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Abstract— In this paper, an adaptive learning al-
gorithm is applied to one-link flexible manipulator.
After each repetitive trial, Least-Squares method is
used to estimate the system parameters. The out-
put tracking error and the identified system model
are used through stable inversion to find the feed
forward input, together with the desired state tra-
jectories, for the next trial. An adaptive backstep-
ping based tracking controller is used in each trial
to ensure the regulation of the desired state trajec-
tories. Simulation results demonstrate that the pro-
posed learning control scheme is very effective in tip
trajectory tracking for a flexible link robotic manip-
ulator.
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I. INTRODUCTION

Many practical robot systems operate the same task
repeatedly. Due to this feature, it produces the repet-
itiveerr ors. Iterativelear ning control (ILC) is a feed
forward control approach aimed at achieving high per-
formance output tracking control by “learning” from
past experience so as to eliminate the repetitive er-
rors from future execution [3]. The concept of iterative
learning for generating the optimal input to a system
was first introduced by Uchiyama [9]. Arimoto et al.[4]
then developed the idea and first proposed a learning
control method for linear time-varying, continuous-time
systems. Moore (3] modified the Arimoto method and
extended it to systems with relative degree larger than
one. Furuta and Yamakita [12] presented a modification
of Moore’s method. Their algorithm provided conver-
gence in the sense of the Lz norm but required the com-
plete knowledge of the adjoints ystem, which is equiv-
alent to needing the complete knowledge of the system
dynamics.

Hauser presented a nonlinear version of Arimoto’s
method for a class of nonlinear systems [14] and
provided sufficient conditions for its uniform conver-
gence. Hauser’s method is more general than Arimoto’s
method. For a more specific structure, Sugie and Ono (8]
provided the learning controller given by a linear time-
varying system and showed its convergence under some
conditions. Kuc et al. [6] presented an ILC scheme for a
class of nonlinear dynamic systems. Saab {7] presented
sufficient conditions for the convergence of P-type learn-
ing algorithm for a class of time-varying, nonlinear sys-

tems.

Although existing learning algorithms have been the-
oretically proven to provide output error convergence
with successful applications, many such algorithms have
practical difficulties with nonminimum phase systems.
Amann and Owens [10] showed that a zero of the plant
in the RHP caused very slow convergence of the input
sequence and resulted in a nonzero error for some itera-
tive control algorithms . To remove the minimum phase
requirement, Gao and Chen [13] developed a new adap-
tive learning algorithm for stable linear systems based
on “stable inversion”. Wang and Chen {16] presented
an adaptive learning control algorithm for unstable non-
minimum phase systems.

Flexible manipulators have many advantages over
rigid links: They are lighter in weight, consume less
power, and respond faster {15]. Due to the flexible na-
ture of the system, the dynamics are highly nonlinear
and complex. Many flexible manipulator systems are
nonminimum phase. In this paper, an adaptive learn-
ing control algorithm[16] is applied to a one-link flexible
robot manipulator system.

The remainder of the paper is organized as follows.
Section II presents the adaptive learning control law.
Section III describes the system dynamics of a one-link
flexible manipulator and the adaptive learning controller
is applied to design a tip trajectory tracking control of
the manupulator. Finally, some conclusions are given in
Section IV.

II. ADAPTIVE LEARNING ALGORITHM

Consider a nonlinear time varying plant model in the
k** trial: '

ye(t) = B(zx(t), 6, ux(t)) )

where, for all t € [0,T], zx(t) € R", ux(t) € R™, y(t) €
$P. And 0 is a parameter vector.

In addition, we make the following assumptions:

(A1) The system has a well-defined relative degree r =
(r;,---,r.,.)T that is known. The linearization of the
system about an equilibrium point, which is assumed to
be the origin WLOG, is completely controllable.

(A2) The order of the system, n, is known.

(A3) The system parameter vector ¢ is unknown or
known incompletely.

(A4) A desired output trajectory is given and is a
sufficiently smooth function of ¢ satisfying ya(t) = 0 for
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any t € (—00,0] U [T, 00) and finite for any ¢ € (0,T), '

where T > 0.

(A5) The system can be represented in terms of con-
trol input ux(-) and output yx(-) in the kt* trial by
means of a nonlinear time-varying operator @ as follows:

we () = @{ux ()} @

And the operator ®{-} is uniformly globally Lipschitz
in ux on the interval [0, 7). That is, ||Puir — Pussrf <
Lijur(t)—ur+1(t)|l, Vt € [0,T] with a Lipschitz constant
0L L <oo.

Iterative Learning Control Problems :

Given a desired output trajectory ya(t) and a tolerance
error bound ¢ for a class of system (1) and (2), starting
from an arbitrary continuous initial control input ud(")
and initial state z8(.), iterative learning control will try
to find a sequence of desired state trajectories z2(-) and
desired control inputs ug(-), which when applied to the
system, produces an output sequence yi(-) such that

) oy () = yx(Mloo < €, 88 k£ — o0, where k is the
trial number and {|flloo = sup;e(o,7jll F-

(@) @ < & Iz(@)]] < €Vt € (—00,0] U [T, +00).

(3) uf(t), z%(t), uk(t), and zx(t) are uniformly
bounded

In this dynamic process, the functions have two ar-
guments: continuous time ¢ and the trial number k. In
the sequel, it is assumed that the variation of the op-
erator over two consecutive trials are slow and can be
neglected. Then the operator obtained by the identifica-
tion performed in the k** trial can be used to determine
the input for the (k+ 1) trial. This general description
of the problem allows a simultaneous description of lin-
ear or nonlinear dynamics, continuous or discrete plant,
and time-invariant or time-varying systems.

When applying a linear ILC, however, the plant must
fulfill the following conditions: (1) The desired trajec-
tory ya4(t) is identical for every trial and satisfies As-
sumption (A4). (2) Each trial has the fixed period T.
(3) The system parameters are fixed or very slowly time-

g.

At any trial k, define a tracking error to be ex =g —
yi. Learning control convergence means that |jex}] — 0
as k — oo. The A-norm defined in Arimoto et al. [4]
has been adopted in many papers [3] as the topological
measure in the proof of the convergence property for
a newly proposed ILC. The formal definition 4] of the
A-norm for a function f :[0,T]— R" is given by

IFIx & sup e IF(D)] 3
te(0,T]

1t is easily observed that [|fila < Iflle < &71Iflln

for A > 0, where [|fllc 2 supif(t)lloo, implying the
A—norm is equivalent to the sup norm.

The block diagram of the adaptive learning system is
shown in Figure 1 [16]. . .

The proposed adaptive learning control strategy has
three components: a parameter estimator, a stable in-
verse system, and an adaptive backstepping feedback
controller. The parameter estimator is in charge of
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Fig. 1. Block Diagram of Adaptive Learning Control Sysi;em

“learning” the parameterized model of the system. Dur-
ing each trial, the input and output trajectories are
recorded. Then off-line Least-Squares method is applied
to obtain the optimal estimate of parameters. Also ob-
tained during each trial is the output tracking error sig-
nal. This error signal and the estimated model are used
by the stable inverse system to learn the optimal input
signal for the next trial. Although the estimated model
may be nonminimum phase which normally leads to un-
bounded inverse solutions, stable inversion guarantees a
unique and bounded inverse solution. This “learning”
action is done “off-line” between two consecutive tri-
als. Afterwards, the new feed forward input is used by
the adaptive backstepping feedback controller to stabi-
lize the system and to ensure regulation of the tracking
error. The controller is designed following a recursive
backstepping procedure and it takes advantage of the
parametric strict-feedback structure of the system. The
controller parameters are also continuously updated in
real-time using an adaptive control law. The same feed-
back control algorithm is used during every trial. In the
following, we give the implementation of the adaptive
learning algorithm for continuous-time systems.

A. Solution to Stable Inversion of nonminimum Phase
Systems

Consider a LTI system in the form:

8

If G is nonminimum phase, this will lead to un-
bounded solutions. The stable inversion theory [5] pro-
vides an avenue to overcome this difficulty. The proce-
dure to obtain a unique stable inverse solution u¢ = Hyy
is illustrated below. There are four steps: A

(1) Find the time-domain state-space model of G :

Since Gu® = GH Y4 =4 , b state-space representation
of G yields

= Az + Bu
y=Cx+ Du

Az®(t) + Bu®(t)
Czi(t) + Du’(t)

2%(t) @)
ya(t) (5)

where z° is the state and A, B,C, and Dare matrices
with suitable sizes.

(2) Find its inverse in state space:

Differentiate ya(t) until u® appears explicitly in the
right hand side. Solvefor u? and substitute into (4)
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and (5) to obtain

() = Az*(t)+ By () (6)
w@) = Gzt + Dyl @) (N

where A, B,C, and D are defined according to the sub-
stitution.

(3) Decompose the inverse system into center, stable,
and unstable subsystems:

Perform a change of variables so that

2% = P2 =P[5, 2", "7 ®)

which leads to
¥ = A%+ B"'y‘(,r) 9)
# = A2+ B (10)
M =AY +Buy'(ir) (11)
o= [c°C CY* 2 M+ f)yg') (12)

where A°, A®, and A" are real Jordan matrices of suit-
able dimensions; A° has r eigenvalues at zero; A® has
all eigenvalues in the open left-half plane; A* has all
eigenvalues in the open right-half plane.

(4) Obtain the stable inverse system:

Pick the transformation matrix P so that the center
subsystem is a simple chain of r integrators. Solve that
and impose two boundary conditions on the stable and
unstable subsystems to yield

2f= [ydyyd,"'vygr-l)]T (13)
F =A% +BY,t>0,2°(t) =0, V<0 (14)
=A%+ BYY O t<T;2%t)=0, Vt>T (15)

These together with (8) and (12) define the desired sta-
ble inverse system.

The stable inverse system always yields bounded so-
lutions for bounded and smooth ya. This can be clearly
seen from (13, 14, 15) since the center solution z° is
clearly bounded, the stable subsystem is in the forward
time, and the unstable subsystem is in the reverse time,
all leading to bounded solutions.

In this paper, we only consider LTI systems in this
form:

Ti-1,k = Tik; i=2,3,---,n

E . 2{ Enk = Tpa + Uk

yi = Cxi

Based on the stable solutions outline presented above,
to facilitate iterative learning, we modify the inversion
process slightly as follows. Referring to Figure 1, let G
denote the system operator from ux to yx. Let ux4y be
the new input for the next trial. Then the new tracking
error signal will be

€k+1 = yd — Gursl
= Yd — G("ﬁﬂ + tix41)
=€k — G(":H — uf) ~ G(iik+1 — k)

Then we get
ek+1 + Glk+1 — k) = ex ~ Guiy)

where uf,; = ufi4; — uf.

The goal of designing learning control law is to make
ex+1(-) gradually decrease as k increases. For any re-
maining errors, the feedback control action will try to
reduce them. Therefore, wes imply set ex4+: = 0 and
fik41 — @k = O to design uf, ;. That is, we want

ex = Guip (16)

Since G is unknown and Gy, is the best estimate model
after the k** trial, we will use

ui“ = I?kek an
zf = Piz= P25 2% 20T (18)

so that e = ékui_H. Then our learning algorithm
would be

uﬁ.H = u2+ui+1 (19)
$:+1 = 21':+$i+1 (20)

As a further modification, one may introduce a forget-
ting factor & (0 < a < 1) and use:

ups = uf+ouiy, (21
d d 3 B
Thyr = Tk +QTiy (22)

where uf,; and z%,, are given by (17) and (18), which
are the stable inverse solutions from ex and Gy. (Note
that: in the rest of the paper, u®,z%, and u® represent
uf 1,28, and uf,; respectively for notational conve-
nience).

However, the controller design in the next subsection
will still assume a = 1 so that 1%, %, and ya satisfy the
dynamics of Gk, that is :

{ :&:-i_1=xg; 1=2,.-,n
E o 8 =afz? +u
ya = Crz®

B. Adaptive Backstepping Controller Design

There are a lot of methods to design a controller.
Since the parameters of the systems are unknown, we
need to design an adaptive controller. Here we follow a
popular approach of adaptive backstepping design [2].

Define Zx= zi — 2% and fis= ux — u%. For clarity,
we will drop the subscript k in sections 3.2 and 3.3 if it
does not cause confusion. One can easily verify:

S Zioi =% i=2-n
1| En=2Ta+[a-a]Tz%+ @
The goal is to design @ to guarantee the regulation of

Z. Since a is unknown, let ¥(t) be the on-line estimate
of a and rewrite the last equation as follows:

Fn =29+ [W—a)Tz? + i+ [a—-9)T(E+29)
=T (£)d + iz



where & = a—1, $7(%) = 27 Then }, is in a standard
form with matchmg condition, then the goal becomes to
design iz to guarantee the regulation of Z. Details of the
derivations are skipped here, but the final controller is

given by:

u = wWad-F9-[9-a Tz (23
B2 = an(,9) (24)
9 = Dyz. (25)

where I' is an adaptation gain matrix. "The variableé' 2
and the stabilizing functions ai,i = 1, ..., n, are defined
by the following recursive expressions:

zi=Zi— a;_l(a':;, cen ,.’E.‘_l)(26)
@i = CiZi — Ziel +Z a-'_‘i:ﬂ, i=1,-,n—1(27)
=1
o7 3an_1 -
Qn = Cn2n — Zn-1—Y U +Z » Zip1 (28)

=1
This adaptive controller guarantees global boundedness
of Z(t),9(t), and regulation of Z:(t),i = 1,...,n, ie.,
£i(t) —» 0, as t — oo.
C. Parameter Estimator

Off-line Least-Squares method is used to estimate the
parameters. To get d@x41, we use the method as follows:

Gry1 = didx + (1 — di)ax (29)

where di € [0 1) is a memory factor and ax is deter-
mined by using off-line Least-Squares method [1] using
data from the k** trial. First using filter for the last
equation of }_,, we get

1. 1 g 1
PP SIS P 30)
1 1 %
- = T :
A SEAT : (31)
an-1+A

where A > 0. Then weha ve Z = W7Ta,, where Z =
(zn— H%\u), and W7 = ;jjo. By solving the ordinary
differential equations (ODE), we getadd ~ W. Now col-
lect all the data of Z and W. Suppose there are totally

M samples for the k** trial. Let & = [W, s, WHIT
and the regressor vector be ¥ = [Z;,-- ZM]T The
Lease-Squares solution is

ay = (0T0) o7y (32)

From this we get @r. Then Gr41 is obtained by (31).
Similarly, for the linear model,

y=Cz (33)

We can use the same argument to get the estimates of
C, except that no filtering is needed.

D. Adaptive Learning Algorithm

The process of the algorithm is as follows:

Step 0 : Given ¢, the initial conditions do, Co, the
initial input u§(¢) = 0, and initial state trajectory
z8(t) = O on t € [0, T]. Set k=0:

Step 1: Let ex(t) = (t)— yk(t) Get Gy, from & and
Cr. Use stable inversion to get uk+1 = Hyex a.nd Thg1-
Use equstion (21) and (22) to get uf,, and z,,.

Step 2: uf,,(t) is used as feed forward by the adap-

" tive backstepping feedbackcon troller to stabilize the

system and to ensure regulation of z§, (), i.e., z(t) —
zg,,(t), as t — co. The input and output trajectories
are recorded respectively.

Step 3 : Then the tracking error signal ex+1(t) is
calculated. If |lex+1(:)[lo < ¢, stops. Otherwise. set
k=k+1,and goto Step 4.

Step 4: Use off-line Least-Squares method to obtain
the parameter estimates é) and Ck, and go back to Step
1.

III. A ONE-LINK FLEXIBLE MANIPULATOR

The proposed adaptive learning control algorithm is
applied to a one-link flexible manipulator.

A. Dynamics Model

A nonlinear one-link flexible manipulator model is ob-
tained from (11]. A simple modeling technique divides
the flexible link into rigid segments that are connected
by elastic springs, where link deformation is concen-
trated. The following treatment will be limited to the
case of two equal segments of uniform mass, moving
along the horizontal plane. Let m and ! denote the to-

Fig. 2.A Simple one-link flexible manipulator

tal link mass and length, k the spring elasticity, and u
the input torque. With reference to Figure 2, 6, is the
angular position of the link base, while 62 is the flexible
variable. The dynamic equations are

b11(62) b12(62) 91 + Cl_(ozyélyél) .
bi2(62) b2 62 c2(01,61) + k2 + d262
(1],

(34)



with the elements of the inertia matrb(‘B(Oz’) given by

b11(62) = a + 2ccos(62)
b12(62) = b+ ccos(fz)
bz =0

and Coriolis and centrifugal terms

c1 (021 élyé2) -—:‘ —C(é% + 29‘10‘2)8“102
c2(62,0:) = ch3sinb

where )
a = 5me?/24, b=ml?/24, c = me?/16

In (34), d1 and d2 are damping coefficients representing
viscous friction at the joint and link structural (passive)
dissipation, respectively. The linearized expression of
the end-effector angular position, as seen from the base,

1
y=6i+ 592 (35)

will be taken as controlled output for the system.

The parameters for the one-link flexible manipulator
were chosen the same as in De Luca [11] l=1m, m =
0.2 kg, k = 5 Nm/rad, and d1 = d2 = 0.01 Nm-sec/rad.

The state-space of the linearized model is described
by:

= Az + Bu
y=Czx

where z = (61,602,01,62) € R*,

[0 1 0 0
_ 100 1 [¢]
A= 0 0 0 1
| 0 —4114 -2744 -6.171
[0
0
B= 0
L1

C = [41140 82.29 -17.14 0]

B. Simulation Results

Let the desired output trajectory be defined as fol-
lows:

201 _ 1
o (=t — Goymsin@g ) 0Stst
g‘ t>1ig

as shown by the solid curve in Figure 3.

For the given trajectory, the following data were used:
yo = 0°%,y; = 90°. The initial conditions are 6, = 6; =
6 =62=0.

The parameters a = [0 —4114 -2744 —6.171]7, C =
[41140 82.29 — 17.14]. This system has two poles at
—2.3339 + 52.2641¢, one pole at -1.5031, and one pole
at 0. Two zero are at 51.4515 and -46.6504 respectively.
Take the initial conditions o = [0.5 — 4110 — 2740 —
6.1)T, Co =[4113881.5 — 16.8]. Take an initial input

=1 Y o 1 15

05

Timet

Fig. 3. Tip trajectory tracking for one-link flexible robot
manipulator

u3(t) = 0 and initial state trajectory z3(t) = 0. Follow-
ing the learning controller design strategy described in
Section II, the simulation results for the trial £ = 1 and
k = 2 are shown in Figure 3.

At the 2™ trial, the output y2(t) converges to the de-
sired y4(t) exactly by the dotted curve. Table 1 shows
the parameter estimates. We can see the estimated pa-
rameters are very close to the true values at the 4™
trial.

The above results demonstrate that the proposed
learning control is very effective in reproducing the de-
sired trajectories for one-link flexible manipulator. No-
tice that preloading is required in this case.

IV. CONCLUSION

An adaptive learning algorithm was proposed for one-
link flexible robot manipulator. The adaptive backstep-
ping feedback control law is employed to guarantee reg-
ulation of tracking error and a stable inverse system is
used to update the feed-forward input for the next trial.
Given a desired trajectory, the learning controller is able
to learn and eventually drive the closed loop dynam-
ics to track the desired trajectory. Simulation results
demonstrate the effectiveness of the proposed method.
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