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ABSTRACT

Amplifiers with closely-spaced low-frequency pole-zero
pairs (dipoles) are normally avoided for applications that
require fast settling because they have slow-settling
components in the transient response. In this work, an
algorithm that involves a Newton-Raphson iteration is
utitized to tune an amplifier with multiple low-frequency
dipoles and facilitate pole-zero cancellation. The tuned
structure is more suitable for fast seftling applications.

1. INTRODUCTION

As fabrication technology progresses into deep-submicron
feature sizes, achieving an adequate DC gain is becoming
increasingly difficult. The origin of this problem is
twofoeld. First, reductions in supply voltages are making it
difficult to employ cascoding and still maintain adequate
signal swings. Second, the degradation in device output
conductance is making it difficult to achieve an adequate
gain in two or fewer non-cascoded stages. As a result, non-
traditional amplifier topologies are being investigated with
increased urgency.

Amplifiers with more than two stages of gain are a
potential solution to the problem. However, to ensure their
stability with negative feedback, multistage amplifiers need
to be compensated. Since each additional stage infroduces
poles into the system transfer function, the task of
compensation becomes more difficult as the number of
stages is increased, Several multistage amplifier
compensation strategies have appeared in the literature
[1-4]. Unfortunately, as a side-effect of the compensation
process, most techniques sacrifice the gain-bandwidth
product of the amplifier in exchange for stability. As a
result, amplifiers with three or more stages are typically too
slow for applications that require fast settling.

There is at least one multistage amplifier compensation
technique [5,6] that does not sacrifice the gain bandwidth
product of an amplifier in exchange for achieving stability.
Although the technique results in an amplifier that has a
gain-bandwidth product that is as large as can be achieved
with a single stage amplifier, the resultant structure is still
not suitable for fast settling applications because it has a
poor transient response. The limitation of this technique is
the fact that it relies on the cancellation of low-frequency
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pole-zero pairs.  Inexact canceliations result in the
appearance of slow-settling components in the transient
response [7,8] making these amplifiers unsuitable for
applications that require fast accurate settling.

In an effort to overcome these limifations and extend the
applicability of multistage multipath compensated
amplifiers to the high-speed realm, a calibration technique
to eliminate the dipole mismatch of a two-stage structure
was proposed [9]. The viability of the technique was
demonstrated in a 0.25n CMOS process. The results are
awaiting publication elsewhere.

The applicability of the method proposed in [9] 1s lmited
to amplifiers with two gain stages and one low-frequency
dipole. In this paper we present a generalization of the
technique to cover amplifiers composed of an arbitrary
number of stages. Although we focus specifically on the
multistage multipath compensated amplifier architecture
proposed in [5], the technique is generally applicable to
other architectures that suffer from low-frequency dipoles
as well.

The problem and the assumptions required. for its solution
are briefly described in section 2. The new calibration
technique is outlined in section 3 and an example and short
discussion appear in section 4.

2. PROBLEM DESCRIPTION AND
ASSUMPTIONS

An p-stage multipath-compensated amplifier has a system
transfer function that has n poles and n-7 zeros. The details
can be found in [5,6,9]. If the components of the system
are prudently dimensioned, the zeros can be used to cancel
all but one of the poles.

Fig. 1 shows a typical example of the closed-loop pole and
zero locations in the complex s-plane for an »’th order
multipath amplifier used in a standard feedback
configuration. For notational purposes, the poles are
numbered in the order of increasing magnitude. If perfect
cancellation were possible, the system would be exactly
first-order. Practically, mismatch always exists and the
system only approximates a first-order response.



Fig. 1 Closed-loop pole and zero locations for an »'th order
multipath amplifier

Imperfect cancellation of the pole-zero pairs (dipoles)
results in the appearance of extra decaying exponential
components in the transient response. These additional
components will decay more slowly than the desired
component because they lie at lower frequencies than the
uncovered pole.

In this work it was assumed that the amplifier architecture
allows the pole locations to be individually tuned. Fig. 2
illustrates the concept. The amplifier has a transfer
function H(s) whose pole locations are adjustable via
several contro! signals. The k’th control signal, by, is
assumed to control the location of pole, py.
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Fig. 2 Amplifier block with programmable pole locations

In a real physical implementation the %’th control signal is
a voltage or cumrent used to bias the k’th stage of the
amplifier. In general, the relationship between a control
signal and the corresponding pole location can be highly
nonlinear. To ensure a reasonable model of the amplifier, a
nonlinear relationship between the control signal and its
corresponding pole location was assumed. The assumed
relationship is shown Fig. 3. It is a hyperbolic tangent
relationship scaled to allow tuning of £25% of the pole’s
nominal value.
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Fig. 3 Nonlinear relationship assumed between the control
signals and their associated pole locations

Throughout the work we assume that the closed-loop poles
of the system transfer function are widely separated on the
real axis in the left half-plane. We also assume that each
low frequency pole is located in close proximity (£15%
their nominal values) to a zero. Although, the open-loop
pole locations are highly sensitive to variations, feedback
desensitizes these quantities and stabilizes their values,
Therefore, these are reasonable assumptions for the
closed-loop pole locations.

3. PROPOSED CALIBRATION
TECHNIQUE

An n'th order system with a pole-zero map like the one
shown in Fig. 1 has a transient step response given by:
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where A; is the asymptotic steady-state gain, p; is the
location of the i’th pole, and £; is a constant defined by:
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The first term in (1) is the asymptotic steady-state response.
The remaining terms all decay with time and form the
transient component of the response. Thus the transient
step response of an n’th order system with widely separated
real left half-plane poles can be decomposed into a sum of
n decaying exponentials with differing time-constants.
This relationship is illustrated for a third-order system in
Fig. 4. Observe that the total response shown in Fig. 4(e) is
simply the sum of the components shown in Figs. 4(a)-(d).

From (2) you can see that that adjusting the ’th control
signal b; such that p, and z; are coincident forces k; to zero.
Thus, by careful adjustment of the n-I control signals, the
corresponding slow-settling terms in the transient response
can be eliminated.

The calibration technique involves forcing the derivative of
the transient step response to zero at specific instances in
time. Judiciously choosing the points in time where the
derivative is nulled ensures that each of the unwanted
transient terms is eliminated.

The slowest settling component of the transient response is
the term associated with p,. Since the poles are widely
separated, the other transient components decay
significantly faster. Forcing the derivative of the step
response to zero at a point in time after all the other
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transient components have decayed away ensures that the
slowest settling component’s coefficient, k;, is forced to
Zero.

'

1

i

i

;

}
—

4] 7

]

o |

© .|/ | keeEd |
R

i !

0 e

L keexp(pat)

@ | |

ab |

g z

| t ?

© e

00 T, Ty

Fig. 4 Total transient step response of a third-order system (e)
can be decomposed into a summation of (a) thru (d)

The next slowest settling component of the transient
response is associated with p;. Since the poles are widely
separated, the other transient components, disregarding the
one associated with p,, decay significantly faster.

Forcing the derivative of the step response to zero at a
peint in time, T, after all the other transient components,
except the p; term, have decayed away ensures that the
joint variation due to the action of both the p; and p, terms
sums to zero. However, since we forced the p; term to zero
by choosing a time point at Ty, the joint effect of zeroing
the derivative at times T and T, is that the p; term must
also be forced to zero.

The same arguments can be used justify repeated
application of the concept until all n-1 slow-settling
components are eliminated.

For example, forcing the derivative of the step response
shown in Fig. 4 to zero at time T, requires that k,=0.
Simultaneously requiring that the derivative of the response
is zero at time T, ensures that k,~0 as well.
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Reasonably good performance is obtained by choosing the
time points equal to two time constants.

Ti=21'i :——2—

P,

In mathematical terms, minimization of the derivatives at
the suggested time points can be written as:
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where the f;’s are nonlinear functions of the control signals.
In vector notation, these equations can be written as:
f(b)=0 ™
Equation (7) is a system of n-/ nonlinear equations in »-/
unknowns. The Newton-Raphson algorithm is one
technique that is commonly used to solve these types of
problem and is described elsewhere [10,11]. One
drawback of this approach is that the derivatives of each of
the nonlinear functions with respect to each of the control
signals is required at each iteration. The required
derivatives can be obtained using a finite difference method
on samples of the transient step response. An easier
method to obtain the same information involves sampling
the impulse response,

4. EXAMPLE

A fourth-order linear system with poles spaced at an
interval of a decade was assumed. Using a normal
distribution with a standard deviation equal to 15% of the
magnitude of the associated pole, three zeros were
randomly generated near the low-frequency poles.

Nonlinear relationships similar to the one shown in Fig. 3
were assumed to relate the control signals to the pole
locations.

Table 1 shows the locations of the poles and zeros prior to
and after calibration. The algorithm converged in 6
iterations.  Note that there were significant dipole
mismatches prior to calibration, but afier calibration, the
results agree to better than 6 significant digits.



Table 1 Pole and zero locations before and after the

calibration routine was performed.

Poles Zeros Poles
{(pre-cal) {post-cal)
-1e3 -1.134345¢3 -1.134345e3
-led -1.109643e4 -1.109643¢4
-les -1.086678e5 -1.086678e5
-le6 -1.000000e6

The algorithm has been used to successfully tune systems
as large as 9°th order containing 8 dipoles. The technique
has also been used to tune structures with poles spaced as
close as an octave apart. Convergence problems may arise
if the magnitude of the pole-zero mismatch is on the same
order as the spacing between the poles.

Before a practical implementation of this algorithm’ can be
implemented, the effects of noise and quantization need to
be considered.

5. SUMMARY

Amplifiers with low-frequency pole-zero pairs are not
suitable for applications that require fast, accurate settling
because dipole mismatches result in slow seitling
components in the transient response. In an effort fo
overcome this limitation, a technigue to tune the responses
of amplifiers to eliminate the dipole mismatch is proposed.

The procedure requires sampling the transient step
response and uses the Newton-Raphson algorithm to
determine the values of the bias cwrents and voltages
required to achieve accurate cancellations.

To demonstrate the technique a 4’th order system with 3
mismatched low-frequency dipoles was calibrated. After

six iterations, the dipoles matched to better than 6
significant digits.
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