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Abstract—Tip trajectory tracking for a flexible link robotic
manipulator is a challenging problem. Due to the nonmin-
imum phase nature of the system, existing methods en-
counter difficulties achieving high level performance. The
classical causal inverses proposed by Hirschorn result in un-
bounded solutions to the inverse problem when the zero dy-
namics are unstable. Stable inversion introduced by Chen
and Paden obtains bounded but noncausal inverses for non-
minimum phase systems. In this paper, a causal inversion-
based controller is applied to a one-link flexible manipulator.
Simulation results demonstrate the effectiveness of the new
causal inversion approach in output tracking.
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I. INTRODUCTION

Flexible manipulators have many advantages over rigid
links: They are lighter in weight, consume less power, and
respond faster [12]. Due to the flexible nature of the sys-
tem, the dynamics are highly nonlinear and complex. The
most elementary task in robot control is driving the end-
effector of a manipulator to follow a given desired trajec-
tory. Flexibility in a manipulator will degrade trajectory
tracking control and manipulator tip positioning [7].

Early works on flexible manipulators were carried out by
Cannon and Schmitz [4] and Siciliano and Book [8]. Besides
the link flexibility, Yang and Donath also considered the
flexibility of the joint [15]. Bayo [2] applied the Fourier
transform to obtain stable but noncausal control input. De
Luca et al. [14] applied nonlinear regulation to the control
of nonlinear flexible arms and the asymptotic tracking of
the periodic output trajectory was achieved. However, it
requires the nontrivial solution of a set of PDEs.

Alternative approach to output tracking based on inver-
sion was studied by Brockett and Mesarovic [3] and Silver-
man [9]. These linear results were extended to nonlinear
real-analytic systems by Hirschorn [6] and Singh [10]. For
a given desired output and a fixed initial condition, all
these inversion algorithms produce causal inversions that
are unbounded for nonminimum phase systems. To over-
come these difficulties, Chen and Paden [11] developed a
stable inversion approach to solve output tracking control
of nonminimum phase systems. The down side is that sta-
ble inversion is noncausal.

In this paper, a causal inversion-based controller is de-
signed for a one-link flexible manipulator system. Com-

pared to stable inversion, causal inversion does not require
preloading the links. Compared to the nonlinear regulation
approach, causal inversion avoids the numerical intractabil-
ity of nonlinear PDEs.

The remainder of this paper is organized as follows. In
the next section, the class of reference trajectories under
consideration is defined and the causal inversion problem
is stated. Then a causal inversion solution for nonlinear
nonminimum phase systems is presented. Section III de-
scribes the system dynamics of a one-link flexible manipu-
lator, and the causal inversion approach is applied to design
a tip trajectory tracking controller. Section IV contains the
simulation results. Finally, concluding remarks are given
in Section V.

II. CAUSAL INVERSION

Problem Statement First, consider a nonlinear sys-
tem of the form

&= f(z) +g(z)u (1
) y = h(z) &)
defined on a neighborhood X of the origin of R", with
input u € ®™ and output y € RP. f(z) and g;(z) (the itk
column of g(z)) for ¢ = 1,2,- - -, m are smooth vector fields.
And h;(z) for i = 1,2,---,p are smooth functions on X,
with £(0) = 0 and h(0) = 0. For such a system, the causal
inversion problem is stated as follows [16]:

Causal Inversion Problem: Given a smooth reference
output trajectory yq(t) € L1N Lo, with y4(t) =0 fort <0,
find a control input %4(t) and a state trajectory Z4(t) such
that
(1) g and Zq are bounded, and

tg(t) = 0, Z4(t) -0, as t > o0

(2) Za(t) and @4(t) are causal; that is, Z4(t) = 0,24(t) =0
for t < 0, where Z4 is the desired state trajectory, and g4
is the nominal control input.

(3) Exact output matching is achieved

h(Za(t)) = ya(t)

(4) 24 — f(Zq) — 9(Z4)tia — 0 as t — oo.

Note that condition (1) ensures stability of the inverse
solution. Condition (2) gives rise to the term “causal” in-
version. In a strict sense, g is not a inverse solution, since

(3)
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applying @4 to the input of the system (1) and (2) will
not lead to y = yq4 in general. The solution @4 and Z,4 are
termed a causal “inverse” solution because of the condition
(8). Condition (4) further ensures that %g and Zg are in-
deed asymptotically inverse solutions to the dynamics (1)
and (2).

The condition y4(t) € Ly N Ly can be replaced by a
condition that requires 74(¢) € L; N Ly so that yg can
approach same constant values as frequently happens in
practical situations. This modification requires little mod-
ification of the general method. There is also a simple way
to ensure that yg(t) € L; N Ly and avoid modification
of the method itself. Recognize that in practice any tra-
jectory y4 will be bounded and has a finite duration for
being nonzero. One can simply modify yq after a sufficient
settling time after ¢; so that it comes back to 0.

Consider a nonlinear system of the form (1) and (2) with
the same number m of inputs and outputs and

y= (yl) Y2, 1ym)T

U= (U1,u2,‘ "yum)

h(z) = [h1(2), h2(2), -, hen (@)]T
9(z) = [91(), 92(2), - -, gm(@)]

Assume that the system has a well-defined relative degree
r = {ri,r2,* -, Tm}?T € N™ at the equilibrium point 0,
that is, in an open neighborhood of 0;
(iforall1<j<m,foralll1 <i<m,forallk <r;—1
and k > 0, and for all z,

Lg; Lshi(z) =0 4)
(ii) the m x m matrix B(z) with 8;;(z) = Ly, Ly‘—l)h,—(z)
is nonsingular.

Note that since the control u does not appear explicitly
in Equation (2), we have r; > 1 for all4, and r; —1 € N™
and the operation in the definition of 3 is well defined.
Furthermore, we assume that Y r; < n to avoid trial cases.

Under this assumption, the system can be partially lin-
earized. To do this, we differentiate y; until at least one
u; appears explicitly. This will happen at exactly the
ih derivative of y; due to (4). Define ¢ = ygk'l) for
i=1,---,mand k=1,---,7;, and denote [13]

§ = (E%f&%y"'s&#ﬂ{%y'"7532""7§;n )T

= (ylv 91""71/§r1_1), Y2, (1‘2—13.

s Y ,“"y,(’;m—l))T

Choose 7, an n — Y. r; dimensional function on R", such
that (¢7,77)T = 1(z) forms a change of coordinate with
%(0) = 0 [1]. In this new coordinate system, the system
dynamics of Equations (1) and (2) become

=6

514—1 = f:,»

for 1=1,---,m

;‘\_ = ai(é,n) + ﬂi(E, 77)“‘

n=q(§n) + e(&nu

which, in a more compact form, can be rewritten as:

y™ = a(g,n) + BE n)u (5)
n=q(&n) + e nu (6)

where
a(§,m) = Lrh(yp~(¢,n))
B(&,m) = LgLG h(~ (€M)

where o and 8 are formed by using a; and §; as the ith
row of @ and 3 respectively, and (0,0) = 0 since f() = 0.
By the relative degree assumption, 5(£,n) is nonsingular,
and the following feedback control law

u’ g7, n)lv — al€,n)] (7)

is well defined and partially linearizes the input-output dy-
namics relationship into a chain of integrators, ¥ = v,
where v € R™ is the new control input. For the inversion
problem, we require y(t) = yq(t) which leads to

v= y‘([)

(ra—1)

A . - o
=281 = (Yay, Ydio "+ Ya, b T

yYdas "> Yg, Y, (8)

Equation (6) becomes the zero dynamics driven by the ref-
erence output trajectory,

7=, €am) 9)

where

a1(€a,m) + g2(€a,mB™ (W™ (€a, )
WS - e~ (6a,m))).

When the reference trajectories are zero, the reference dy-
namics become autonomous zero dynamics. Assume =0
is a hyperbolic equilibrium point of the autonomous zero
dynamics. Linearizing the right hand side of Equation (9)
at the equilibrium point 7 = 0 gives

pw{ Eam) =

7= An+ b(t) (10)

where 850 ()
-
A= Eg(yd s€d7 77)|,,=Q, £4=0, ,y'(;‘)=0
b(t) = p(yg", €a,m) ~ An
For a real matrix A, there exists an invertible (n —3_ ;) %
(n — S°7;) matrix Pi, such that J = P 1 AP, where J is
the real Jordan form of A. Therefore, with the coordinate
transformation n = Pi[n, 7,]7, the reference dynamics in
the new coordinate is also in real Jordan form. As a result,
Equation (9) can be rewritten as
Ns = Agns + Bsyf{) + ds(y,({), €4y M3y ) (11)
N = Aulu + Buyt(ir) + du(y((ir)7£dv )

where A, has all eigenvalues in the open left-half plane with
dimension ns, A, has all eigenvalues in the open right-half
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plane with dimension n,, and ds(-) and d,(-) denote the
higher-order-terms (H.O.T.) of the expression.
From (11), two dynamic equations are defined as follows:

7'—75 = Aaﬁs + Bsy.(ir) + ds (yz(ir)v Ed’ ﬁh ﬁu)’ 7_78(0) =0 (12)

7._714 = Ay + Buyt(ir) + du(y((jr)v éd; sy ﬁu) + 7, ﬁu(o) =0 (13)
where £; = ¢4 and @ is to be chosen to reach the asymptotic
stability of (12) and (13). Here a causal inversion solution
is provided, which is different from that in [16].

By selecting & = —2Ay 7y — 2By —2du (0", €4, e, ),
(13) becomes

Tl = —Auftu— Bt —du (@S, €ayflor lu), 7u(0) = 0 (14)

Thus both 4, and — A, are Hurwitz. The H.O.T. d,(-) in
(12) and dy(-) in (14) are dominated by linear terms when
restricting attention to a sufficiently small neighborhood of
the equilibrium point. Then solving (12) and (14) yields so-
lution 7,(t) and 77, (t). We assume y) — 0 fori=1,---,r
as t — oo. Furthermore, 7,(t) — 0 and 7,(t) —» 0ast — oo
are obtained. Also, & = 0 for ¢ < 0 and for t > t;.

Since the system has a well-defined relative degree at the
equilibrium point 0, (z) = [T 77)T = [¢7, [, n.JPT|T
defines a local diffeomorphism. Its inverse is z = ¢(£, 7).
Define 7 = Py[l; ). Let

Zq= ¢(£—d7 ﬁ) (15)
g = 7 (€ MY - e, M) (16)
Then Z4 and @g are bounded, and Z4(t), Eqa(t) — 0 as ¢

ol

c0. And by the definition of £, h(Z4) = yq and L;h(Za)
y‘(;) for i < r are obtained.

Note that in [16], the main focus is to seek a minimum
9, which is very difficult for nonlinear systems. However,
in this paper, © is selected such that the mismatch between
7u(t) and 7, (t) generated by stable inversion could be min-
imized.

Thus a casual inversion solution to nonlinear systems has
been provided.

III. A ONE-LINK FLEXIBLE MANIPULATOR

A closed-loop controller for a one-link flexible manipula-
tor is designed in this section using causal inversion.

A. Dynamics Model

A nonlinear one-link flexible manipulator model is ob-
tained from [14]. A simple modeling technique divides the
flexible link into rigid segments that are connected by elas-
tic springs, where link deformation is concentrated. The
following treatment will be limited to the case of two equal
segments of uniform mass, moving along the horizontal
plane. Let m and ! denote the total link mass and length,
k the spring elasticity, and u the input torque. With refer-
ence to Figure 1, 8, is the angular position of the link base,

Fig. 1. A Simple one-link flexible manipulator

while 6, is the flexible variable. The dynamic equations are

1[5 ]+]

[ bi1(f2) bi2(62) c1(82,61,61) ]

bi2(f2) ba2 c2(01,61) + kb2 + dobo
=9 0 u
(17)
with the elements of the inertia matrix B(62) given by
b11(02) =a+ 20008(92)
b12(02) =b+ CCOS(eg)
bye =b

and Coriolis and centrifugal terms

c1 (02, 9:1, 92) = —C(ég + 2€1ég)sin02

c2(62,61) = cH3sinf,
where
a=5mf?/24, b=me?/24, c=ml%/16

In (17), d; and dy are damping coefficients representing
viscous friction at the joint and link structural (passive)
dissipation, respectively. State equations can be obtained
by setting z = (61, 62, 61,62) € R*.

The linearized expression of the end-effector angular po-
sition, as seen from the base,

1
Y= 91 + 592 (18)

will be taken as controlled output for the system.

B. Controller Design
Compute the time-derivatives of the output until the in-

put u appears explicitly. By setting 4 = v, solving for u
yields

U= 61(02791a 02) + dlél + bl_;[()z_:%gk
(c2(62,61) + kb2 + d262) + %Zri_;z_ﬁ%%;v
= a(z) + Blz)v

In the system after inversion, the input-output linearizing
coordinates are £ = (y, 9, 02,62). ¥(z) is simply a linear
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transformation in state space, which could be expressed as
follows:

y 1.3 00 6

g {_(0oo0o 11 62 | a
=01 00]|]|6|"¥® 9
62 00 01 [

Then the zero dynamics driven by the reference output
trajectory can be obtained by setting y(t) = yq(t),

2b12(82)
+ b12(02)—2633 ¥

The zero-dynamics of the system is then obtained by
setting y(t) =0

— 2(ez q,02,02)+k02+d202
b12(82)—2b3

21ad (20)
= p(yd7 Yd, Yd, 027 92)

((c/2)83sinf2 + 2(kf2 + d262)

b= b — ccosfy

(21)

It is easy to see that this two-dimensional dynamics is un-
stable in the first approximation.
Rewriting the differential equation (20) in state-space

form: . .
62 | _ 2
5 ]=m15

7 (yd, '.’Jda :i]da 027 62)|yd=0,gd=0,02=0,92=0
0 1
2k 24y

c— c—b

]+Bnyd+b(t) (22)

where

P

3

([
.————m:ig:

ixi

B(Ud, Uds Jd, 02, 02)Iyd—0)yd—0 62=0,62=0
2(b+c ]

c—b

I
—

b(t) = p(ya,Va,iia, b2,02) — Anl62,02)T — Byiia
2(C9251n92(yd,92,0)+k92+d292) + 2(b+ccos(62)) +
ccos(62)~b ccos{62)—b Y
_ k02+2d302+2!b+c Hd

c—b

With a linear transformation

HEJE

equation (22) is transformed into

(23)

{ 7s = AsNs + Bsfia + ds(ya, ¥a, a, s, )

N o 7 24
T = Aullu + Bufja + du (Y, Yd» Td» N, nu) ( )

where

Two dynamic equations are defined as follows:

fly = Asfls + Bayy o+ do(tr G G, s ), o (0) = O
77u = Aunu + Buyd + du(ych yds gda Ts» ﬁu) + v, ﬁu(o) =0
(25)
By choosing & = —2Aufjy — 2Buiia — 2du(Ya; Yd> Jd» Ts» )
and solving the following equations:

{ fls = Asfls + Bsia + ds(Ya, Ud, §d, s, lu), 1s(0) = 0

nu = _2Au.77u - 2B'u.yd - 2d (’.Ud, Yd, yda ns’ nu) "7u(0) =
(26)

Thus the bounded 7, and 7, can be obtained. Furthermore,

162g 624)T = Pi[fs 7u]T. Then it follows:
zld 10 -05 0 Ya
e =010 os||om| @
O24 000 1 Bod
The nominal input is then calculated by
g = c1(-) + drbrg + J—H—S‘)—H’lggz:_;ib?zf"’
(c2(") + Kb2a + dabfaa) + pmemigialsila
The controller is composed in the following structure
u=tg+ K(Zq — ) (28)

where Z; denotes the state variables of the forward dy-
namics, Zg = (014, 024, 014, 624). The feedback gain, K, is
chosen so as to stabilize the forward dynamics linearized at
the origin. With the parameters listed in the next section,

= [21.6660 6.5543 4.6608 1.4568] is a simple choice
from pole placement.

1IV. SIMULATION RESULTS

The parameters for the one-link flexible manipulator
were chosen the same as in De Luca [14] l =1m, m = 0.2
kg, k = 5 Nm/rad, and d; = dp = 0.01 Nm - sec/rad.

Let the desired output trajectory be defined as follows:

0<t<ty

Yqg = { 7;2(27“ (21r)2sin(21rt))’
2 t>t 7
as shown by the solid curve in Figure 2.

For the given trajectory, the following data were used:
yo = 0%y = 90°. The initial conditions are 6, = 6 =
b1=0,=0

Following the controller design strategy described in Sec-
tion III-B, all the simulation results are shown in Figures
(2-7).

Figure 2 shows the desired and actual trajectories for the
output. The output tracking error is shown in Figure 3.
The maximum error during transients is relatively small
(around 0.7°).

The difference of nominal control input generated by sta-
ble inversion and causal inversion is shown in Figure 4.
Since the stable inversion needs preloading, Figure 4 shows
that the nominal control input error is not zero at { = 0.
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1
Time t (sac)

Fig. 2. Desired (solid) and actual output trajectories for Case 1

Notice that the nominal control input error is relatively
small. The tracking performance for the angular position
and the link deflection can be seen from Figure 5 to Figure 8
respectively. The deflection remains limited and reaches a
peak value of around 2.5°.

oA

Ougas tracking ermor trajectory (deg)
& & o
< o o 8

H

° 02 04 08 o8 12 14 18 18 2

1
Time t (sec)

Fig. 3. Output tracking error trajectory

=l ~05 0

05
Time t (sec)

Fig. 4. Nominal control input error

Causal inversion applied to a one-link flexible manipula-
tor has the advantages of not requiring the preloading for
the links (as does stable inversion), as well as eliminating
the need to solve the nontrivial solution of a set of partial
differential algebraic equations (as required by the nonlin-
ear regulation approach).
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Fig. 5. Desired (solid) and actual angular position trajectory
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Fig. 6. Angular position tracking error trajectory

V. CONCLUSION

In this paper, a causal inversion-based controller is de-
signed for tip trajectory tracking of a flexible link robot
manipulator. This approach generates the causal nominal
input torque that enables reproduction of the desired tra-
jectory, while not requiring the usual preloading of the flex-
ible link to the proper initial state. At the same time, this
new approach avoids solving the nontrivial PDEs. Simula-
tion results demonstrate that the causal inversion approach
is very effective for obtaining output tracking for flexible
manipulators. Future work will continue on new applica-
tions of causal inversion.
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