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ABSTRACT

A major bottleneck in Analog and Mixed-Signal Built-In-
Self-Test (AMBIST) is the difficulty in generating high pre-
cision input stimuli that are required in most existing AM-
BIST schemes. This paper presents a new approach to AM-
BIST of ADCs using low precision input stimuli. With mild
qualitative assumptions on input signals and the model of
the ADC, the blind identification algorithms identify both
the non-precision part in input signals as well as correction
codes for the ADC from the ADC output codes. Initial sim-
ulation results show that a 12-bit ADC can be calibrated to
achieve INL at the +0.5/-0.5 LSB level from an uncalibrated
25 LSB INL level with input stimuli have only 7-8 bit accu-
racy.

1. INTRODUCTION

Built-In-Self-Test (BIST) for analog and mixed-signal cir-
cuits has been an area of active research in the recent past.
The widespread application of mixed-signal circuits in the
communications and signal processing arena and the rapid
shrinking of feature sizes have resulted in the emergence
of large markets for low cost mixed-signal ICs with varied
functionality. This has indirectly placed an upper bound on
test solutions and the associated testing cost [1]. The cost
effectiveness of existing methodologies of using commer-
cial testers, which not only require an up front investment
in high-cost testers, but also recurring costs associated with
production time testing, has created an opportunity for a
new approach for designing mixed-signal circuits with in-
tegrated Built-In Self-Test solutions.

One of the main obstructions to realizing a complete
built-in solution is the unavailability of sufficient informa-
tion about input test signals. This is similar to a typical
problem of blind approximation often faced in many fields
of engineering, in which an unknown system driven by an
inaccessible signal must be identified solely based on the
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system’s output. Even though the identification of a system
with little or no information about the system seems to be
an impossible task, elegant solutions could be achieved if
some a priori knowledge is available about the input signal
or the system. With the vast amount of information avail-
able about data converter operation and the various standard
methods of on-chip signal generation, certain practical as-
sumptions can be made about the system and the signal that
can make it possible to identify the system without having
direct access to the excitation source. In this work, one algo-
rithm for testing and characterizing of data converters is in-
troduced. The hardware implementation and complexity of
the algorithm are not considered at this stage since the focus
is to identify a means of system identification and provide a
proof-of-concept.

2. ISSUES REGARDING PRESENT APPROACHES

Most existing Analog and Mixed-Signal BIST (AM-BIST)
solutions, focuses on generating very precise input test sig-
nals on-chip that can be used to excite the device-under-test
followed by a simple analysis of the resulting output signals
to complete the device characterization [2]. In particular,
efforts have been made towards generation of precise input
signals like linear ramps, sinusoids etc., and towards suit-
able methods for identifying device properties from the re-
sultant output. Invariably, the testing algorithms have been
devised with an assumption that the on-chip generated in-
put stimuli are significantly more accurate than the device
under test. As we move towards high-resolution products,
the challenges of generating these precise input signals is
becoming more challenging than the design of the device
under test itself. In the context of AMBIST, the problem of
device characterization without complete knowledge of the
input signal has received minimal attention by the research
community and this has become a major drawback in the
industrial adoption of many proposed AMBIST solutions.
A completely different strategy aimed at mathematically
modeling the device and the associated error mechanisms
due to the device and the input signal has been adopted in
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this work. Such modeling helps us in identifying and ex-
ploiting certain characteristics of the system that could re-
sult in a simple and accurate test solution. The proposed
method is based on the availability of a low accuracy in-
put signal that can be practically and repeatedly generated
on-chip, thereby eliminating the need for precision-stimulus
generation.

3. ALGORITHM DESCRIPTION

If Dyut (Do, D1,...Dy) is the digital output word of an
A/D converter and X and Vg are the analog input and
reference signals respectively, then the signals are ideally
related by the following equation:

Y;ﬁdeal = VRef(D1271 + ... +DN27N) = X+Qn (1)

where Y 4.4 is the analog value corresponding to D ,,; and
@, represents the quantization noise and is limited to +0.5
LSB [3]. The output of a non-ideal ADC however differs
from Y;4eq: by an amount (Y") such that

Y = VYigear +€(Y) =X +e(Y) + Q. (2)

where e(Y") is the error code of Y. Itis reasonable to assume
that ¢(Y") is a function of Y and every digital output has one
ideal digital correction code associated with it. All error
codes can be precisely identified and stored for calibration
if the characteristics of the input signal are known exactly.
Unfortunately in most applications, little or no knowledge is
available about the non-idealities of the input. This compli-
cates the task of system identification. For instance, if X (¢)
refers to the input signal at any instant of time, then it can
be represented as sum of two components,

X(t) =s(t) + f(t) ©)

where s(t) is the intended input and f(¢) is some unknown
function that results in a non-ideal input. In the following
two algorithms are proposed that can be used to estimate the
error correction code in the presence of one or more input
signals as described by (3).

3.1. Algorithm 1

The following algorithm describes identification of the sys-
tem with just one input signal. The performance improve-
ment obtained by this method along with the limitations and
alternate solutions are also described.

In what follows it will be assumed that the full-scale
input is 1 (if a voltage ADC, input range is 1V). Consider
the desired input stimuli to be a ramp signal. The actual
(non-ideal) input can be defined as

Xactual(t) =t + Z a;fi(t) for 0<t<1 4)
=0

where the first term on the right-hand side is the ideal ramp
and the second term models the non-linearity of the input in
terms of a set of known basis functions with coefficients that
are not known precisely. In the following analysis, only the
first two terms of the infinite series are included to simplify
the analysis. The implications of this assumption will be
described later. The input can then be written as

X(@t)=t+aifi(t) +axfo(t) for 0<t<1 (5)

If the ADC is sampled at »n time points ¢; that are uniformly
distributed between 0 and 1, then from (2) and (5) we get,

Vi = Xi+eYi)+Qn
= ti+aifiitarfo;+es)+ Qny
fori=1,2...n (6)

The subscript 7 denotes that the input is sampled at ¢;. It
will be assumed that the sampling is sufficiently fast so that
a large number of sample of the input correspond to each
digital output code. Because of the over sampling, several
different sets of {#;, f1,:, f2,;} correspond to a same output
code Y; and hence an average value of the set is used as
follows:

Y; = avg{ti} +a1 avg {fi1,i} + a2 avg {fa,}

Yi=Y; Yi=Y; Yi=Y;

+e(Y;) + avg {Qn} for j=0,1,2...2Y7)

i=Yj

Since we assume that a unique ¢(Y") exists for each Y, the
average value of ¢(Y") remains the same. In addition, if
n is large, the average value of the quantization noise ap-
proaches zero and can be neglected. (7) can be written in
the matrix form as :

" =1+ Aa+€(Y) (8)
where, . -
" 2 i foa
S T T e I |
Yon ton fion foon
(Y1)
. €(Ys) o
a= ( Zl ) e(Y) = wherein 7 and 7 are
2 .
e(Yan)

average values. Moving t to the left hand side and multiply-
ing by ATwe get

AT (ff - f) = ATAa+ ATe(Y) 9)

If AT is orthogonal to e(if), the second term on right side
reduces to 0 and the value of vector a (referred as a 4.+) can
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be obtained as
ager = (ATA) AT (¥ - ) (10)

This value of a4 can then be substituted in (8) to obtain
the error codes, e .. (Y") as follows

€get (V) =Y — 1 — Aajes (11)

However, if A7 is not orthogonal to ¢(Y"), then the value of
ag.: differs from actual a by the value given below

e oA\ L. ~
a;et:a+(ATA) ATe(Y) (12)

and egetA(Y)is related to actual 6(3/) by equation (13).

(V) —epur(Y) = A (ATA) ATy @)

It can be seen that the difference depends on the real error
codes and the choice of basis functions. It is also evident
that the larger the number of terms in A, the worse the result
becomes, because more components in e(if) that are corre-
lated to the basis functions are extracted from egetA(Y) into
age¢. On the other hand, a choice of small set of basis func-
tions also leads to an erroneous result. This is because if not
all the a terms are included in a4, they remain in ez, (1)
and corrupt the signal. Thus an optimum set of basis func-
tions exists that gives the best result. But this optimum can-
not be reached easily since e(i/) is not known beforehand.
Simulation results in Section 4 indicate the improvement
that can be obtained using just one input and also shows the
limitations of assuming A7 to be orthogonal to e(if). This
problem can be eliminated by using the alternate algorithm
described below.

3.2. Algorithm 2

In this approach, we use two independent signal sources as
input to calculate the error codes accurately. The two input
signals are defined as:

Xi(t) =s1(t) +arfi(t) +axfo(t) for 0<t <1 (14)

Xo(t) = sa2(t) + az f3(t) + asfa(t) for 0<2 <1 (15)

where s;(t),7 = 1, 2 are ideal expected signals, and f;(t),i =
1,2, 3, 4 are four independent basis functions used to depict
the deviations of the real input signals. The task is to iden-
tify the coefficients of the basis functions, a;,i = 1,2,3,4
based on the output results obtained.

Similar to the method adopted in Algorithm 1, the out-
put of the ADC for two different inputs can be written in
matrix form as shown in (16) & (17).

Yl = SAl + Aldl + E(ifl) (16)

YQ = SAQ + Agdg + 6(?2) (17)

Si,1 f1,1 f2,1
Si2 . fie fo2
where §; = . VA = . ,
Si,2N f1,2N f2,2N
fa1  fan
. fa2  fa2 a a
Ay = A ,d1:< 1>andd2:< 3)
: : a2 aq
fson  faon

The first subscript 7 of the elements of § indicates the in-
put, the second subscript j indicates the output code and
'_! refers to the average value . The elements of Y; and
Y, are arranged in the same order, such that ¥; = Y5 and
e(fﬁ) = e(ffg). Subtracting (17) from (16), we get

0= (SAl — SAQ) + [141 — AQ] < ZA; ) (18)
The coefficients values are then given by:

a1,get
a2, get — (
a3, get
A4, get

where A’ = [4; — Aj].

If the effect of quantization noise and incomplete set of
basis functions are neglected, then the above obtained val-
ues of a4, are the exact values. Replacing these coefficients
values in (16) & (17), we get two values for each error code
which are ideally the same and are given by:

GgetA(Y) = (Y/ - SAl) - A1G1fget

= (Y - s}) — Asas ger (20)

4. MODELING AND SIMULATION RESULTS

A Flash ADC was modeled in MATLAB to validate the per-
formance of the algorithm. All the resistors in the model of
an ideal Flash converter were chosen to be Ro. However,
in reality, the resistance of each resistor will be different
from the ideal value due to various systematic and random
effects. To simulate the non-ideal converter a random value
was added to each resistance based on a normal distribution.
Each of the resistance can then be modeled as:

Ri=R,(1+6;) fori=1,2,...2¥ (21)

where §; refers to the deviation of the real resistance from
the ideal value and was randomly chosen between +/-0.5.
Such a deviation of resistance results in INL values of sev-
eral LSBs due to the random-walk pattern observed in flash
architectures.
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Algorithm 1 was first used to characterize a 12-bit flash
ADC and the effect of the number of samples in each bin
and the coefficients of the basis functions on the output were
observed. s(t) was chosen as a ramp signal and the two
basis functions were:

filt)y =t> —t and fo(t) =12 — 1.5t> + 0.5t (22)

The values of a; and a> were selected as 0.08 and 0.1 re-
spectively, corresponding to an input signal of 6 bit accu-
racy. The number of samples in each bin was approximately
10. Figure 1 gives a plot of the maximum and minimum
INL before and after correction for 50 runs. A different set
of random resistance was used in each run to model differ-
ent INL patterns. As seen from the figure, a improvement
of 1-2 bit in INL is obtained by using just one input. Sim-
ulations with different number of samples per bin and with
different choice of a1 and a2 indicate that the results are
not dependent on them. To see the effect of multiple inputs,

Plot of Maximum INL before and after correction — Using Algorithm 1
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Fig. 1. Results of Algorithm 1

Algorithm 2 was then used to characterize the same ADC.
X1 (t) was chosen to be the same signal as that used in Al-
gorithm 1, while s2(t), f3(t) and f4(¢) were chosen as:

s2(t) = 0.5(cos(wt) + 1)
f3(t) =sinnt and f4(t) = sin 27t (23)

ag and a4 were selected to be —0.05 and —0.02 respectively,
limiting the accuracy of input signal to be less than 6 bits.
The resistances were again varied by +/-0.5R , and the num-
ber of samples was restricted to 4. Figure 2 gives a plot of
the INL introduced and the INL after correction using the
estimated value. As can be seen, the INL after correction
reduced to within £0.5LS B from an uncorrected value of
+10LS B, indicating that the information from multiple in-
puts can lead to much better characterization. Similar to
algorithm 1, the simulation was repeated 50 times and the
results of maximum and minimum INL before and after cor-
rection were recorded and are shown in Figure 3. It can be
seen that after correction, the accuracy of the ADC is im-
proved from 7-8 bits to 11 bits.

INL of 12—-Bit Flash A/D before and after correction using Algorithm 2
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Fig. 2. INL before and after correction using Algorithm 2

Plot of Maximum and Minimum INL before correction — Using Algorithm 2
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Fig. 3. Results of Algorithm 2

5. CONCLUSION

Two different algorithms based on the blind approximation
approach have been proposed to characterize an A/D con-
verter that is driven by inputs that are not precisely known.
One algorithm is based on a single input signal and works
well if the actual errors in the converter are not very large.
The second algorithm uses outputs obtained from multiple
input signals and identifies the non-linearities of the con-
verter to a higher accuracy. Simulation results on a 12-bit
flash A/D converter show that the second algorithm can cor-
rect INL to within +/-0.5LSBs if the uncalibrated A/D has
an INL due to random Gaussian variations of the trip point
of around 32LSB.
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