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Abstract

Inversion of nonminimum phase systems is a challeng-
ing problem. The classical causal inverses proposed by
Hirschorn result in unbounded solutions to the inverse
problem where the zero dynamics are unstable. Sta-
ble inversion introduced by Chen and Paden obtains
bounded but noncausal inverses for nonminimum phase
systems. As a first step, this paper addresses bounded
causal inversion of nonlinear nonminimum phase sys-
tems. It is shown that an optimal causal inversion prob-
lem is equivalent to a minimum energy control problem
of the zero dynamics driven by a causal reference out-
put profile. A causal inversion solution for nonlinear
systerns and an optimal causal inversion solution for
linear systems are also proposed. Simulation results
demonstrate the effectiveness of the new causal inver-
sion approach in output tracking,.

1 Introduction

The inverse problem is a fundamental generic problem
in science and engineering. Since it widely appears in
different areas, such as non-destructive evaluation [2],
heat transfer [9], wave motion [6], and biomedical en-
gineering [10f, it has attracted researchers’ interest for
a long time. Especially in control systems areas, inver-
sion algorithms have been applied to cutput tracking
[5] and learning controt [13].

The classic inversion approach for output tracking
control uses stabilizing feedback together with feed-
forward signals generated by an inverse system. The
classic inverse problem was first studied by Brockett
and Mesarovic [1]. Later, Silverman [11] developed
a step-by-step procedure for the inversion of a class
of linear multivariable systems. These linear results
were extended to nonlinear real-analytic systems by
Hirschorn [7] and Singh [12]. For a given desired out-
put and a fixed initial condition, all these inversion al-
gorithms produce causal inversion that are unbounded
for nonminimum phase systems. The stable inversion
approach was first developed by Chen and Paden [3] to
attack a very important and difficult problem in non-
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linear control: output tracking control of nonminimum
phase systems. The down side is that stable inversion
is noncausal.

In this paper, both causal and optimal causal inversion
of nonlinear nonminimum phase systems are derived in
an effort to find feed-forward signals for output tracking
of a reference profile given in real time. The inversion
is causal and bounded. The remainder of this paper
is organized as follows. In the next section, the class
of reference trajectories under consideration is defined
and the causal and optimal causal inversion problems
are stated. Section 3 shows that the optimal causal
inversion problem is equivalent to a minimum energy
control problem of the zero dynamics driven by a causal
reference output profile. A causal inversion solution
for nonlinear nonminimum phase systems is presented.
Section 4 presented an optimal causal inversion solu-
tion and an optimal noncausal inversion solution for
nonminimum phase linear systems compared with well-
known stable inversion. Section 5 contains the simu-
lation results. Finally, some concluding remarks are
given in Section 6. One can refer to [14] for a more
detailed introduction.

2 Framework and Problem Statement

First, consider a nonlinear system of the form

@ = f(z) + g{x)u
y = h(z)

(1)
(2)

defined on a neighborhood X of the origin of ®*, with
input w € ™ and output y € RP. f(r) and g;{z) (the
" column of g(z)) for i = 1,2, --,m are smooth vec-
tor fields. And h;(z) for ¢ = 1,2,---,p are smooth
functions on X, with f(0) = 0 and h(0) = 0. For such
a system, the causal inversion problem is stated as fol-
lows:

Causal Inversion Problem: Given a smooth reference
cutput trajectory yq(t) € L1 N L, with ye(t) = 0 for
t <0, find a control input @4(t) and a state trajectory
Zq(t) such that

1} 4 and %4 are bounded, and

g(t) = 0, Z4(t) 20, as t—r 00



2) Exact output matching is achieved
h(Za(t)) = yali) (3)

3) Za(t) and G4(t) are causal, that is, Z4(t) = 0, 54(t) =
0 for ¢ < 0, where Z4 is the desired state trajectory, and
4 is the nominal control input.

Furthermore, by adding the following condition to the
Causal Inversion Problem, an Optimal Causal Inver-
sion Problem will be defined.

4) @iy and ¥4 minimize the performance index

3 fo ”:rd — (f{Za) + gl :Ed)ud)”?ldt

where R is a weighting operator.

J(Ud,l‘d

Note that, in the rest of the paper, we require yq(?)
to have a compact support, that is, there exist ¢ty such
that yg(t) = 0 for all t > t;, where finite for #; > 0.
This assumption covers a large family of practical ref-
erence trajectories. Furthermore, the development in
this paper can be extended with little effort to cover
signals whose certain derivatives have a compact sup-
port.

Condition (1) guarantees the stability of the internal
state and input. Note that there are infinitely many I
satisfying Equation (3). For the existence and unique-
ness of the inversion solution, one can refer to [5]. Con-
dition (3) states the causality of the solution. Con-
dition (4) is the performance index that the optimal
causal inversion has to be satisfied. Since the nominal
input is used as a feed-forward signal and the state er-
ror {x — F4} is used as a feedback signal to a stabilizing
tracking controller, one must design a proper feedback
controller to guarantee the asymptotic stability of the
tracking error system. If J is large, one may not be able
to design such a feedback controller to have e{t) — 0
as t — 0o. So this performance index has a reasonable
physical meaning. Other choices for the performance
index are possible as long as they have a specific phys-
ical meaning.

In the stable inversion approach, the whole desired cut-
put trajectory is required. Compared with stable in-
version, the inversions defined above are causal and
bounded. The reference output profile can be given in
real time.

3 Causal Inversion for Nonlinear Systems

Consider a nonlinear system of the form (1) and (2)
with the same number of m inputs and outputs and

¥ =y, 42,7 ¥m)”
n= (ulau21'”1um)
h(z) = [h(z}, ha(z),-
9{z) = [g1(z), ga2{x),- -

s hm (Z)}T
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.(ii) the m x m matrix §(z)

Assume that the system has a well-defined relative de-
gree r = {ri,r2, +,rm}’ € N™ at the equilibrium
point 0, that is, in an open neighborhood of 0,
(i}foralll1 <j<m,foralll <i<m,forallk <r;—1
and k > 0, and for all z, that is,

Ly, L5hifz) =0 (4)
= L(gl)Lff"_“h(z) is nons-
ingluar. Note that since the control u does not appear
explicitly in Equation (2), we have r; > 1 for all 4.
Therefore, r — 1 € N™ and the operation in the defini-
tion of 3 is well defined.

Under this assumption, the system can be partially lin-
earized. To do this, we differentiate y; until at least one
u; appears explicitly. This will happen at exact.ly the

ri* derivative of y; due to (4) Define & = y, =1 for

i=1,--,mand k=1,.-- r;, and denote [4]

6 =(£‘.111£%a"':£¢17‘5%1:" ’61‘2’ N 1‘51?,1,,)1‘ )
- (91,91:'“11!?’“ )’yza 9ygr2~ )y"')ygm_ ))T

Choose 7, an n — |r| dimensional function on R*, such
that (¢7,97)T = ¢(z) forms a change of coordinate
with (0} = 0 {8]. In this new coordinate system, the
system dynamics of Equations (1) and (2) become

éi =g
f,._l—-t'r for i=1,-
fr - al(fa ﬂ) + 61(£ n)

7= QI(faq) + q2(‘fa ﬂ)u

which, in a more compact form, is equivalent to

¥\ = alg,n) + B, nu (5)
ﬁ =q (é? T’) +q (E: 7?)" (6)
where
a(€,m) = L h(p =1 (€, 7))
B(&.n) = L‘L’ Yh(v (&, 1)

a(0,0) = 0 since f(0) = 0, and a; and f; are the ¢**
row of a and § respectively. By the relative degree as-
sumption, #(¢,n) is nonsingular, the following feedback
control law

w28 — alé,m) (M

is well defined and partially linearizes the input output
dynamics relationship into a chain of integrators, y(”) =
v, where v € R™ is the new control input. For the
inversion problem, we require y(t) = y4(t) which leads

to:

v= y,(;)

{r1—1)

1
Y (r2—1)

Ja .
E=€d:(ydnyd1s yYdas ' "1 Yy, " 1ydm

(8)

—1)1



Equation (6) becomes the zero dynamies driven by the
reference output trajectory,
)1 €d, 77)

7= pyy (9)

where

(€, m) + g2 (€0, MB W Eam))
b — a@= (Enm))-

For reference trajectories with compact support, the
reference dynamics become autonomous zero dynamics
for t outside the compact interval (2o, ¢]. Assume =0
is a hyperbolic equilibrium point of the autonomous
zero dynamics. Linearizing the right hand side of Equa-
tion (9) at the equilibrium point 5 = 0 gives

(ygir)a Eds 7?) =

7= An + bt) (10)

where

A= Qﬂ(yf:%sd,nn,,_o €420, 30
b(t) = p(u”, €a,m) —

For a real matrix 4, there exist an invertible (n —r) x
(n — 7) matrix P, such that J = P['AP,, where J
is the real Jordan form of 4. Therefore; with the co-
ordinate transformation 5 = Pj[n, 7u]7, the reference
dynamics in the new coordinate is in real Jordan form.
As a result, Equation (9) can be rewritten as:

(11}
(12)

1?3 = Asns + Bsyd + ds(yg'r): Edrmh Wu)
Ty = Auty + Buyd + du(yt(ir):gd’ Tlo Th )

where A, has all eigenvalues in the open left-half plane
with dimension n,, A, has all eigenvalues in the open
right-half plane with dimension n,,, and d,(-) and dy ()
denote the higher-order-terms (H.0.T.} of the expres-
sion.

From (11) and (12), two dynamic equations are defined
as follows:

= As’?s"'Bsyd )+d3(y§{r)1£d! ﬁs:ﬁu)aﬁs(o) =0 (13)

= Aufla + Buy? +du (Wl €0, 70,) + 0,74(0) =
(14)

where {; = & and © is to be chosen to reach the

asymptotic stability of (13) and (14). By selecting

v= Kﬁu - du(yi{r)a‘fd:ﬁs; ﬁu), (14) becomes

B = (Au + K)iju + Buyl”, 7,(0) = (15)
with K chosen such that (4, + K) is Hurwitz. Then
solving (15), we get a bounded solution 7,(t) and
Mu(t) — 0 as t — co. When restricting attention to
a sufficiently small neighborhood of the equilibrium
point, dy(-), which is the H.O.T. in (13), is dominated
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by linear terms. Notice that A, is Hurwitz. By plug-
ging 7, into (13) and regarding it as an external input,
(13) lends to a bounded solution 7,(t) since A, is Hur-
witz. We assume y) - 0 fori=1,---,r as t — .
Furthermore, 7,(t) = 0 as ¢t — oo is obtained. Also,
& =0for t <0 and for ¢t > t;.

Since the system has a well-defined relative degree
at the equilibrium point 0, #(z) = [T 7|7 =
€T, [ns 7.JPT]T defines a local d1ﬁ'e0morph1sm Its

inverse is z = ¢(£, 7). Define 7j = Pi[fs #.)7. Let
Z4 = ¢(4, ) (16)
=87 Ea Dl ~ alée, 7)) (17)

Then %4 and @iy are bounded, and Zq(t),t4(t) — 0 as
t = oo. And by the definition of & h{Z;) = y4 and
Lih(Zq) =y for i < r are obtained.

Thus a casual inversion solution to nonlinear systems
has been provided. The algorithm can be summarized
in the following theorem.

Theorem 1 : Given a smooth reference output trajec-
tory ya(t) with compact support, consider the system
described by (1) and (2), with p = m, and where this
system has a well defined relative degree and its zero
dynamics have & hyperbolic equilibrium at 0. Then a
causal inversion is given by (16) and (17), where €4, 7,,
and 7, are solved by (8), (13) and (14) respectively,
and 0 is given by b = K7, — du(yy),fd,ﬁs,ﬁu) with K
chosen such that (A, + K) is Hurwitz.

Furthermore, define J, = [aed %%], and P =
{ In-niyxtnn  Onenyycn, ] , where n; = n, +n,,
1 X(n—ny) P],

then it follows
Zy — (f(Za) + 9(Z4)0a)

= J, Ed — (f(Za) + 9{Za)iia)
) & "
=JP| | a, Asdls + Byyy + a. (v
My Aunu + Bu (r) + du(yd ,Ed,m,ﬂu)
]
=J,P[ 0
v

Setting P = J,P and choosing R =
it yields

[Pt P
Woa — (f(22) +9(Ean)l = (51 (18)

Definition 1
{MECP)

: Minimum FEnergy Control Problem
. D Y R,
J(@)=min [ ||5]3dt (19)

& 2 0
subject to

ba =& (20)

fd: ﬂa,ﬂu)



ﬁs = A7+ Bsy((f) + ds(yy),f_d, Tiay Fuds ﬁs(o) =0

(21)
ﬁu = Aufju + Buy,(jr) +d, (yffr) , E_d.'a Ts» ) + 0, Tu(0) (= ()]
22

Since each step above is equivalent, these results can
be summarized as follows:

Theorem 2 : Let the system described by (1} and
(2}, with p = m, has a well defined relative degree and
its zero dynamics have a hyperbolic equilibrium at 0.
Then the optimal causal inversion problem hes a solu-
tion that is provided by the solution of the Minimum
Energy Control Problem.

Since n,, < n, MECP reduces the order of the system.
Thus solving MECP is easier than solving the original
problem. If n, is small enough, for an extreme case,
1, = 1, MECP becomes a simple scalar optimal control
problem.

For nonlinear systems, the stable and unstable sub-
spaces are coupled. If the properties of dy and d, are
known, finding the minimum & stabilizing the coupled
systems becomes possible. If d; and d, are totally un-
known, one solution suggests choosing ¢ to cancel d,
and adding a minimum state feedback control to sta-
bilize {22), then solve for 7j,,. Afterwards, substituting
this into (21) as feedback control to solve for fj; as was
done when solving the causal inversion problem. For
linear systems, the separation is easily done through
eigenspace decomposition. Thus the stable and unsta-
ble subspace are decoupled. The procedure can be seen
from the following section.

4 Optimal Causal Inversion Solution for
Linear Systems

4.1 Optimal Causal Inversion Solution
Consider a linear system of the form

&= Azr+ Bu
y=Cz

(23)
(24)
where £ € K™, input « € R™, output y € R™, 4 €

R*n B e BV*™ and C € R™*", with a well-defined
vector relative degree.

Given a smooth reference output trajectory yu(t) with
ya(t) = 0for t < 0 and t > ty, comsider finding a
control input @q4(t) and a state trajectory Zy(t) such
that

1) @4 and 4 are bounded, and

ig(t) =0, T2() 20, as t 2> x
2) Exact output tracking is achieved:

CZa(t) = ya(t)
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3)Za(t) and 64(t) are causal, that is, Z4(t) = 0, #a(f) =
Ofort <0
4) #tz and 4 minimize the performance index

J(@a,8a) = 3 J5- 134 = (AZq + Bitg)\fdt
where I is a symmetric positive definite n x n matrix.

For the inversion problem, let ¥ = yz and ©u = ug in
(23) and (24). Then the system becomes

& = Ax + Bug
ya=Cx

(25)
(26}
Differentiating y4(t) until ug appears explicitly in the

right hand side, solving for ug4, and substituting into
(25) and (26) yields

#(t) = Az(t) + By (t) (27)
ug(t) = Ca(t) + Dyl (1) (28)

where A € R, B e R=m € € R™*™ D € R and

A=A-B(CA"-DB)CA"
B = B(CAr-1 )1

€ = —(CAT-DB)-1CAT

b = (cAlr-D B!

Performing a change of variables so that

zq = Pz = P&, 75,m]", (29)
it leads to
£= Al +Bal (30)
ts = Agtls + Byl (31)
T = Auth + Buyl?  (32)
ug=[Ce Cy GJJ€ n ml" + D"  (33)

where A, A;, A, are real Jordan matrices of suitable
dimensions; A; has r eigenvalues at zero; A, has all
eigenvalues in the open left-half plane; A, has all eigen-
values in the open right-half plane. Thus the inverse
system has been decoupled to center, stable, and un-
stable subsystems.

Picking the transformation matrix P so that the center
subsystem is a simple chain of r integrators and solving
for £ gives

'S = [?Jd, :’jd: Tt ’y((;‘—l)]T (34)
From (31) and (32), we form
s = Agits + Bsyg(jr)1 7s{0) =0 (35)
flu = Auflu + Buy” + 7, u(0) =0
Set f_d = £ and 7, = 7. Let
Ig = P[Ed, s, ﬁu]T (36)
Ug = Cc‘::d + Csﬁs + Cﬂﬁu + Dyf;‘). (37)



Choosing R = [P~Y]TP~!, then by Theorem 2 in Sec-
tion 3, the optimal causal inversion solution of linear
systems (23) and (24) is provided by the solution of the
following Minimum Energy Control Problem (MECP)

- N U A,
J(7") = min 5 Iz lizdt (38)
v i

subject to

fiy = Aulle + Buy¥ +0, (0} =0  (39)

To derive the main result, consider the following
lemma.

Lemma 1: Consider a linear system with continuous
disturbance described by

= Azr+u+D{t), =(0)=0 (40)
where u, = are finite dimensional vectors depending on
the time t and D(t) is o piecewise differentiable func-
tion. Then the minimum energy control defined by
J(u*) = ming [° |[ul3dt, is given by u” = K{t)z +
u

M(t), where K(t) is the solution of the Riccati Equa-
tion

KA+ ATK+K?*=0 (41)

and

M(t) = —K/t exp|A{t — 7)|D{r)dT (42)

Proof: See [14].

Assumptions Al : y&r)

function.

(t) is a piecewise differentiable

Let D(t) = Buy!”(t). Using Lemma 1, the minimum
energy control must be #* = K{t)z+ M (2), where K (t)
and M (t) satisfy (41) and (42) respectively. In order to
obtain M (t), the future of the D(t) must be known. For
causal inversion, there is no any future information, so
we assume D(t) = 0. Thus the optimal solution of (38)
and (39) is given by #* = K7}, Furthermore, from (41),
it yields 6(A4, + K) = o(~-K1AYK), where 0(A,} is
the spectrum of A,. Finally, this leads to o(4, + K) =
—c(Ay).

Since A, has all the eigenvalues in the open right-half
plane, the optimal control solution is chosen such that
the closed-loop eigenvalues approach the reflections
through the imaginary axis of the open-loop eigenval-
ues.

From the above argument, the conditions and an al-
gorithm to obtain an optimal causal inversion solution
for linear systems can be summarized in the following
theorem.

Theorem 3 : Consider a linear system described by
(23) and (2{) under Assumption Al; then
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1) to solve the optimal causel inversion problem is
equivalent to solving the minimum energy control prob-
lem (38) and (39);

2) the solution of (38) and (39) is given by 9" = Kijy,
where K is chosen such thet o(Ay + K) = —c(A,) is
satisfied;

3)the optimal causal inversion solution for the system is
given by (36) and (37), where £4,7s, and 7., are solved
by (34), (35), and (38} respectively.

4.2 Optimal Noncausal Inversion Solution
In fact, if given the whole trajectory of y‘{f) (t), an op-
timal noncausal solution can be found using the above

approach.

Assume D(t) = Buyy)(t) satisfies Assumption Al.
From (42), it follows that M = —K1,,. Then the mini-
mum energy control becomes t* = K7, — K1y, Thus 7,
satisfies 7, = (Aw + K)fu + Buyl” ~ Ky, Combined
with (32), it follows that 7, = (Au + K)fiu, 7(0) =
-n,(0), where 7, = 7y — 7. Since (A4, + K) is Hur-
witz, 7.(t) = n.(t) as t = occ.

The exact output matching is also achieved. Com-
pared with the stable inversion solution, the optimal
noncausal solution has a zero initial condition. Com-
parison with the simulation results is shown in the fol-
lowing section.

5 Simulation Illustrations

In this section, optimal causal inversion is applied to
a simple linear nonminimum phase system for output
tracking.

Now consider a single-input single-output linear non-
minimum phase system described by the following
equations:

:“;‘1 0 1 0 g 0
.’:732 = 0 0 1 Ta + 0 w
I3 -1 -2 -8 T3 1

y=-—21z) —4xy + T3

This system has zeros at 7 and -3 and the causal refer-
ence output trajectory is given by:

0.02 — 0.02cos(4nt), t € [0,0.5]
¥e=9 ¢

otherwise

as shown by the solid curve in Figure 1. Then from
Section 4, the following equations obtained:

] gd = —0.25yd

7Ny = =375 + —0.142094, 7:(0) =0

fiy, = T + 0.3333§4 + 8, 7.(0) =0
where § = —144j,, yielding &, s, and 7,. Thus the
causal inversion solution can be obtained by (36} and
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Figure 1: Desired and actual output trajectory via op-
timal causal inversion and optimal noncausal
inversion approach

{(37). The simulation results are shown in Figure 1. No-
tice that the exact output tracking is achieved for both
optimal casual and noncausal approaches. Figure 2

==
-

A v =

Figure 2: Unstable subsystem state trajectory via sta-
ble inversion and optimal noncausal inversion
approach

demonstrates that the optimal noncausal solution for
an unstable subsystem matches the stable inversion so-
lution quite well. Note that the optimal noncausal so-
lution has a zerco initial condition; whereas, the stable
inversion solution has a nonzero initial condition.

The above results demonstrate that the proposed ca-
sual inversion algorithm is very effective in reproduc-
ing the desired trajectories. The difference between the
optimal noncausal solution and the stable inversion is
shown above as well.

6 Conclusions

This paper has introduced the notion of causal and op-
timal causal inversion of nonlinear nonminimum phase
systems. ‘The optimal causal inversion problem is
shown to be equivalent to a minimum energy control
problem of the zero dynamics driven by reference out-
put profile. A causal inversion solution and an opti-
mal causal inversion solution are proposed for nonmim-
imum phase nonlinear and linear systems respectively.
An optimal noncausal inversion solution is presented
and compared with stable inversion solution. These in-
version techniques are fundamental to nonlinear track-
ing controllers that use feed-forward signals produced
by inversion in conjunction with stabilizing feedback
signals. Simulation results demonstrate that the causal
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inversion is very effective in obtaining exact output
tracking. Future work will study on efficient algorithms
for constructing optimal causal inversion of nonlinear
nonminimum phase systems and their applications.

References

1] R. W. Brockett and M. D. Mesarovic, “The re-
producibility of multivariable systems,” J. Math. Anal.
Appl., vol. 11, pp. 548-563, 1965.

[2] O. M. Bucdi, E. Crocci, T. Isernia, and V. Pas-
cazio, “An adaptive wavelet-based approach for non-
destructive evaluation applications,” IEEE Antennas
and Propagation Society International Symposium, vol.
3, pp- 1756-1759, 2000.

[3] D. Chen and B. Paden, “Stable inversion of
nonlinear non-minimum phase systems,” Proc. of
Japan/USA Symposium on Flexible Automation, pp.
791-797, 1992.

[4] D. Chen, “An iterative solution to stable inver-
sion of nonlinear non-minimum phase systems,” Amer-
ican Control Conference, pp. 2960-2964, 1993.

[6] S. Devasia, D. Chen, and B. Paden, “Nonlin-
ear inversion-based output tracking,” IEEE Trans. Au-
tomat. Contr., vol. 41, pp. 930-942, 1996.

[6] T.M. Habashy and R. Mittra, “On some inverse
methods in electromagnetics,” J. Electromagn. Waves.
Applicat., vol. 1, pp. 25-58, 1987.

[7] R. M. Hirschorn, “Invertibility of nonlinear con-
trol systems,” SIAM J. Contr. Optim., vol. 17, no. 2,
pp. 289-297, 1979.

[8] A. Isidori, Nonlinear control systems: an intro-
duction, Springer-Verlag, New Jersey, 1989.

[9] S. Lin and H. Chu, “Thermal uniformity of 12-in
silicon wafer during rapid thermal processing by inverse
heat transfer methods,” IEEE Trans. on Semiconduc-
tor Manufacturing, vol. 13, pp. 448-456, 2000.

[10] J. C., R. M. Leahy, and P. S. Lewis, “EEG and
MEG: forward solutions for inverse methods,” IEEE

Trans. on Biomedical Engineering, vol. 46, pp. 245-
259,1999.

[11] L. M. Silverman, “Inversion of multivariable lin-
ear systems,” IEEE Trans. Automat. Conir., vol. 14,
pp. 270-276, 1969.

[12} S. N. Singh, “A modified algorithm for invert-
ibility in nonlinear systems,” IEEE Trans. Automat.
Contr., vol. AC-26, pp. 595-599, 1981.

[13] X. Z. Wang and D. J. Chen, “Adaptive learning
contro! for nonminimum phase systems,” 2000 IEEE
International Conference on Systems, Man, end Cy-
bernetics, vol. 1, pp. 26-31, 2000.

(14] X. Z. Wang and D. J. Chen, “Internal report,”
Towa State University, 2001.



