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ABSTRACT

This paper introdiices a new design procedure for output
tracking control of nonminimum phase systems. This new
controller achieves stable e—tracking of a reference profile
given in real time via a causal inversion approach. In con-
trast to stable inversion, the causal inversion approach does
not require precalculation. In contrast to nonlinear regu-
lation, the causal inversion approach avoids the numerical
intractabiity of solving nonlinear PDEs and transient errors
are significantly. smaller. As an example, a causal inversion-
based controller is designed for tip trajectory tracking of a
one-link flexible manipulator. Simulation results demon-
strate its effectiveness in output tracking.

1. INTRODUCTION

Output tracking control of nonminimum phase systems is
a highly challenging problem encountered in many prac-
tical engineering applications. The classical inversion ap-
proach for output tracking control uses stabilizing feedback
together with feed-forward signals generated by an inverse
system. The-classical inverse problem was first studied by
Brockett :and! Mesarovic [1]. The lincar results were ex-
tended to nonlinear systems by Hirschorn [3]. These in-
version algorithms produce causal inverses but unbounded
soluticns for nonminimum phase systems.

The nenlinear regulation technique was first developed
by Isidori and Byrnes [4]. The solution of the nonlinear reg-
ulator.involves solving nonlinear PDEs; however, the tran-
sient.errors could not be controlled precisely for nonmini-
mum phase systems. Later, the stable inversion approach
was successfully applied to output tracking control of non-
minimum phase systems [2]. Both bounded state and input
trajectories were obtained. The downside is that stable in-
version is noncausal.

This paper introduces a new procedure for designing an
output tracking controller for nonminimum phase systems
using a causal reference trajectory. This new controller will
achieve stable e—tracking. This is obtained by using a novel
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approach derived from causal inversicn, As an example, a
causal inversion-based controller is designed for a one-link
flexible manipulator system, in which preloading the links
is not required. ' _

The remainder of this paper is organized as follows. The
next section defines the basic framework and the problem to
be solved. Section 3 defines the causal inversion probiem
and presents the solution. Section 4 studies the controller
design problem. Section 5 applies the causal inversion ap-
proach to designing a controller for a one-link flexible ma-
nipulator. Simulation results are discussed. Finally, con-
cluding remarks are given in Section 6.

2. BASIC FRAMEWORK
First, consider a nonlinear system of the form

& = f(z)+g(z)u (1)
y = hlz) @)

defined on a neighborhood X of the origin in 1™, with input
u € R™ and output y € R”. f(z) and g;(z) (the i** column
of g{x)) fori = 1,2,---,m are smooth vector fields. And
hi{x}fori = 1,2,--. p are smooth functions on X, with
F(0) = 0 and A(0) = 0. In such a context, these assump-
tions are made:

A1 : The above system (1, 2) is stabilizable and observ-
able.

A2 : The reference output trajectory y4(t) and its cer-
tain derivatives are continuous. yg(t) € Ly N Lo, with
ya(t) =0fort <0,

Remark : The condition y4(t) € L; N Ly, can be
replaced by a condition that requires 94(t) € L1 N Ly, 50
that yq can approach the same constant values, as frequently
happens in practical situations. This change requires little
modification of the general method. There is also a simple
way to ensure that y,(t) € Ly N Lo, avoiding this modi-
fication. In practice, any trajectory yg4 will be bounded and
nonzero with a finite duration. One can simply modify 44
after a sufficient settling time ¢y so that it comes back to 0.
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For a given reference yg(t) satisfying Assumption A2,
the following tracking problem is defined:

Definition 1 : Given an € > 0, the system is said to
achieve stable e—tracking, if |lya(') — y{*)||L, < € with
bounded z(t) and u(t).

3. CAUSAL INVERSION PROBLEM

For system (1, 2), the following problem is posed [6]:
Causal Inversion Problem: Given yy(t) satisfying As-

sumption A2, find a nominal control input i4(t) and a de-

sired state trajectory Z4(t) such that

(1) 24 and ¥, are bounded, and

g{t) = 0, T4(t) — 0, as £t — 00

(2) Z4(t) and %4(t) are causal; that is, Z4(t) =0, 4q(t) =0
for ¢ < 0, where I, is the desired state trajectory and iy is
the nominal control input.

(3) Exact output matching is achieved:

h(Z4(t)) = yalt), forall ¢ 3

(4) 24— f(Za) — g(Ta)Gg — Dast — co.

Remark : Note that condition (1) ensures stability of
the inverse solution. Condition (2) gives rise to the term
“causal” inversion. Strictly speaking, iy is not an inverse
solution since applying %4 to the input of the system (1, 2)
will not lead to ¥ = yq in general. The solution @y and
T4 are termed a causal “inverse” solution because of condi-
tion (3). Condition (4) further ensures that %, is indeed the
asymptotically inverse solution to the dynamics (1, 2).

This paper only provides a guideline of the causal inver-
sion solutions; more details can be found in [6].

3.1. Causal Inversion for Nonlinear Systems

Consider a nonlinear system of the form (1, 2) with the same
number m of inputs and outputs.

A3 : The system (1, 2) has a well-defined relative de-
gree r at the equilibrium point £ = 0.

The system can be partially linearized using the standard
approach. Thus the zero dynamics driven by the reference
output trajectory is obtained 1 = p(ygr),fd,'q). From As-
sumption A2, “certain” is made clear here, which means y
should be r times differentiable and (r — 1) times continu-
ously differentiable.

A4 : 11 = 0is a hyperbolic equilibrium point of the
autonomous zero dynarics,

Linearizing the zero dynamics at the equilibrium point

and introducing a controller 7 to stabilize the unstable refer- .

ence zero dynamics, two dynamic equations are defined as
follows:

Ay = Asfls + Byl + do(yy 80, e ), 1 (0) =0 (4)

where & = £4. By selecting & = —2A4,7, — 2By —

Qdu(yér), €4,7s, 7u), Equation (5) becomes

ﬁu = _Au"—]u - Buyg) - du(y,(f),fd,ﬁs,ﬁu),ﬁu(ﬂ) =0

(6)
By a similar argument mentioned in [6], this yields 7, (t),
fis(t) — Oast — oo. Also, £y = 0 fort < 0 and for
t > ty. Furthermore, it can be shown that £, and &y are
bounded, and T4{t),Ts(t) — 0 as t — oo. By the defini-
tion of £, A{Z4) = ya and Lyh(Z4) = yg') for i < r are
obtained. Thus a casual inversion solution to the nonlinear
system has been provided.

3.2. Causal Inversion for Linear Systems
Consider a linear system of the form

A—

Az + Bu (N
y = Czx @

with a well-defined vector relative degree.
By properly picking the transformation matrix, it yields
the unstable subsystem

T = Aulla + BuyT t < tpimu(t) =0, VE>t;, 9

Here, a controller ¥ is introduced to stabilize the unstable
subsystem 7, = Auf, + Buy‘(i") + @, 7{0) = 0. By
choosing ¥ = —2A,7, — ZBuyf;), this step then yields
fly, = — Ay — Buyg) » Tu(Q) = 0. By a similar approach,
the inverse solution for the linear system can be obtained,
Theorem 1 : Consider a linear system described by
(7. 8). Given a low pass signal g(t) € Ly N Ly and

yér)(t) = glat), for any €,, €y, €, > 0, there exist a time
scaling factor a such that

(1) il Ly < €n
(2) ”ﬁd - ud”L2 < €y
(3) HE”L'z <€y

where ] = y, — ¥y
Proof : To simplify the proof, the dimension of the unsta-
ble subsystem is assumed to be n,, = 1. In this case, both
A, and B,, become scalars. Let scalar a and b represent A,
and B, respectively.

For the noncausal signal 7, (t), since "r";u = —A, N —
21}, the bilateral Laplace transform is given by 1,(s) =
s—b_s—ayt(ir)(s), where the region of convergence is Re(s) < a
witha > 0.

The Laplace transform of 7, is given by 7,,(s) = ﬁf—fgyd
where the region of convergence is —a < Rels) < a with
a> 0. Let Hy(s) = 2% then 7iu(s) = Hi(s)y\(s).

Given 2 low pass signal g(t),3 a time scaling factor

Ny = Aufh + Buyy) + du(yg),fd,ﬁs, ) + 0,7 (0} = 0 (5)c; > Osuch that yf;)(t) can be chosen as yé') (t} = g(ait).
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Then g(w) = F(g(t)) and Hy{w) = H1{s)|s=jw. Fur-
thermore, by the scaling property of the Fourier Transform,

it follows that y(r)(w) = Flglait)) = gll-g(;]) Since
both H;(w) and y(r)(w) are bounded, set 1|y(”(w)||§o +

WHi{w)||2, = K, where K is finite and K; > 0.
Notice that f lg(w}?dw — 0 as wy — . Thus,

Yen > 0,d wi(ey) such that f |g(w)|?dw < —h-,-"- Slml-

larly, Ve, > 0, 3 wa(ey) such that [ |Hy(w)|?dw < 32
Given wa, Ve, > 0,3 a1 such that when o < oy

fwz s (@) 2dw < ?—:L The spectral separation is shown
in Figure 1. Consequently, this yields

PR

o o) »

Figure 1: Spectral separation

I 1i(w) 2dw
= (;"2 Hy @)y ()Pdw + 22 |Hy (w)yd) (w) 2
" () @)I2, + [ Er(w)[Z) = me2

n

By Parseval’s theorem, it then follows that [i.(t}[|1, < €.
Furthermore, by a similar argument, |4 — ua||z, < €, and
1ollL, < €, easily follow. Q.E.D.

Note that the proposed proof easily extends to the n,, >
1 case.

4. OUTPUT TRACKING CONTROL

Define £(t) = Zq(t)—z(t), 4(t) = Ga(t) —u(t), and §(t) =
ya(t)—y{(t). Then the error dynamics for (1, 2) is as follows:

i
|

F(Z) + g()u + g(zg)i + Pt ¢}
¥ = h{z) (1n

where f(Z} = f(Z4) - f(z),9(Z) = g(Z4) — g(z), and
h(Z) = h(Z4) ~ h(z).

Suppose the causal inversion of nonlinear systems can be
solved. Furthermore, given an ¢, > G, suppose the foliow-
ing inequality is also satisfied: ||7|L, < ¢,. Since the de-
sign goal is to achieve stable e—tracking so that |||z, <
€ as ¢ — oo with bounded xz(t), an H, controller is
a natural choice. Suppose the closed-loop nonlinear map-
ping from ¥ to § is given by § = ®(-}v. If an H, con-
troller K(-} could be found, it would then yield ||§||, <
12 (- }ioc |l L2- Since || B(-)[iool|T| L2 is bounded, this im-
plies [[§llz, < ey, = € with ¢ > 0. From the definition

of causal inversion, Z4 is bounded, and sc f is bounded by
the property of the H, controller. As a result, z{t} must be
bounded. Thus stable ¢—tracking is achieved. The block
diagram of the closed-loop system is shown in Figure 2.
Similarly, the error dynamics for linear system (7, 8) is ad-

— ¥
SN
— System

Y Causal H,

Inversion

Figure 2: Block diagram of closed-loop system

dressed as follows:

IS

= Ai+ Bi+ Po (12)
= Ci - (13)

w2

Theorem 1 in Section 3.2 has provided the solution of the
Causal Inversion Problem for linear systems. More-
over, given an ¢, > 0, ||%]|L2 < €, can be made. An H,
controller is required for these linear systems. Suppose the
closed-loop transfer function from T to § is given by the
linear fractional transformation § = F;(G, K')u. Let K (s)
be the H, controller that minimizes the gain from  to §; it
would then yield ||z, < | Fi(G, K)|wlTllz2 < vew = €,
where ¢ > 0. This implies stable e¢—tracking has been
achieved, which indicates that the total energy in the tran-
sient tracking error can be controlled within any given re-
quirement.

5. AN EXAMPLE: A ONE-LINK FLEXIBLE
MANIPULATOR

A nonlinear dynamic model {shown in Figure 3} and the
parameters of the one-link flexible manipulater are chosen
from[5]. | = 1m, m = 0.2 kg, £k = 5 Nm/rad, and

= dy; = 0.01 Nm- sec/rad. It is easy to verify that

Figure 3: A simple one-link flexible manipulator

the linearized zero dynamics is unstable, which means the
system is a nonminimum phase system,
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After the nominal input is calculated, the controller is
composed by the following structure v = &g + K (T4 — z),
where T4 denotes the state variables of the forward dynam-
ics, £ = (614, 824, 014, B24). Then a standard Ho, optimal
controlier is designed to find the controller K for stabilizing
the forward dynamics. Let the desired output trajectory be
defined as follows:

2L 1
Ye = ™(zx ~ Gmymsin@ng ) 0SSt
%, t> iy

as shown by the solid curve in Figure 4. For the given tra-
jectory, the following data were used: yo = 0%,y = 90°.
The initial conditions are 8, = 8y = f; = 8y = 0. Two
cases are simulated below.

Case 1:{; = 1 secondand Case 2 : t; = 0.5 seconds.

The desired and actual trajectories of the cutput for Cases
1 and 2 are shown in Figures 4 and 5 respectively. The out-
put tracking errors for Cases 1 and 2 are shown in Figures 6
and 7 respectively. The maximum error during transients
for Case 1 is relatively small (around 0.7°); whereas, the
maximum error during transients for Case 2 is around 3.5°,
which is significantly larger than in Case 1.
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Figure 4: Desired (solid) and actual (dotted) output trajec-
tones for Case 1

=,

s 1
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Figure 5: Desired (solid) and actual (dotted) output trajec-
tories for Case 2

Furthermore, when applied to a one-link flexible manip-
ulator, causal inversion has the advantages of not requiring
the preloading for the links (as does stable inversion), as
well as eliminating the need to solve the nontrivial solu-
tion of a set of partial differential algebraic equations (as
required by the nonlinear regulation approach).
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Figure 6: Output tracking error trajectory for Case 1
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Figure 7: Output tracking error trajectory for Case 2

6. CONCLUSIONS

This paper has introduced a new procedure for designing a
nonminimum phase output tracking controller driven by a
causal reference profile. This new controller achieves stable
e—tracking. Simulation results demonstrate that the causal
inversion approach is very effective for obtaining output
tracking for flexible manipulators.
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