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Abstract— This paper introduces a new robust
inversion-based learning algorithm for the repetitive
tracking control of a class of unstable nonminimum
phase systems. After each repetitive trial, the Least-
Squares method is used to estimate the system pa-
rameters. The output tracking error and the iden-
tifled systemn model are used through stable inver-
sion to find the feed forward input, together with
the desired state trajectories, for the next trial. A
robust controller is used in each trial to ensure the
stability of the systems and the output tracking error
convergence. Sufficient conditions for learning con-
trol convergence are provided. Simulation studies on
the systems with gain uncertainty and time constani
uncertainty are also presented. In addition, simula-
tion results demonstrate that the proposed learning
control scheme is very effective in reproducing the
desired trajectories.

Keywords— Learning Control, Inversion, Nonmini-
mum Phase, Ftobust Control.

I. INTRODUCTION

Iterative learning control (ILC) is a feed forward con-
trol approach aimed at achieving high performance out-
put tracking control by “learning” from past experience
s0 as to eliminate the repetitive errors from future exe-
cution [3]. The concept of iterative learning for gener-
ating the optimal input to a system was first introduced
by Uchiyama [10]. Arimoto et al[4] then developed the
idea and first proposed a learning control method for
linear time-varying, continuous-time systems. Moore
[3] modified the Arimoto method and extended it to
systems with relative degree larger than one. Furuta
and Yamakita [12] presented a modification of Moore’s
method. Their algorithm provided convergence in the
sense of the L, norm but required the complete knowl-
edge of the adjoint system, which is equivalent to need-
ing the complete knowledge of the system dynamics.

Hauser presemted a nonlinear version of Arimoto's
method for a class of nonlinear systems {15] and
provided sufficient conditions for its uniform conver-
gence. Hauser’s method is more general than Arimoto’s
method. For a more specific structure, Sugie and Ono [9]
provided the learning controller given by a linear time-
varying system and showed its convergence under some
conditions. Kuc et al. [7] presented an ILC scheme for a
class of ponlinear dynamic systems. Saab [8] presented
sufficient conditions for the convergence of P-type learn-
ing algorithm for a class of time-varying, nonlinear sys-

tems. Jang et al. [6] proposed an ILC method to achieve
precise tracking control of a class of nonlinear systems.
Comprehensive analysis, design, and applications of ILC
could be found from {3] and [1].

Although existing learning algorithms have been the-
oretically proven to provide output error convergence
with successful applications, many such algerithms have
practical difficulties with nonminirmm phase systems.
Amanr and Owens [11] showed that a zero of the plant
in the RHP caused very slow convergence of the input se-
quence and resulted in a nonzero error for some iterative
control algorithms . To remove the minimum phase re-
quirement, Gao and Chen [13] developed a new adaptive
learning algorithm for stable linear systems based on
“gtable inversion”. Based on Gao and Chen's algorithm,
Ghosh and Paden [14] developed an ILC algorithm for
nonlinear nonminimum phase plants with input distur-
bances and cutput sensor noise. The algorithms de-
veloped by Ghosh and Paden assume that the plants
are stable and assume the system parameter are known.
Wang and Chen [16] preserted an adaptive learning con-
trol algorithm for unstable nonminimum phase systems.
In this paper, a robust learning algorithm that can guar-
antee the learning control convergence is developed to
work for unstable nonmininrmum phase systems . Simu-
lation studies are presented to show the effectiveness of
the proposed robust learning algorithm.

The remainder of this paper is organized as follows:
In the next section, a class of desired trajectories un-
der consideration is defined and the problem of ILC is
stated. The learning control convergence issue is also
addressed. Section III presents the new robust learning
control law and a sufficient condition for the conver-
gence property of the proposed ILC. Section IV applies
the proposed robust ILC to the linear systems with gain
uncertainty and time constant uncertainty. Section V
shows the simulation results for these two types of lin-
ear systems. Finally, some conclusions are given in Sec-
tion VI.

I1. FRAMEWORK AND PROBLEM STATEMENT

Consider a nonlinear time varying plant model in the
k'™ trial:

() = B(zx(1), 0, ue(?)) (L

where, for all £ € [0,T], zx(2) € R", ux(t) € R™, m(t) €
RP. And ¢ is a parameter vector.
In addition, we make the following assumptions:
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(Al) The system has a well-defined relative degreer =
(ri,---,7m)T that is known. The linearization of the
system about an equilibrium point, which is assumed to
be the origin WLOG, is completely controllable.

{A2) The order of the system, n, is known,

{A3) The system parameter vector # is unknown or
known incompletely.

{A4) A desired output trajectory is given and is a
sufficiently smooth function of ¢ satisfying ya(t) = 0 for
any t € (—o0,0} U [T, 00)and finite for any t € (0,T),
where T > (.

(A5) The system can be represented in terms of con-
trol input u(-) and output yk(-) in the k™ trial by
meaus of a nonlinear time-varying operator & as follows:

we() = &{ux (")} (2)

And the operator ${.} is uniformly globally Lipschitz
in uron the interval [0,7). That is, ||Pur — Purs|| <
L|jue(t) —ues1(t)}}, ¥t € [0, T) with a Lipschitz constant
0< L <o

Iterative Learning Control Problems:

Given a desired cutput trajectory yz(t) and a tolerance
error bound e for a class of system (1) and {2), starting
from an arbitrary continuous initial control input ud(-)
and initial state zg(-), iterative learning control will try
to find a sequence of desired state trajectories 2%(-) and
desired control inputs ug(-), which when applied to the
system, produces an output sequence yx(-) such that

(1) llve() — (- Moe < €, as k — oo, where k is the
trial number and || flloc = sup;ego 7 lif(E)-

(@) @)l < & =g (t)]] £ &Vt € (—o0,0] U [T, +ox).

(3) uf(e), z¢(2), ux(t), and zi(t) are uniformly
bounded.

In this dynamic process, the functions have two ar-
guments: continuous time ¢tand the trial aumber k. In
the sequel, it is assumed that the variation of the op-
erator over two consecutive trials are slow and can be
neglected. Then the operator obtained by the identifica-
tion performed in the k" trial can be used to determine
the input for the (k+1)t* trial. This general description
of the problem allows a simultaneous description of lin-
ear or nonlinear dynamics, continuous or discrete plant,
and time-invariant or time-varying systems.

When applying a linear ILC, however, the plant must
fulfill the following conditions: (1) The desired trajec-
tory ya(t) is identical for every trial and satisfies As-
sumption (A4). (2) Each trial has the fixed period T.
(3) The system parameters are fixed or very slowly time-
varying.

At any trial k, define a tracking error to be ex = ya —
yx. Learning contro! convergence means that [lex|| — 0
as k — oo. The A-norm defined in Arimoto et al [4]
has been adopted in many papers (3] as the topological
measure in the proof of the convergence property for
a newly proposed ILC. The formal definition [4] of the
A-norm for a function f :[0,T]— R” is given by

£ 2 sup e |7 () 3)
te[0,7]

"*:" 44— Tovarion-based a COf-Yine Modsl  f—
Xy #——  Leaming i
Fig. 1. Block diagram of inversion-based learning control
system

1t is easily observed that [|fllx < fllee < 7|7l

for A > 0, where [|flloo 2 supllf(t)licos implying the

A—norm is equivalent to the sup norm.

I11. INVERSION-BASED LEARNING CONTROLLER
DESIGN

In Section II, we have given the general setup for
learning control. In this section, a robust learning con-
troller will be presented, The block diagram of the ro-
bust learning system is shown in Figure 1.

The proposed robust learning control strategy has
three components: a parameter estimator, a stable in-
verse system, and a robust feedback controller, The
parameter estimator is in charge of “learning” the pa-
rameterized model of the system. During each trial, the
input and output trajectories are recorded. Then off-
line Least-Squares method (2] is applied to obtain the
optimal estimate of parameters. Also abtained during
each trial is the output tracking error signal. This error
signal and the estimated model are used by the sta-
ble inverse system to learn the optimal input signal for
the next trial. Although the estimated model may be
nonminimum phase which normally leads to unbounded
inverse solutions, stable inversion guarantees a unique
and bounded inverse solution. This “learning” action
is done “off-line” between two consecutive trials. After-
wards, the new feed forward input is used by a feedback
controller to stabilize the system and to ensure regula-
tion of the tracking error. The same feedback control
algorithm is used during every trial,

In the following, sufficient conditions of learning con-~
vergence for linear systems are to beaddress ed. The
stable inversion solution to nonminimum phase systems
is provided as well.

A. Sufficient condition of learning convergence for lin-
ear systems
One of the advantages for linear systems is that one
can obtain an explicit relation between [|exy1ljoc and
flex oo
For LTI systems, the learning control update law is
chosen as

d d 7
Uy = Ui + Hier

where Hy is a linear operator.




A fixed controller could be chosen. Thus, the output
tracking error is described as follows:

ek+l = Yo - Ykl
= ek + Guk — Gug+1
= (I - GHx)ex + Glilk — ftx41)
= (I ~ GHy)ex + G(Kex ~ Kegy1)
=(I+GK - GH)ex ~ GKerqy

it yields

Ertl = (I+GK)_1(I+G!(— GHy)ex
=TI — (I +GK)"'CH)ex

Furthermore, taking the norms yields
lekttlleo = 1 = (I + GE) ™' GHilloollekloo
Then the sufficient condition for learning convergence is
=+ GK) T 'CH)||ee < p < 1 4)

with p € (0,1).

There are several options for choosing H, and con-
troller K. Among these options, Hrcan be selected as
the stable inverse of (I+GK)™'G. And A can be chosen
as a robust controller if the systems have some uncer-
tainties.

In the following section, a solution to stable inversion
of linear nonminimumn phase systems is presented.

B. Solution to stable inversion of nonminirmum phase
systems

Consider a LTI system in the form:
E )] £#=Az+ Bu
1) y=Cz+Du

If ¢ is nonminimum phase, this will lead to un-
bounded solutions. The stable inversion theory [5] pro-
vides an avenue to overcome this difficulty. The proce-
dure to obtain a unique stable inverse solution w=H Yd
is illustrated below. There are four steps:

{1) Find the time-domain state-space model of G :

Since Gud = GH Y4 = ¥d, & State-space representation
of G yields

#(t)
ya(t)

where z¢ is the state and A, B, ¢, and D are matrices
with suitable sizes.

(2) Find its inverse in state space:

Differentiate yq(t) until u? appears explicitly in the
right hand side. Solvefor % and substitute into (5)
and (6) to obtain '

Az (&) + Bu(t) (5)
Cxl(t) + Du(t) (6)

) = A=)+ By ™
wlt) = Cx(e) + Dy () ®)

where A, B, C, and D are defined according to the sub-
stitution.

(3) Decompose the inverse system into center, stable,
and uynstable subsystems:
Perform a change of variables so that

%= Pz = P[z%, 2, 2*]" ®
which leads to
# o= A%+ By (10}
#* = A7+ Bh" (11)
3% = Auzu_'_Buy‘(’r) (12)
W = [C° ¢ O 2 T4+ Dy (13)

where A°, A?, and A" are real Jordan matrices of suit-
able dimensions; A° has reigen values at zero; A® has
all eigenvalues in the open left-half plane; A* has all
eigenvalues in the open right-half plane.

(4) Obtain the stable inverse system:

Pick the transformation matrix P so that the center
subsystem is a simple chain of r integrators. Solve that
and impose two boundary conditions on the stable and
unstable subsystems to yield

2% = [ya,¥dy - ,y.(f_l)]T (14)
F=A+ By t20,2°(6) =0, Yt<0 (15)
M= AT BY S T2 =0, V=T  (16)

These together with (9) and (13) define the desired sta-
ble inverse system.

The stable inverse system always yields bounded so-
lutions for bounded and smooth yg. This can be clearly
seen from (14, 15, 16) since the center solution z° is
clearly bounded, the stable subsystem is in the forward
time, and the unstable subsystem is in the reverse time,
all leading to bounded solutions.

Based on the stable solutions outline presented above,
to facilitate iterative learning, the inversion process is
slightly modified as follows.

Since G is unknown and G, is the best estimate model
after the k™ trial, one would select

Uk = Hiex (17)
Thy1 = Pez = BJ2%, 2%, 2% (18)

50 that ex = Grufy,. Then the learning algorithm be-
comes
11-:-;-1 = ’U: + ulec+1 ' (19}

There are various methods to design the feedback con-
troller. For systems with uncertainties, a robust con-
troller will be chosen to stabilize the systems.

In the following section, the implementation of the
robust learning algorithm for two types of LTI systems
is presented.

1V. LEARNING CONTROL OF LINEAR SYSTEMS WITH
TUUNCERNTAINTY

Sufficient conditions for learning control convergence
for linear systems with gain uncertainty and time con-
stants uncertainty are provided in this section.



A. Learning Control of Systems with Gain Uncertaigty

In this section, the following type of linear nonmini-
mum phase system with gain uncertainty is considered.
Let the set of possible plants be

Gp(3) = kxGols),

where Gg(s) =
b> -az
For the above system, the uncertainty can be ex-
pressed as the following multiplicative uncertamty
Gy(s) = k(1+rA)Go(s) |Af < 1wherek = —m“ﬁm
and r =
The closecf loop transfer function is given as

kmin < kp < kmax

25t with z > O,a < 0,b > 0, and

ko (3—2)

(s—
s!+(a+k,K)s+b—kaz

To guarantee the stability of the system, the following
inequalities should be satisfied:

kpKz > —az
kpKz <b

The robust controller can be chosen as

—abz
w (20)

which means

v—abz(l—r) > ~az
V—abz{l+r) <b

Thus, to guarantee the stability, r should satisfy

r < min(l + — -1) (21)

\/'—v’_'"'

For a specific example, setting ¢ = —1,z = 3,b =
12, kmin = 0, and kmnaz = 4, the following system is
considered

Gols) = hy e

——;m, 0<kp<4 (22)

where kp = 2,15.

This system has a zero at 3, and has poles at 0.5 &+
3.4278i. The causal reference output trajectory is given
by:

_ J 5—5cos(0.47t), te]0,5]
=19, otherwise

as shown by the solid curve in Figure 2. Then by (21}, to
guarantee the systems stability,r should satisfy » < 0.5.
If A, is chosen as the stable inverse of (T+G,K) ' Gy,
then by (4) and (20}, to guarantee the learning conver-
gence, the following condition should be satisfied,

- (I + G,,K)_IG,,I:I;CHM

=1 - kp{s—3) 82 —s+ 12+ Kkp(s—3) I
- a?—;+]2+}(_kp(s—3) kp(s—3) o
|- _ kpK(kp—kp) 5—3 [loo

kp 82 ~34 12+ Kkp(2—3)

=2+ 41“(1 + ‘l") ” sz-a+l';+l"::kp(573)
<p<l1

Hence the range for r to guarantee the learning con-
vergence is r € [0,0.092). Combined with r < 0.5, to
guarantee both the learning convergence and the stabil-
ity of the system, r should satisfy r € [0,0.092]. Thus
fop € [R(1 — ), k(1 + 7}, i.e., By € [1.816,2.184], which
means the estimated parameter k, should be restricted
in the above range in order to guarantee the learning
convergence.

B. Learning Control of Systems with Time Constant
Uncertainty

In this section, the following single-input single-
output linear nonminimum phase system with time con-
stant uncertainty is considered. Let a set of plants are
given by

Gpls) = -r,,a-H_: Tmin < Tp < Tmaz

where Go(s) = 1= with z —p > DmazdTmingy > 0
and Tmin > 0. For the abovesys tem, t.he uncertainty
can be expressed as the following inverse multiplicative
uncertainty:

Gof= = T .
Gp(3) = ,.,—(19;(;}37 [A] < 1 where 7 = TmaziTmin

and r = w The closed-loop transfer ﬁmctxon
is given as

Tps +(!-rpp+K).u-p—Kz

To guarantee the stability of the system, the following
inequalities should be satisfied:

ko Kz > —az
kpKz < b

The robust controller can be chosen as

pz[l — T(1+ r)p]

K=- 2 (23)
Then it yields
{ r< £ -1
1-7(l+r)p>0
Thus, to guarantee the stability, » should satisfy
r<min(f_‘;—zp—l,%-l) (28

For a specific example, setting z = 4,p = 1, kmin = 0,
and kma= = 1, the following system is considered

_ s~4 u

Ve s+ -1

where 7, = 0.473. This system has a zerc at 4, and

has poles at -2.1142 and 1. The causal reference cutput
trajectory is given by:

0<p<l (25)

_ | 10— 10cos(0.2nt), ¢ < [0,10
Ya = 0, otherwise

as shown by the solid curve in Figure 5.



Then by {24), to guarantee the systems stability, r
should satisfy
r<0.5 (26)

Tf Hy is chosen as the stable inverse of (I+G, K) ™ 1Gy,
then by (4) and (23), to guarantee the learning conver-
gence, the following condition should be satisfied,

= (1+ G 'GpHill o
—_ i—4

=1~ S;rpa+1)(s—p.2'_+K(s—12+K o
== 3 - 0= D eme-nexenle

145 a—10 8k
= 2r + 2l e R e
<p<l

(oot (gl K(=t)y

Thus the range for r to guarantee the learning conver-
gence is r € [0,0.273]. Combined with (26), to guar-
antee both the learning convergence and the stability
of the system, r should satisfy r € {0,0.273]. Hence
7p € [F(1—7),7(1+7)], i.e., 7p € [0.3635, 0.6365], which
means the estimated parameter fp should be restricted
in the above range in order to guarantee the learning
convergence.

V. SIMULATION RESULTS

In this section, two specific examples (22) and (25) are
simulated. Here, suppose only cutput and input signals
can be measured. And there is random noise on output
measuremernt, which has mean 0 and deviation 0.01.

For both two examples, three cases are simulated. For
all the three cases, the least-squares method is used to
estimate the unknown parameter. For Case 1, take the
initial condition within the range. The estimated pa-
rameter is always enforced within the range by projec-
tion. For Case 2, take the initial condition beyond the
range. The true estimated parameter is used without
projection. For Case 3, take the initial condition beyond
the range. The estimated parameter is always enforced
outside the range.

The initial conditions of the unknown parameters for
these two examples are shown in the following table:

TABLE 1
INITIAL CONDITION OF THE UNKNOWN PARAMETERS FOR
Two- EXAMPLES.

L Ezample 1(ky,) | Example 2(#;) ]
Case 1 1.98 0.6
Case 2 6 1.5
Case 3 6 1.8 |

Given an initial input ug(t) = 0, simulation results
for the trial £ = 1 and k& = 2 are shown in Figure(2-4)
for Example 1 and shown in Figure(5-7) for Example 2.

For both two examples, at the 2% trial, the output
y2(t) converges to the desired yq(t) exactly shown by the
dotted curve for Case 1 and Case 2. But the output y2{t)
diverges tremendously for Case 3. Table IT and Table IIT
shows the infinity norm of the output tracking error at
each trial for three cases for Example 1 and Example 2

Fig. 2. Tracking of nonminimum phase systems with gain
uncertainty for Case 1

v g T 7 ) O

Fig. 3. Tracking of nonminimum phase systems with gain
uncertaitity for Case 2

Fig. 4. Tracking of nonminimum phase systems with gain
uncertainty for Case 3

] ] ry . T ]

Fig. 5. Tracking of nonminimum phase systems with time
constant uncertainty for Case 1

respectively. The infinity norm of the output tracking
error decreases for Case 1 and Case 2, while it increases



Fig. 6. Tracking of nonminimum phase systems with time
constant uncertainty for Case 2

. g « ¥ v C
e

Fig. 7. Tracking of nonminimum phase systems with time
constant uncertainty for Case 3

largely for Case 3.

The above results demonstrate that the proposed
learning control is very effective in reproducing the de-
sired trajectories. Simulation results also show that the
provided condition is only a sufficient condition not a
necessary condition.

VI. CONCLUSIONS

A new inversion-based robust learning algorithm has
been developed for unstable nonminimum phase sys-
tems. The sufficient condition for the convergence of
the proposed ILC is also provided. The robust feedback
control law is employed to guarantee the system stabil-
ity and the convergence of tracking error, and a stable
inverse system is used to update the feed forward input
for the next trial. Simulation studies on two types of
linear systems with gain uncertainty and time constant
uncertainty are presented. Given a desired trajectory,
the learning controller is able to learn and eventually

TABLE I
OuTPUT TRACKING ERROR OF NONMINIMUM PHASE
SYSTEMS WITH GAIN UNCERTAINTY.

ki Case 1| Case 2| Case 3
i 12.6169 29.4802 | 29.4802
2 0,1238 0.1908 225

3 0.1233 0.1446 1662

4 0.1106 0.1267 12334

TABLE 111
OuTtpuT TRACKING ERROR OF NONMINIMUM PHASE
SysTEMS WITH TIME CONSTANT UNCERTAINTY.

kY Case 1| Case 21 Case 34]
1 89.5941 86.4392 86

2 0.6494 0.6407 710

3 0.0391 0.0260 5813

4 0.0159 0.0173 56337

drive the closed-loop dynamics to track the desired tra-
jectory. Simulation results demonstrate the effectiveness
of the proposed method.
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