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ABSTRACT

Current source mismatch is a major source of
nonlinearity  in  current-steering  Digital-to-Analog
Converters (DAC). In order to achieve a given linearity
specification at a given yield level, it is essential that the
designer determine the minimum required matching
accuracy of the unit. current sources. Monte-Carlo
simulations are very time-consuming and provide the
designer with little insight to choose proper DAC
architectures and make tradeoff between design
specifications. The limited mathematical formulations that
have appeared in the literature are based on nonstandard
linearity  definitions or oversimplifying statistical
assumptions. In this paper, simple formulas are obtained
that accurately describe the relationship between
nonlinearity, bits of resolution, minimum required matching
accuracy, and yield, which make it possible to optimize the
DAC structure and achieve high performance with less cost
and power consumption.

1. INTRODUCTION

Current steering DAC’s are increasingly used in high-
resolution and high-speed signal processing and
telecommunication  applications. Linearity, typically
characterized by INL and DNL, is one of the most important
concerns for DAC design. A major error source of DAC
nonlinearity is the current source mismatch due to process
and environmental variations, which includes both random
and gradient errors. The gradient errors can be effectively
compensated by optimizing switching schemes [1] or using
local biasing techniques [2]. The random variation of
current sources are determined by the inherent properties of
the technology used and can be assumed to be independent
from each other and follow normal distribution. If the
designed value of a unit current source is I, the actual
current provided by the jth unit current source can be
expressed as

I =1-(+¢)) Y]
where € i~ N(O,o’z) is the relative deviation of I j from 1.

Based on Pelgrom model, for a given technology, the
relative standard deviation ( ¢ )of a current source is
determined by its overdrive voltage Vgs-Vt and its gate area
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W-L [3]. It is essential, when designing a current steering
DAC, to find the minimum required matching accuracy (or
o) of the unit current sources so that the specified INL and
DNL can be achieved with an acceptable yield. With this G,
the size of the current source transistors can be decided
[41[5]).

In the literature, the estimation of ¢ is generally made
through thousands of Monte-Carlo simulations[4]. These
simulations are very time-consuming for high-resolution
DAC’s and the results are only useful for the given bits of
resolution, the given DAC architecture and the given
specifications. This brute-force method may be tolerable
compared to the whole design procedure when the DAC
architecture is simple. However, it provides designers with
little insights into how the matching accuracy affects the
linearity and yield when the bits of resolution and/or the
segmentation change. These issues are very important for
making tradeoff between different specifications, especially
when calibration is used. To gain more insight, simple
parametric expressions are often preferred, which make it
possible to optimize the DAC structure and achieve high
performance with less cost and power consumption.

In order to investigate this problem, a statistical
analysis of INL and DNL in thermometer-decoded and
binary-weighted current-steering DAC’s is presented.
Following that, simple formulas are obtained that accurately
describe the relationship between nonlinearity, bits of
resolution, matching accuracy, and yield.

2. STATISTICAL CHARACTERISTICS

For matching purpose, an n-bit DAC array generally
consists of N=2"-1 identically designed unit current sources.
When only random mismatches present, the current
provided by unit current source /; (1<j <N) can be expressed
by (1). After the offset and gain being corrected, the end-
point INL at digital code & (/< k <N), is defined as the
deviation of the real analog output, /(k) in the units of LSB
(Least Significant Bit), from the ideal output, &. The DNL at
k is the deviation of the step size between k-1 and k from 1
LSB. The INL and DNL of the overall DAC are defined as
the worst case among them. In the n-bit DAC array
described by (1), the offset is 0 and the gain is equal to
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I(N)/N which is also the average current (denoted as I ) of
the N unit current sources, hence

N N

) Zlf Zej

J=il .+l 2
N N

After offset and gain correction, the INL and DNL at digital
code k are given by

INL (k) = 1B : (32)
7

DNL (k) = HO =Tk =D (3b)
T

If the DAC is thermometer decoded, then (k) in (3) is

equal to 1[ ‘s 21 . ,] . Thrqugh first-order
approximation, (3a) and j(—3b) can be rewritten as
mrwy =Yk £,-— Ze ' (42)
N j—l N ;Zn
L3 (4b)

/ ]j#k

Since INL(k) and DNL(k) are both linear combinations of N

independent normal random variables & , & ,..., &, they
also follow normal distributions, and
k)~ N0, B E g2 (59)
DNL (k) ~ N(O,NT_I—UZ) - (5Y)

It can be seen from (5a)&(5b) that the maximum standard

deviation of INL, which is equal to o [, _ 1, occurs at
2 N

the mid-code transition when A=(N-1)/2 or (N+1)/2. The
standard deviation of DNL is rather small and
approximately equal to o, the standard deviation of a single
unit current source. In real designs where segmented
architectures are exclusively used, the DNL of a DAC is
determined by the binary-weighted DAC array, while its
INL are mainly dependent on the thermometer-decoded
array driven by the MSB’s. Being lack of significance in
practice, the DNL of thermometer-decoded DAC will not be
further discussed in this paper.

The INL at digital code 1,2,...,N form a N-dimensional
normal distributions and can be expressed in a vector

INL=[INI(1),IN(2),- IN[(N)]=~&-B (6)

where ,& =[¢,,¢,,---,€y ] and according to (4a)

N-1 N-2 2 1 0
-1 N-2 2 1 0
1 i -2 : : H
B=— . : "4 :
N : 2 : :
-1 -2 o =(N-2) 1 0
-1 =2 -wv-2)-N-1) 0 .,

A simple normalization, scaling down the vector in (6)

by a factor of 0, allows the analysis to be independent of .
That is,

U=¢/0=[u,uy,uy] ~N(O .1y )

{

INLnor =U-B~ N(o,,,,,B” - B) )
where 0 and I represent zeros and identity matrix
respectively, and B is the transposition of B .

With the mean and covariance matrices given above, it
is easy to obtain the joint density function of INLnor,

1
T(X% Xy ) = —-axp(-EXC']XT) ®)

1
Il 011/2

where C=BT B, X =[x, x5, xy ] .

It can be shown that the INL and DNL of a binary-
weighted DAC follow the similar normal distributions
except that the covariance matrices are different. In this
case, the INL at each digital code has the same variance as
that shown in (5a), while the DNL have large variance at the
major carries and the worst case occurs at the mid-code

transition with standard deviation around 4 \/—N -1,
N

doubling that of the INL.
3. YIELD ESTIMATION

For a given INL specification, for example INL, within
+A LSB, the INL yield of a normalized DAC (0‘—1) can be
expressed as

®(n,4) = P( INL(k)|< 4,k=12,--,N)
= fA"'fAj}NL(xl'xzv"',xN )dxldx2 cedxy
where N=2"-1. If the relative standard deviation of each unit

current source is o, the yield of the DAC is equal to
Y = d)(n, A ) . Alternately, to guarantee a certain yield ¥,
g

®

the minimum required current matching accuracy is equal to

10
T y) 1o
where WV is the inverse function of @.

No one has reported a method of accurately calculating
the integral shown in (9) without resorting to numerical
methods. It appears that approximations must be made to
derive a simple expression. Lakshimikumar has presented
two rough bounds for INL yield estimation in binary-
weighted DAC’s [6][7]. One is overly pessimistic ignoring
the strong correlation between different analog outputs and
the other is rather optimistic only considering the
contribution of the two mid-scale codes. The limitations of
the two bounds were clearly shown in [8][9]. Another
formula proposed by Bosch for INL yield estimation is
based on a nonstandard INL definition where each current
output is compared to the ideal value without correcting the
gain error [9]. It is well known that gain error does not
impact linearity. The same problem has been found in the
Monte-Carlo simulation results of some recently reported
current-steering DAC designs, e.g. {4],[5] and [10]. As a
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result, the matching accuracy chosen in these DACs are
significantly overestimated so that the area cost are much
more than necessary and some segmentations made in the
DAC:s are not as good as they are supposed to be. In this
paper, a simple but accurate approximation of (10) is given
for both INL and DNL yield in thermometer-decoded and
binary-weighted DAC’s through the following observations:

In thermometer-decoded DACs, the covariance matrix
of the INL given in (6) shows that substantial correlation
exists between the INL’s at different digital codes. The
closer the two codes are, the stronger the correlation is. As
we mentioned before, the difference between the INL of two
adjacent codes, k-1 and k, or DNL(k), is approximately
equal to & (the relative deviation of the unit current source
Iy), which is negligibly small. Therefore, picking the even
samples in the INL sequence results in another INL
sequence with almost the same profile as the original
sequence, meaning that the two INL sequence must have
very similar probability falling in [-A, A] range. Here, the
unit of A (LSB) is referring to n-bit resolution. It is
‘equivalent to A/2 LSB for n-1 bit resolution. Therefore, the
n-bit DAC associated with the original INL sequence and
the n-1 bit DAC associated with the new INL sequence
have nearly the same probability or yield to achieve INL<A
and INL=<A/2 respectively. Of course, as part of the original
INL sequence, the new sequence will have less chance to go
beyond the range and hence a little higher yield than its n-bit
counterpart. However, these minor differences can be
neglected and will diminish with the decreasing of 6. The n-
1-bit DAC (obtained from the original DAC by setting the
LSB to 0) is actually formed by combining each adjacent
unit current sources in the original n-bit DAC. Thus the jth

unit current source in the new DAC, denoted as J;” (15j <

271, isequalto ;. 41 = 2(1+M€2_f] and its
2j-1 2j 2

relative standard deviation is ¢’=0¢/+2 . In summary, in the

n-1 bit DAC, o'=0/42, 4=4/2, Y'=Y . Putting these
values into (7), we can conclude that

¥(n1)~V2¥(n-17)=(V2) s 2(¥) an
hence, o~ ﬁz(y) (12)

where Z(Y) only depends on the yield requirement and can
be well tabulated. Fig.1 shows the plot of Z(Y), which are
obtained through Monte Carlo simulations assuming
A=0.5LSB and n= 8,10 and 12 bit respectively. The
similarity of the three curves proves that Z(Y) has little
dependence on the bits of resolution, hence the validity of
(12). This figure works for DACs with any bits of
resolution, and with it we can predict the required current
source matching accuracy for any given INL specification
and achieve a certain yield. For example, for a 14-bit DAC,
to achieve INL<0.5LSB and 99% guaranteed yield, the

relative standard deviation of unit current source has to be

less than 5 . As we mentioned before,
—( 7 (99%)=0.22%
Vvz)
this formula is more accurate for high-accuracy DAC’s
since their unit current sources have smaller variations.
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Fig.1 Z(yield) for INL yield of Thermometer-
decoded DAC

Fig.1 also shows that in the region close to 100% yield
level, the yield is not very sensitive to Z(yield) and hence
the matching accuracy o. Followed is a steep region where
the yield degrades significantly when o only increases by a
small amount. This is more serious for high-resolution
DAC’s since Z(v)= % ( ﬁy Therefore, in real design

some margin should be given to ¢ in order to avoid large
degradation of yield due to run-to-run variations. However,
being too conservative is also not preferred because small o
means large area. Besides, when o is smaller than a certain
value, the improvement of the yield becomes insignificant.

Similar results can be obtained for binary-weighted
DAC’s. 1t is well known that the nonlinearities of binary-
weighted DAC are all associated with the major carries. The
severity of the problem is proportional to the weight of the
bit [2][10]. Therefore, the linearity of the DAC won’t
change much when getting rid of bit0. ). In another words,
the resulting n-1 bit DAC has similar INL and DNL profiles
as the original DAC. The partition of the N unit current
sources in the resulting n-1bit DAC is as follows:

bit0— I,'=(I+1;)
bitl=L+ I'=(I i+ Is Y+ (gt 1)

It is shown that the jth unit current source in the new DAC
denoted as [;'(I<j < 2%1_1') is the sum of L and Iy, , and

its relative standard deviation o= O'/\/E . Therefore,
formula (12) is also valid for the INL and DNL yield of
binary-weighted DAC except that Z(Y) are different. Fig.2
(a) & (b) show the plots of Z(Y) for INL yield and DNL
yield respectively. It is observed that with the same
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matching accuracy and the same yield, the DNL of a binary-
weighted DAC is worse than its INL. This observation
disagrees with the conclusions drawn in [10] that “if the
matching of the D/A chip has been designed to achieve the
INL yield specification, the DNL specification will
automatically be achieved within the same yield
requirement even in the extreme case of a full binary
topology”. We have proved that this statement is not true.
Binary structure does suffer more DNL than INL. Also
notice that the plots in Fig2 (a) are very similar to those
shown in Fig.1. It implies that segmentation helps little for
reducing INL, but may significantly reduce DNL and relax
the matching requirements.

With these plots (Fig.1 and Fig.2) and formula (12), the
minimum required matching accuracy and a proper
segmentation can be easily determined. For a 14-bit
segmented DAC, as we calculated before, to achieve
INL<0.5LSB and 99% guaranteed yield, the relative
standard deviation of the unit current sources has to be less
than 0.22%. If the nl-bit MSB’s are thermometer decoded
and the remaining 2-bit LSB’s are binary weighted, based
on (12) where Zpny (99%)=0.3, n=n2+1, 0=0.22%, to
achieve DNL<0.5LSB, n2 must be less than 11 bits.
Otherwise smaller ¢ or larger current sources have to be
used. These results (0=0.22% and n2<11) can be verified
through Monte-Carlo simulations, which show that when
n2=10, the yield for both INL and DNL less than 0.5LSB is
99.8%.

4. CONCLUSIONS

Assuming the random variations of the unit current
sources in a current-steering DAC are independent and
normal distributed, the INL and DNL at each digital code of
the DAC also follow normal distributions. However, the
strong correlation between different outputs results in a very
complex expression for yield calculation. Neither this
expression nor the widely used Monte-Carlo simulations
can clearly reveal the relations between the nonliearity (INL
and DNL), the yield and the current matching accuracy for a
given resolution. To gain more insight for design
optimization, simple but accurate formulas were given in
this paper for both thermometer-decoded and binary-
weighted DAC’s. It is shown that the INL and DNL of
current-steering DAC’s are proportional to the relative
standard deviation of the unit current sources (¢ ). To
achieve the same linearity and yield, o must be reduced by

V2 for each extra bit of resolution. It is also shown that
thermometer-decoded DAC’s has similar INL yield as their
binary-weighted counterpart, but much less DNL. Binary—
weighted topology suffers more severe DNL than INL. It
was shown that segmented architecture provides a
compromise between the performance requirement and the
cost of area and power. Optimal segmentation can be easily
achieved using the formulas given in this paper.
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