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ABSTRACT
A new method enabling the use of stationary non-linear signals
has been proposed for testing the linearity of high resolution
ADCs. With this method, linearity requirement of the source can
be dramatically relaxed and faster sources can be utilized to
reduce the test time and increase test coverage for the ADC.
Preliminary simulation results show that with a 5-bit linear input
signal, the trip points of a 11-bit Flash ADC can be identified to
better than 0.5LSB and by incorporating a built-in calibration
circuit, the trip point error can be decreased from an uncalibrated
15 LSB level (7-bit performance) to less than 0.5 LSB (11-bit
performance) or better.

1. INTRODUCTION

The rapid growth in the application of increasingly complex
mixed-signal circuits in the communication and signal processing
arenas coupled with industry-wide improvements in
semiconductor processing has created a large market for low-cost
mixed signal integrated circuits. Paralleling this downward cost
pressure are increased demands on the number, accuracy and
complexity of testing steps in the production test environment.
As a result, production-testing costs are becoming a rapidly
growing and increasingly significant portion of the overall
manufacturing costs [1].

ADC testing has also become very challenging and costly. For
high resolution ADCs (16bits and above), test cost for the ADC
is determined by the number of codes in the ADC, and not by the
ADC sampling rate. This non-intuitive result can be explained by
the following observation. As the number of codes increase, the
linearity requirements of the source driving the ADC (linearly)
increases. This performance requirement enforces slow, high-
precision signal generator architectures that require long settling
times. This results in increased testing time and testing costs,
which is totally prohibitive for manufacturing.

This has caused the emergence of mixed-signal integrated Built-
In-Self-Test (BIST) strategies as attractive solutions. Apart from
reduction or elimination of costs associated with using
production testers, BIST solutions are attractive from alternate
viewpoints. One advantage is the ability to test deeply embedded
analog functionality in SoC that cannot be practically presented
to an external tester. The second potential advantage is associated
with the ability to extend some BIST approaches to provide self-

calibration as a part of the design process. By jointly considering
the issues of Analog and Mixed-Signal BIST (AM-BIST) and
built-in calibration, value can be added with an AM-BIST
capability by salvaging devices that would be scrapped due to
soft-faults with a commercial production tester. However the
main bottleneck with the existing BIST solutions is associated
with the generation of highly linear stimuli on-chip. A new
approach to BIST for analog and mixed-signal circuits is
presented in this paper. Unlike the traditional approaches that
require precise input stimuli [2][3][4], the new approach is based
upon using easily generated but inherently imprecise stimuli to
generate a circuit response that can be used to validate the
performance of the Device-Under-Test (DUT) through post-
processing of output data with standard Digital Signal Processing
(DSP) algorithms and hardware.

2. A HISTOGRAM-BASED
IDENTIFICATION STRATEGY

In this section, a new histogram-based algorithm suitable for
characterizing a Flash ADC is discussed. Two highly nonlinear
signals are used as inputs and the outputs obtained from the ADC
are then analyzed to characterize the device. Initial approaches to
solving this problem are discussed in [5, 6]. However the method
proposed in [6] is sensitive to the relationship between the two
input signals. Also the various approximations that were made
limited the overall accuracy of the final result. In this paper a
more elegant and modified solution has been proposed that
results in better characterization. Also the exact relationship
between the two inputs need not be known a priori and is
estimated as part of the algorithm.

Figure.1. gives a plot of the transfer-characteristics of the input
excitation signals. Overlaid on top are the ideal and non-ideal
trip points of the flash converter. The various symbols that are
used in the figure are described below:

Ii : ith transition level (trip point) of Ideal ADC

Ti : ith transition level of actual (non-ideal) ADC

Ψi : Deviation of Ti from Ii

F1 : ‘ramp-like’ input signal



F2 : F1 shifted by α

Ci
’ : Number of samples in ith bin for actual ADC with F1 as

input signal (i.e. Histogram of F1)

Ci
’’ : Number of samples in ith bin for actual ADC with F2 as

input signal (i.e. Histogram of F2)
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Figure.1 Transfer Characteristics of the Input Excitation Signal

It is assumed that F2 is shifted with respect to F1 by a fixed but
unknown amount α. The trip points of the non-ideal ADC can be
written in terms of the trip points of the Ideal ADC by the
following equations:

N
iii iIT 2...,,2,1, =Ψ+= (1)

where N refers to the resolution of the ADC.

Our goal in identifying the system is to determine the actual
deviations of the ADC under test from that of an ideal ADC. In
terms of the notations used, the goal is to determine the sequence
<Ψ1, Ψ2 ,…., Ψ2

N>.

Let the input signal F1 be defined by some function ‘f’. The
exact nature of the function is not important as long as it is
continuously differentiable and its first derivative is locally
constant. This requirement is not difficult to achieve, because the
function is only defined at finite points and we can always find a
polynomial that satisfies this property. If the input signal is
sampled uniformly in time, then the function ‘f’ maps the
histogram values to the ADC transition points by the following
equation:
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Also since the second signal, F2, is obtained by shifting the first
signal, F1, by a constant value (α ), we get:
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If the function ‘f’ is linear, it is trivial to obtain the values of Ψi

from either equation (2) or (3). However, due to the nonlinear
nature of the input signal, this task is complicated and some
linearization method needs to be used to make the solution
practical. Subtracting the (i-1)th equation in (3) from the ith

equation in (2), we get:
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for i=2,3,……2N, where Ii – Ii-1 = 1 LSB. In the above equation,
all the terms are expressed in LSBs. Using the mean value
theorem, the left hand side part of the equation can be rewritten
as
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where, f’(ξi) is the derivative of the input signal evaluated at ξi.
We approximate f’(ξi) by the following equation:
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This is a simple average of the two slopes of )( inxf at

iiin Ix Ψ+≈ and α+Ψ+≈ iiin Ix respectively, but

this approximation is good enough for most of the normal non-
linear input signals. Using the above linearization method we can
simplify equation (4) as follows:

N
ii

i

i 2...,,3,2,
1

1
1 1 =Ψ−Ψ+

−
= −α

γ
(7)

where, 







−








+= ∑∑

−

==

1

1

''

1

'
'''

11

2

1 i

j
j

i

j
j

ii
i CC

CC
γ (8)

All the γi’s can be computed from the two sets of histogram
values. It can be safely assumed that Ψ2

N is 0, since the top node
of the flash ADC is tied to the supply and hence is fixed. The
total numbers of variables that then need to be identified are 2N,
which comprises the sequence < Ψ1, Ψ2,…., Ψ2

N
-1,α >. Thus, in

addition to (7), we still need one more equation to uniquely solve
for all of the 2N variables. It can be seen that the case of i=1 in
(2) has not been used in the set of equations derived in (4). This
equation in conjunction with the case when i=3 in (3) results in
the following condition:
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(9) can also be reduced to a linear equation using the same
linearization method as explained earlier. These sets of 2N

equations can then be simultaneously solved for all of the
unknowns. Simulation results using the above method to
characterize the ADC were found to be very good. The
transitions of the ADC were identified to a much higher accuracy
than the resolution of the device-under-test. Section 3 gives
more detail on the simulation setup and the results obtained.

The solution of the set of linear equations described above,
however, requires a ‘matrix inversion’ step that increases the
computational complexity for ADC resolution in excess of 9~10
bits. On closer look into (7), it can be seen that if the value of α
can be identified independently, then a much simpler set of
equations given in (10) is obtained.
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The computational complexity of equation (10) is proportional to
the number of equations (2N), as compared to the complexity for
matrix inversion method that is of the order of 23N. The latter
solution is more attractive from complexity viewpoint, provided
α can be determined by some alternate method with sufficient
accuracy. One proposed method is to use all Ci’ and Ci’’ to
estimate α, and then replace its value into equation (10). The
equation used to determine α is given by:
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Results using this ‘non-matrix inversion’ method are also
presented in Section 3 and are compared with that obtained using
‘matrix-inversion’ approach.

3. MODELING OF THE TEST SETUP AND
SIMULATION RESULTS

To validate the algorithm, the system involving the input signal
generator and the A/D converter was modeled in MATLAB. For
convenience in this work we limited the non-idealities of the
converter to the resistor variations but the concept can be
extended to include the comparator offsets as well. To each of
the resistors in the ADC (with nominal value of Ro), an
uncorrelated error value based on a uniform distribution between
+/-50% Ro was added. The two signals that were used as input
are:
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The magnitude of the coefficient ‘a’ determines the accuracy of
the input signal. Simulation results with the earlier version of the
histogram algorithm and with small amounts of shifts are given

in [5,6]. The newly proposed approach described in this paper
was then used to characterize the data converter. An 11bit flash
converter was considered. An input signal of 5 bit linearity was
given to the DUT. The second signal was obtained by shifting the
first signal by 300LSBs. This value of shift is just used to
generate the input signal and is not used in the algorithm. The
amount of shift (i.e. α) is calculated independently in the
algorithm as described in section 2. The shift estimated by the
histogram algorithm for this sample run was 300.0259LSB,
which is very close to the actual value. Figure.2. shows the plot
of the trip point errors introduced (Ψi’s), and that estimated and
the error in prediction.

Figure.2. Introduced and Estimated trip point errors

From the figure it can be observed that the trip point error of the
device ranges from -12~3 LSBs approximately and the estimated
value closely matches the actual value. What is more important is
the fact that the residual error is less than 0.02LSB, which means
that with the information that is obtained from the algorithm,
after calibration the trip points can be adjusted to approximately
14 bit accuracy. As compared to the results provided in [6] where
the residual error is nearly 0.2LSB, the method proposed here
gives significant improvement in performance. This is primarily
due to the precise estimation of the relationship between the two
signals within the algorithm. Figure.3. shows the plot of the DNL
introduced and DNL estimated. The error in DNL estimation is
also plotted. The magnitude of the error in DNL prediction is less
than 0.02LSBs. This is actually limited by the number of samples
taken in each bin.
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Next a set of 50 runs of 11 bit ADCs was performed. A different
random resistor combination was used each time to model
different trip point error patterns. Figure.4. gives the plot of
maximum trip point error introduced in each run and the residual
error in prediction.

Figure.4. Result of 50 runs – Matrix Inversion Method

It can be seen that using the predicted value, after correction the
trip points of the converter can be identified to approximately
0.02LSB~0.07LSB (i.e. 14 bits accuracy).

The Non-matrix inversion method was then tried on the same
converter. Again a set of 50 runs of 11 bit ADCs was performed.
Figure.5. gives the plot of maximum trip point error introduced
in each run and the residual error in prediction.

Figure.5. Result using Non-matrix Inversion method

It can be seen that the residual error is now approximately
0.08LSB~0.12LSB, which implies that we can still identify the
trip points to nearly 13 bit level, only 1 bit less accurate than that
obtained by using matrix inversion method. The number of

floating point operations (in MATLAB) reduces from 5.1e10 for
Matrix Inversion method to 3.6e4 for Non-Matrix Inversion
method, corresponding to a significant reduction in complexity.
This makes it viable for this scheme to be implemented as a BIST
solution.

The simplified 11-bit Flash ADC example is for illustration
purposes only. In reality, Flash ADC performance is dominated
by dramatic comparator offset mismatches and AC kick-back
effects. Also, 11-bit flash architectures are also very expensive
and uncommon due to the high number of comparators required.
Moreover, testing of an 11-bit ADC is considered to be known
art and can be done well within 2 second of test time and does
not constitute a problem (mostly because 12bit linear sources are
widely available and are significantly fast).

4. CONCLUSION

Two histogram based approaches for characterizing a flash A/D
has been proposed. Results indicate that for smaller resolution,
the matrix inversion method can be used to get very high
accuracy identification (being limited by the number of sampler
per bin); while for higher resolution the non-matrix inversion
method can be easily implemented resulting in modest
improvement in performance after calibration. Simulation results
show that a Flash ADC can be characterized/tested to the 13-bit
level from initial 7-bit accuracy or worse while using a
stimulus that is only 5-bit accurate.
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