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ABSTRACT 
A blind identification based algorithm for calibration of 
pipelined ADC is discussed in this paper. In contrast to 
traditional approaches that use one highly precise input stimulus 
to characterize the device, the approach adopted here is based on 
providing multiple inputs with nonlinearities of separated 
spectrum to the device-under-test (DUT). A correction code for 
each output of ADC is determined, which is then used to 
calibrate the device. Simulation results show that using the 
algorithm, trip point error of a 16-bit pipelined ADC with 
original INL of hundreds of LSBs can be decreased to less than 
1 LSB, while input signals of 6-bit linearity are identified to 
more than 12-bit accuracy. The relaxed requirement of the input 
signal makes it practical to be generated on-chip and hence is a 
promising solution for Analog and Mixed-signal Built-In-Self-
Test (AMBIST). 

1. INTRODUCTION 

Testing of Analog and Mixed-signal circuits is becoming an 
important issue that not only affects the overall production cost 
but also the time-to-market for most products [1]. With rapid 
increase in the level of integration, more and more circuitry is 
added in a small area, which in turn results in longer testing time 
and increased testing costs. The use of commercial testers in a 
production testing environment not only requires initial 
investment on the high-cost testers, but also the cost associated 
with test time. The need to limit or reduce such costs necessitates 
the development of a new approach for designing Mixed-signal 
circuits with integrated Built-In Self-Test solutions.  

The obvious apparent advantage of a BIST solution and the end-
goal in most proposed BIST approaches is the reduction or 
elimination of the costs associated with using production testers. 
However, BIST solutions are also suitable to test deeply 
embedded modules that might be difficult to access otherwise 
through an external tester. Another advantage associated with an 
AM-BIST approach coupled with the built-in calibration 
capability is the ability to actually enhance performance 
specifications while still maintaining yield targets.  Also, by 
combining AM-BIST strategies with the built-in calibration 
capability, certain inherent matching requirements at design can 
be relaxed for some class of circuits.  

One main obstruction towards realizing a complete BIST 
solution is the unavailability of sufficient data about the input 
signal. Although considerable research efforts [2][3][4][5] has 
been done towards generating precise input stimuli on-chip, the 
task of precise signal generation is becoming more challenging as 
we move towards higher resolution products.  However with the 
vast amount of information available about data converter 
operation and about the various standard methods of signal 
generation on-chip, certain practical assumptions can be made 
about the system and the signal that can enable identification of 
the system without having access to the signal source. An 
approach towards identification of the stimuli and 
characterization of flash ADCs was discussed in authors’ 
previous work [6]. This paper focuses mainly on simultaneous 
identification of nonlinear input signals and calibration of 
pipelined ADCs. 

 

2. ALGORITHM DESCRIPTION 
In the approach described here, multiple input signals with 
definite non-linearities will be used to calibrate the device. To 
understand the general approach, let us consider a non-ideal 
input ‘x’ that is given to the DUT. The non-ideal input can be 
represented as:  

x=t+f(t)+ni                (1) 

where t represents the intended ideal input, f(t) denotes the 
various nonlinear terms that are part of the input signal, and ni is 
any additional noise term present. For the purpose of 
identification, f(t) is parameterized by a set of basis functions 
{fi(t), i=1, 2, …} as shown below: 

f(t)=a1h1(t)+ a2h2(t)+…              (2) 

The parameters {ai, i=1, 2, …} are the coefficients of the various 
basis functions. Let the actual output digital code of the pipelined 
ADC corresponding to input ‘x’ be represented as ‘y(x)’. ‘y(x)’ 
can then be split into various terms as shown in  (3),  

y(x)=x+E(x)+qn               (3) 

where E(x) denotes any error in the ADC performance, and qn  
the inherent quantization noise. Depending on the nature of the 
ADC nonlinearity, the output code y(x) may be quite different 
from the actual intended output. To digitally calibrate the ADC is 



to provide an error correction code e(y) for each output code ‘y’ 
so that the calibrated ADC will have output code  

yc=y-e(y)                 (4) 

The goal of the proposed algorithm is to determine an optimal 
code e(y) such that the mean square output error after correction 
is minimized: 

Min E{(yc(x)-x)2}                (5) 

Theorem: Suppose the original ADC has differential 
nonlinearity DNL, the best achievable integral nonlinearity INL, 
for the calibrated ADC is given by: 

INLc = (1+DNL)/2               (6) 

Note: If the input signal ‘x’ to the ADC is known precisely and 
its levels can be varied with arbitrary resolution, then the 
calibrated ADC can achieve the performance bound given by (6). 
If the input signal ‘x’ is not known precisely or if it is generated 
by a finite resolution DAC, the achievable INL for the calibrated 
ADC will be larger than the bound. 

With this general approach in mind, the following describes a 
way to obtain the required correction codes. Two non-ideal input 
signals, whose nonlinearities have different spatial spectral 
distribution, are used for this purpose. Let the 1st input signal be 
expressed as: 

X1=t+f(t)= t+ a1f1(t)+a2f2(t)+…               (7) 

where the nonlinearity f(t) in (1) is parameterized by basis 
functions {fi(t), i=1, 2, …} and coefficients {ai, i=1, 2, …}. With 
this signal as input, the output of the pipeline ADC at sampling 
instances corresponding to intended input t1, t2, …, tn, is then 
given by: 

y1=t1+ a1f1(t1)+ …+amfm(t1)+e(y1)+n1 

…         (8) 

yn=tn+ a1f1(tn)+ …+amfm(tn)+e(yn)+nn 

Only the first ‘m’ basis functions are used in the algorithm. The 
choice of ‘m’ is decided based on a trade-off between the 
computational complexity and the accuracy of the final calibrated 
result. The quantization noise, higher order terms of e(yi) and any 
input nonlinearity that is not modeled by the ‘m’ basis functions 
are combined as a single noise term ni. 

If the input signal is sampled at a high rate, then multiple input 
samples may correspond to the same output code of the ADC. By 
re-grouping the equations in (8) according to the output code and 
averaging among each group, the set of equations in (8) is 
reduced to 

1=t(1)+a1f1(t(1))+ …+amfm(t(1))+e(1)+n(1) 

2=t(2)+a1f1(t(2))+ …+amfm(t(2))+e(2)+n(2) 

…         (9) 

N=t(N)+a1f1(t(N))+ …+amfm(t(N))+e(N)+n(N) 

where, N is the total number of different codes present at the 
output of the pipelined ADC. The superscript ‘i’ in t(i) denotes 
the output code i. By grouping the terms and averaging them the 

noise term gets averaged and hence can be much less than ni if 
the number of samples per bin is much greater than 1. 

Writing equation (9) in matrix form, we get 

Y=T1+F*A+e(Y) +N1    (10) 

where  

A=[a1, a2,…, am]T 

Y=[1, 2, …, N]T 

e(Y)=[e(1), e(2), …, e(N)]T 

T1 is the vector of averaged ideal inputs for 1st input, while F is 
associated the basis function matrix. 

Next a 2nd input signal with a different nonlinearity as 
represented by (11) is given as input to the ADC. 

X2=t+g(t)= t+ b1g1(t)+b2g2(t)+…          (11) 

where the nonlinearity g(t) is parameterized by basis functions 
{gi(t), i=1, 2, …} and coefficients {bi, i=1, 2, …}. Using the 
same approach as described earlier for input X1, we get the 
matrix equation for 2nd input 

Y=T2+G*B+e(Y) +N2    (12) 

Y and e(Y) are the same as those in (10), T2 is the vector of 
averaged ideal inputs for 2nd input, G is the associated basis 
function matrix and 

B=[b1, b2,…, bm]T 

Subtracting equation (12) from (10), the terms Y and e(Y) get 
cancelled and we get:  

0= T1-T2+ F*A-G*B+N1-N2          (13) 

The parameter vectors A and B are then obtained by using least 
squares estimation, and is given by (14) 

[Aest
T Best

T]T=(CT C)-1 CT (T2-T1)   (14) 

where C=[F  -G]. The noise term N1-N2 drops in the least square 
solution if it is uncorrelated with the basis functions in C. This is 
a fairly good assumption since N1-N2 contains averaged values of 
residual modeling errors in ‘f’ and quantization errors. With the 
parameter vectors available, the error correction code is given by 
either 

e(Y)=Y-T1-F*Aest                (15) 

or  

e(Y)=Y-T2-G*Best           (16) 

or suitable weighted average of the two.   

Although we will not be able to provide analytical performance 
analysis of the proposed algorithm due to page limitation, the 
efficiency of the approach will be verified through simulation in 
section 4. Specifically, the simulation results will show that the 
proposed algorithm can lead to a calibrated INL that is only 
slightly larger than the bound given by (6). We will also show 
that by a little bit more calculation, we can use the estimated e(Y) 
vector to characterization the trip points of the pipelined ADC, 



and the accuracy for trip point identification is not limited by the 
DNL. 

 

3. PIPELINED ADC MODELING  
An n-bit pipeline ADC (with 1 bit/stage) is composed of n 
identical stages as shown in Figure.1. 

 
Figure.1. n-bit Pipeline ADC 

Each stage of the pipeline can be modeled as shown in Figure.2., 

 
Figure.2. Individual stage of pipeline ADC 

where for the ith stage, )1( −ix  denotes the analog input to this 
stage which is also the output from the previous stage, )(ix  the 
analog output to be sent to next stage, and )(iD  the 1-bit digital 
output, respectively. Assuming that the sources of non-idealities 
in the pipelined ADC are only due to gain error of the “multiply-
by-2” stage, offset of the ‘multiply-by-2’ amplifier and the offset 
voltage of the 1-bit ADC, the mathematical model of one stage 
can be written as follows. 
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where iii g,,θδ  are the offset voltage of the 1-bit comparator, 
offset of the “multiply-by-2” stage and gain of the “multiply-by-
2” stage respectively, and 
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The digital code < )1(D , )2(D ,…. )(nD > then corresponds to 
the output of the ADC for any given input. 

 

4. SIMULATION RESULTS 

A non-ideal 16-bit pipeline ADC was modeled as described in 
section 3. The offset voltages of the comparator and “multiply-
by-2” stage were randomly generated and were limited to 0.5% 
of Vref. The gain error of the “multiply-by-2” stage was bounded 
between +/- 0.5% of the ideal value. The INL and DNL pattern 
of the modeled ADC is shown in Figure.3. and Figure.4. 

  
Figure.3. INL pattern of a 16-bit ADC  

 
Figure.4. DNL pattern of a 16-bit ADC  

The two nonlinear inputs to the ADC were modeled as follows: 

X1 = t+0.03*sin(pi*t)+0.01*sin(2*pi*t)     (19) 

X2 = t-0.01*sin(5*pi*t)-0.001*sin(6*pi*t)   (20) 

Even though only two basis functions were considered in 
simulations, more terms could be included to get better accuracy 
of the final result.  

Using the two inputs, the algorithm was simulated to identify the 
correction codes for the modeled ADC. Figure.5. gives the plot 
of the INL of the ADC after calibration with e(Y). It can be seen 
that INL of several hundred LSBs can be calibrated to less than 8 
LSB, which corresponds to half the DNL value before 
calibration. This indicates that with the proposed algorithm, the 
ADC can be calibrated to the accuracy set by DNL. It’s in 
agreement with the theorem explained in Section 2. 

 
Figure.5. INL of the ADC after calibration 
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Also using the algorithm, the actual trip points of the pipelined 
ADC can be accurately identified. As shown in Figure.6, the 
residue error in trip point after identification is less than half 
LSB. This means that by using the information provided by the 
algorithm, with some structural modifications, we can calibrate 
the ADC to have INL less than 1 LSB, i.e. 16-bit accuracy. This 
will dramatically increase the yield of the product. 

 

 
Figure.6. Difference between introduced and identified trip point  

Next a set of 30 runs of 14 bit pipeline ADCs were simulated. 
Different random combination of offset errors and gain error was 
chosen for each run. The algorithm was then implemented to 
identify and calibrate the trip points of each of the ADC. 
Figure.7. gives a plot of maximum trip point error in each run 
before and after calibration. The results indicate that 14 bit ADCs 
with initial maximum trip point error in the range of 
39LSB~43LSB (corresponding to 8 bit accuracy), can be 
calibrated to within 0.5LSB (corresponding to 14 bit accuracy).  

 
Figure.7. Simulation results for 30 runs of 14-bit ADC 

Further simulations with more number of basis functions were 
performed and the results were in agreement to the theoretical 
estimation. 

 

5. CONCLUSION 

A blind identification approach to digital calibration of pipelined 
ADCs has been introduced. The algorithm is based upon using 
multiple input signals that are given to the DUT. The outputs of 
the DUT are then analyzed to characterize/calibrate the device.  
Simulation results for 16-bit pipelined ADCs are presented. 
Results indicate that with input signal of around 6 bit linearity, 
the device can be calibrated from an initial 8-bit accuracy to 
nearly 16-bit accuracy. Results of multiple 14 bit ADCs are also 
presented that confirm the robustness of the algorithm. 
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