 7(63)*1(64),7(7)*1(9) 63/127,7/16 
8 8(8)*1(9) 8/17 
9 9(9)*1(9) 0.5 
10 10(10)*1(9) 10/19 

Although increasing the number of unit cells may 
appear to be unattractive, it must be recognized that the 
basic unit cell is often segmented anyway to allow for the 
common-centroiding that is necessary to reduce the effects 
of gradients and this segmentation may provide a practical 
mechanism for better area partitioning.  
 
Extensions 
 

Although the focus in this work was on the effects of 
the localized random variations in the sheet resistance and 
its effects on the ratio matching accuracy of resistors, the 
issue of random variations in contact resistances and in the 
statistical variation of the boundary are often major factors 
that affect ratio matching accuracy as well.  Although 
beyond the scope of this work, reductions in the standard 
deviation of ratio-matching errors due to these 
nonidealities can also be achieved by appropriately 
partitioning the unit cells between the two elements that 
are to be matched.  In the latter cases, both the partitioning 
of the unit cells between the two elements that are to be 

matched and the total number of unit cells and their aspect 
ratios play a role in determining an optimal layout. 

The concepts introduced here extend to sizing of 
capacitors for optimal capacitor ratio matching as well as 
transistors for optimal current –ratio matching.  
 
Conclusion 
 

It has been shown that the standard layout procedure 
for ratio-matched resistors often gives a large standard 
deviation of the gain due to local random variations in the 
sheet resistance of the film.  The optimal partitioning of 
area between two ratio-matched resistors was shown to 
occur when the areas of the resistors were identical 
independent of the desired resistor ratio.  Improved layout 
strategies were introduced that will provide yield 
enhancement in matching-critical applications.  Although 
standard layout procedures will give good performance 
when the component ratios are small, substantial 
improvements in yield are possible when realizing circuits 
that require precise large component ratios if the new 
layout procedures are used. 
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