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Abstract 

For low-voltage, low-power circuit design, the linear model for 
operational amplifiers is insufficient to accurately predict the 
static and dynamic behavior of the circuit. This paper introduces 
a nonlinear model for operational amplifiers based on amplifiers’ 
DC transfer characteristic. By using this nonlinear model, the 
behavior of an operational amplifier with feedback network can 
be described more accurately. Equivalent open-loop gains of the 
operational amplifier for several common closed-loop 
applications are studied. These equivalent gains can help identify 
the nonlinearities in the close-loop amplifier and determine the 
performance of the circuit. 
 
Index Terms – nonlinear amplifier, equivalent gain  

1. Introduction∗∗ 
With the rapid development of semiconductor technology, the 
feature size of devices is reducing continuously and the threshold 
voltages also, accordingly. Because of the device limitation and 
the consideration of power dissipation, low voltage supplies 
become essential for integrated circuit design in deep submicron 
processes. However, for low voltage circuit design, the classic 
equations such as the square-law equation cannot precisely 
predict the characteristics of devices. Performance of transistors 
is affected by the short channel effects and becomes highly 
nonlinear. Under low supply voltage, the need for high gain and 
large output swing forces designers to exploit the performance of 
transistors and design circuits that work in the strongly nonlinear 
region. Although engineers make great effort to improve the 
linearity of amplifiers, they cannot eliminate the non-linearity 
due to the intrinsic characteristics of semiconductor devices. 
Actual open-loop amplifiers always have non-linearity in the 
transfer characteristics. Though the open-loop operational 
amplifiers are highly non-linear, the close-loop configuration can 
still give linear input-output characteristics if the feedback 
network is linear and the open-loop gain is sufficiently high. 
[1][2][3] 
For a linear amplifier, the open-loop gain is well defined as  
A=Vo/Vin. Typically the gain is defined at the quiescent point and 
is extended to the whole ‘linear-region’ in which A=Vo/Vin is a 
constant. This gain is a key parameter for various closed-loop 
applications of the Op Amp. However, for nonlinear amplifiers, 
A=Vo/Vin may be strongly dependent on the output level and can 
be significant smaller than its value at the quiescent point. It is 
unclear what “gain” values of open-loop amplifiers should be 
used to predict the behavior of the close-loop amplifiers. It thus is 
necessary to look into various typical applications of nonlinear 
open-loop amplifiers and clarify the gain definition for the 
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nonlinear amplifiers. This clarification will help circuit designers 
identify the non-ideality of close-loop amplifiers. 
In section 2, we will model the open-loop operational amplifier 
with nonlinear components. In section 3, we will discuss the 
typical close-loop configurations of operational amplifiers with a 
resistive feedback network. Equivalent gains for different 
purposes are identified by using the model given in section 2. The 
conclusion is made in Section 4. 

2. Modeling of Operational Amplifiers  
For large signal swing and global analysis, all operational 
amplifiers will work in the nonlinear state. The linear models for 
amplifiers are simple approximations to the real situation and 
only work well for small signal swing and local analysis. For low 
voltage applications, the circuit cannot be accurately described by 
the small signal model. To have a good performance, signal 
swing in circuits can no longer be kept “small” compared with 
the supply voltage. However, it is nearly impossible to model the 
nonlinearity of amplifiers from the transistor level, since the 
performance of various architectures of operational amplifiers 
can be dramatically different from one to another. Their gains 
and frequency responses are strongly dependent on transistor 
level designs. This will make the modeling of nonlinear effects 
prohibitively complicated. 
Instead of the bottom-up method from transistor level, we will 
take a top-down method to model the nonlinear operational 
amplifier in this paper. Static behavior of any operational 
amplifier can be described by the DC transfer characteristic in 
which the input and output could be current or voltage or both. A 
typical DC transfer characteristic for a differential operational 
amplifier is shown in Figure 1.  

 
Figure 1 DC transfer characteristic of an open-loop amplifier 

 



  

This DC transfer characteristic curve gives out the input -output 
relationship of the amplifier 

)( xo YfY =                  (1) 
where Yo and Yx are the output and input of the open-loop 
amplifier, respectively, and f(Yx) is a nonlinear function of Yx..  
f(Yx) will have properties such as  

f’(Yx)<0    (2) 
Yx f’’(Yx)<0   (3) 

These properties are common to all operational amplifiers. In 
order to simplify the analysis, voltage amplifier is used in our 
study but the methodology and all conclusions made here are 
applicable to other structures as well. In other words, V will be 
used in the following analysis instead of Y. Meanwhile, most 
operational amplifiers are used with a feedback network so that a 
better linearity performance can be achieved. The common 
knowledge is that higher gain will lead to higher linearity. 
Unfortunately, with high-gain amplifier-design, the nonlinear 
effect in the open-loop amplifier will be more serious. That 
means no matter what kind of structure we use, nonlinear issues 
in the circuit have to be thoroughly modeled and studied. 
For a given amplifier, its performance can include both static and 
dynamic behaviors. The static performance is characterized by its 
DC transfer characteristics. Taking an input-output approach, we 
propose a system model for general open-loop amplifiers, 
regardless their inner circuit structure, as shown in Figure 2. This 
model is similar to the commonly used small signal model for a 
MOS transistor, but it can model the global behavior of any 
differential operational amplifiers. 
Given a DC transfer characteristic curve, we can mathematically 
include all the non-linearity in go while keeping gm constant. For 
linear amplifiers, go is a constant value. In general situations, go 
can be described as a function of the output voltage,  go=go(Vo).  
Thus in a static situation, 
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The dynamic performance includes many aspects but we focus on 
the settling behavior. Although the dynamic performance 
depends on many things including the filter structure and can be 
highly complex, a first order approximation is adequate for many 
applications especially when the amplifier has good phase margin 
with proper design. Where in such cases, a single capacitor C is 
used to capture the dynamic behavior. C is the combination of the 
load capacitance and the parasitic capacitance at the output node. 
 

3. Equivalent gains for an open-loop amplifier 
The representative application of an open-loop amplifier is the 
feedback configuration with a resistive network (See Figure 3). 
This application is the basic application, and study of it will help 
circuit designers understand the non-ideality of close-loop 
amplifiers caused by the nonlinearity of open-loop amplifiers. 
This study can also be applied qualitatively to other situations, 
such as the switched-capacitor application. In this paper, we will 
limit our discussion to the feedback configuration with linear 
resistor network. It is obvious that the external resistor network 
will change the DC transfer characteristic of the close-loop 
amplifiers by diverting part  of the current. If feedback resistors 
are large compared with 1/g0, such effects can be ignored. In real 
applications, loading effects do not exist if a buffer is used to 
isolate the output node or if a capacitive feedback network is 
used. In this paper, we will make such assumptions so that the 
feedback network will not affect the DC transfer characteristic of 
the open-loop amplifier. 

 
Figure 3 Feedback amplifier with resistive network 

 
For the close-loop amplifier in figure 3, under our assumptions, 
we can have the following equations: 
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The equation that relates the input and output of the close-loop 
amplifier is  
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This equation can be used to solve the output with different initial 
conditions and different inputs. 
For different applications of this feedback configuration, there 
are different considerations for the behavior of the amplifier. In 
the following discussion, we will look at four aspects of this 
configuration. 
 
1) Steady State accuracy of the close-loop circuit 
For a large-unit-gain-bandwidth and high-gain amplifier with 
good phase margin, if the output has enough time to be well 
settled, what we concern most is the final settling accuracy of the 
close-loop amplifier.  
To evaluate the final settling accuracy, we can look into the 
steady state step response with zero initial condition. The initial 
state is that Vi=Vo=0. Vi changes to V1 at t=0, and then remains  
constant. At steady state, we have 
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Figure 2 Nonlinear operation amplifier model 



  

into equation (7) and letting 
R

Rf=β , we get the steady step 

response:                  
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If the open-loop operational amplifier is linear and its gain is A , 
the steady -state step response will be as follows, 
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Comparing equation (8) with (9), we can define an equivalent 
open-loop gain for the non-linear amplifier as 

xVoVoVogmgseqA /)(/_ =−=   (10) 

As we can expect, this equivalent gain is a nonlinear function of 
the output voltage. Its physical meaning is the slope of the chord 
in the DC transfer characteristic curve, from 0 to Vo, marked in 
Figure 1. To guarantee a required performance, the slope of the 
largest cord should be used. 

2) Settling accuracy with incremental step input 

Consider the close-loop circuit shown in Figure 3. The initial 
state is that at t=0-, Vi=V1 and Vo  has already settled to Vo1. Vi 
changes to V2 at t=0+, and then remains constant. Using the 
results in 1), we obtain, 
At t=0-, 1)0( VVi =−  
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At t=+�, dVo/dt=0, 2)( ViV =∞  
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where )( 11 xo VfV = , )2(2 xVfoV =  as marked in Figure 1. 

From (11) and (12), we get 
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For a linear amplifier, we can similarly obtain: 
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Comparing (13) to (14), the incremental gain of an open-loop 
non-linear amplifier can be derived as 
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As we can expect, this equivalent gain is initial and final state 
dependent. Its physical meaning is the slope of the chord in the 
DC transfer characteristic curve, from Vo1 to  Vo2, marked in 
Figure.1. To guarantee a given increment performance, the cord 
involving the largest Vo should be used. 

3) Settling behavior of the close-loop circuit 

Under the condition that the input of the feedback amplifier is 
piecewise constant (e.g., the output of sample and hold stage in 
pipelined ADCs), the output always changes before it reaches the 
final settling value, then it is necessary to look at the settling 
behavior of the close-loop circuit. From (7), we get 
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The settling behavior of equation (16) is basically determined by 
the derivative of )( oVh  evaluated at the final output voltage. 
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For a linear amplifier with open-loop gain A , the derivative of 
)( oVh will be 
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Comparing equation (17) with (18), we can define the settling 
equivalent open-loop gain for the amplifier as 
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This equivalent gain is nothing but the tangent slope of the DC 
transfer curve at the final output voltage Vo. In real applications, 
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dependent on the second term. 
In order to compare the settling behavior between a linear 
amplifier and a nonlinear amplifier, we define 

))0(/())(ln( ofoofo VVVtV −− as the settling speed. Figure 4 

shows MATLAB simulation results of the settling speed 
difference between a nonlinear amplifier with final tangent slope 
of ‘A’ and a linear amplifier with gain ‘A’. The difference 
approaches 0 when the output settles to the final voltage. Thus we 
verified the settling behavior of a nonlinear amplifier is Aeq_t 

related. 
 

 

 
Figure 4 Difference in settling behavior of feedback amplifiers 

4) First-order harmonic equivalent gain 

Due to the non-linearity of the open-loop amplifier, high-order 
harmonic distortion may be generated at the output when a pure 
sinusoidal signal is applied to the input.  
From the DC-transfer characteristic we can get  
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Rewrite non-linear differential equation (16) as 
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With a sinusoidal input tVi ωsin= (period
ω
π2

=T ) it can be 

shown that there exists a unique periodic solution for the 
differential equation (20) without even-order harmonics [4] 
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Based on the assumption that the open-loop gain is sufficiently 
large, we can assume the first-order harmonic dominates the 
output signal. Then a first-order harmonic equivalent gain can be 
derived. 
Using the describing function method [5], let 
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We will get 
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where )( 1YΨ  is the describing function of the non-linearity 

oVoVC )( . 

In case of a linear amplifier,  
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Comparing equation (23) to (24), a first-order harmonic 
equivalent gain can be derived as 
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This equivalent gain is very close to steady state equivalent gain.  

5) Distortion to sinusoidal input 

Based on the assumption that the first-order harmonic dominates 
the output signal and from the equation (21), we know the third-
order harmonic distortion will dictate the SFDR performance of 
the feedback amplifier.  
Under such conditions, the third-order harmonic is given by 
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SFDR can be calculated with V3 and Y1. However, it is extremely 
difficult to get explicit expression of V3 due to the complexity of 
the nonlinear function.  
If the input sinusoidal signal’s period is much longer than the 
time constant of the feedback amplifier, we do not need to 
concern about the issue of settling within finite settling time. 
However, high-order harmonic distortion will lead to output non-
linearity. In some applications, high linearity is very important, 
such as ADC design, so the distortion introduced by the 
nonlinearity of amplifiers need to be estimated so that designers 
can make wise decisions on how to select the circuit parameter. A 
new term linearity index (LI) is introduced to do the estimation:  
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With the linearity index, we can estimate THD (total harmonic 
distortion) of the output signal using the following approximate 
equation (28). Assuming all other circuits are linear except the 
open-loop amplifier, 

)(12log20 10 dBLITHD −−≤              (28) 
Simulation results show that this equation gives good estimation 
with very small error. The comparison of estimated results and 
simulated results are shown in Table 1, which summarizes the 
results for two categories of open-loop amplifiers: low gain 
amplifiers with good linearity and high gain amplifiers with weak 
linearity. For all the results in the table, Vom=1 and â=1. From 
Table 1 we can see that simulation results fit the estimation 
results very well. The estimation method by using linearity index 
is quite effective. 

 
Table 1 Estimated THD and simulated THD for close-loop 

amplifiers’ output  
Aeq_s(0) Aeq_s(1) LI 

 
THD(est.) 
(dB) 

THD(sim.) 
(dB) 

10 9.99 10000 -92 -92.3 
100 90.91 1000 -72 -72.31 
100 98.04 5,000 -85.98 -86.3 
100000 991 1001 -72.009 -72.0566 
1000000 999 1000 -72 -72.056 
100000 9,091 10000 -92 -92.043 

 

 4. Conclusion 
Because of the intrinsic non-ideality of semiconductor devices, 
low voltage high gain open-loop amplifiers exhibit high 
nonlinearities. It always turns out to be a confusing problem for 
circuit designers to make gain measurement and understand the 
non-ideality of close-loop configuration due to the nonlinearity of 
open-loop amplifiers. To solve this problem, simple but effective 
model for nonlinear open-loop amplifiers is given, and the small 
signal gain and large signal gain are defined. Based on this model 
and the gain definitions, the non-linearities of feedback 
amplifiers with a resistor feedback network for different 
considerations are inspected. Three equivalent gains are defined 
for different cases. An effective THD estimation method is given 
based on the definition of linearity index. It is very obvious that 
clarified gain definitions for non-linear open-loop amplifiers help 
a lot to identify the non-idealities of feedback amplifiers. 
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