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Abstract

It is known that thermometer coded current steering DACs have
very small DNLs but much larger INLs, even with the best
switching strategies available in the literature. In this paper, we
present algorithms for generating near optimal i-D switching
strategies for any types of gradient errors and 2-D switching
strategies for linear gradient errors. In both cases, the new
switching strategies result in total INL that is less than the DNL.
This is far less than what was achievable by existing switching
strategies and is very close to the absolute lower limit of 1ADNL.,

1. Introduction

In an n-bit current-steering DAC, an array of N = 2”1 current
sources (excluding a dummy) are used, each providing an
intended current I called 1 LSB {Lease Significant Bit). When the
digital input is D (0 < D < N), D current sources are steered to
an external resistor, R (typically R = 50 Q), generating a voltage
output, V;= [.R-D. However, due to process and temperature
variations, mismatch always exits between the current sources,
causing nenlinear errors in the output voltage, The performance of
current-steering DACs is generally characterized by their static
and dynamic nonlinearities [1-3]. Static nonlinearities
characterize DAC performance at dc or low frequency. Static
nonlinearity is typically measured by integral and differential
nonlinearities {INL and DNL) as expressed by:
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where I(D} is the actual analog cutput in units of LSB, and I(0) is
the offset current. £, 1s the relative deviation of the i-th current

source from the current sources’ average value. In addition to
random errors (which are reduced by increasing area), significant
mismatch between current sources can be caused by gradient
errors. Many factors may cause gradient over a current source
array. For example, the spread of doping and oxide thickness over
the wafer or the voltage drop along the power line can cause
approximately linear gradient errors [6-8]. Temperature gradients
and die stress may introduce approximately quadratic gradient
errors. The overall gradient error distribution® is given by
superimposing these error components. The gradient errors in
current arrays can become very significant and introduce large
systematic errors. Decoding schemes can be used to improve both
static and dynamic performance significantly. Two decoding
schemes are generally used: binary-weighted and thermometer-
decoded. The advantage of a binary-weighted DAC is its
simplicity and low power consumption, since no decoding logic is
required [4, 5]. Drawbacks include possible non-monotonicity in
the transfer characteristic and potentially large DNL at major
carrier transitions. In contrast, monotonicity is guaranteed in a
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thermometer decoded DAC. However, additional circuitry is
required to implement the binary-to-thermometer decoder. In
addition to monotonicity, another major advantage of
thermometer decoded DACs is that their DNL is much smaller
than that of the binary-weighted DAC. Unfortunately, the INL for
both schemes is at the same level in general if no special
switching strategy is implemented.

In this paper, we present a new switching strategy for
thermometer decoded DAC that achieves INL that is less than
DNL! This is far less than what was achievable by existing
switching strategies and is very close to the absolute lower limit
of ¥iADNL that is only theoretically possible, ’

2, Existing switching strategies -

As pointed out in last section, in general, thermometer coding and
binary-weighted coding have the same INL, especiaily so when
the errors in the current sources are due to random errors.
However, if the errors are due to gradient errors, various
switching schemes can be used to decrease the INL.

The well-known row-column switching scheme [4, 6, 7] reduces
the switching optimization problem to a one-dimensional space.
In this scheme, the spatial gradient is averaged in two directions
and the sequences for row and column selection are optimized
independently. Furthermore, complexities in decoder design and
layout are significantly reduced due to the column and row
separation. However, the row-column switching schemes are
inherently insufficient for two-dimensional gradient error
compensation. The “Q2 Random Walk” scheme [8] divides the
current sources into regions and has two-step hierarchical
switching scheme. The switching for each region can be used to
compensate for quadratic errors and the switching within each
region is for linear error compensation. This hierarchical
switching scheme allows optimization in 2-D space with penalty
of very complex routing. INL bounded switching scheme [9]
achieves optimal performance for one-dimensional array with
linear gradients. However, if the current sources are not arranged
in a 1-D array or if errors in the 1-D array are not caused by linear
gradient, it is not optimal and it needs a searching algorithm,
whose computational complexity is prohibitively high in the worst
case.

3. A new 1-D switching strategy

The performance of the 1-D switching strategy in [9] is excellent.
However, except for the simple situation of 1-D lincar gradient,
the searching algorithm may require large computational time.
Even for linear gradient over the die, the mismatch errors in a 2-D
current source array are actually nonlinear when they are sorted
into a 1-D vector. For such cases, because each step of the
algorithm involves searching, the worst case complexity is in the
order of {N/2)¥, where N = 2%, which quickly becomes an

astronomical number even for a modest n.



The proposed algorithm achieves the same INL performance for
any nonlinear {-Darray as the algorithm in [9] for linear, but it has
a complexity of only Nlog(¥) I We achieve this by eliminating

the searching in each step. The basic idea of the proposed
algorithm is as follows. First we sort the current sources by their

corresponding error £, ’s in ascending order and partition them

into positive, zero, and negative groups. Then we start by
switching in a-current source having an error close to —%DNL. In
the following steps, each time, we try to turn on the current source
with the smallest (in magnitude) negative error available in order
to make INL{k) approach or just pass —JADNL, which is the
absolute optimal INL obtainable by any switching strategy. When
this happens,- we pick the current source which has the most
posttive error available and then try to tum on current sources
with the smallest positive & available to make INL(k} approach
or just pass +"}DNL. When this happens, we pick the current
source with the most negative error. We continue these steps until
all the remaining current sources have been picked. Notice that in
each step, we don’t need to search, we just pick the current source
from the sorted groups sequentially. The pseudo-code of the
algorithm is described as follows with the help of the Figure 1.

negati\fe positive
T k, k T Tka k“T
smallest largest  smallest largest
unusqd unused  ynused unused
negative negative  positive positive
£ £ £ &

Figure 1: Illustration of 1-D algorithm

Pseudo-code of the proposed 1-D algorithm:
Sort ¢ ’s into three vectors as shown in Figure 1
Initialize k=1,

Stepk: DNL(K)= £,y s>
Step (k+1):
Case 1: INL(k)<0,

if INL(K)+&,, 2— DNL/2
(63} pick £, and let DNL(k +1}=¢,,,
INL(k+1)=INL(k)+ £,
b=k, -1, k=k+1,
return to step (k+1);

INL(K)=¢

neg-mid’

clse

if [INL(K)+ &, | > [INL(E) + £,

pick &4, and let DNL(k +1)= £,
INL(k + )=INL(k)+¢,,»
k,=k,-1;k=k+1,
return to step (k+1);
else © goto(#)
Case 2: INL{k)>0, it’s parallel to the above with proper
modification;
Case 3: INL(k)=0, go to step k;
Final step: sequentially pick all the points in the zero group.

Note I: In real situations, the zero error group will be empty (i.e.
no current source has exactly zero error) and the final step will not
be used. Similarly case 3 of step k+1 will not be activated in real
applications.

Note 2: The above is only the pseudo-code. In the real code,
mechanisms need to be provided to prevent k; from crossing kj,
and prevent ks from crossing kq,

Note 3: When picking the very first point (i.e. in step k), a search
can be used to ensure that INL{l) > —%DNL, but as close as
possible to —~/4DNL. Since this is one-time search, it does not add
much complexity.

Proposition The INL in the above algorithm will be bounded by
DNL, namely, DNL/2< INL< DNL

Proof: First, the left half of the inequality is true for any
switching strategy. To prove this, suppose ‘g(k0)|=DNL for

some [, . Then :
e(ky)=INL{ky)—INL(k, -1}
DNL=|e(k, )| =|INL{ks)— INL(k,, —1)|
<|INL(k,)| +|INL(k, - 1) )
<max, [ INL(k)|+max, | INL(k)|= 2INL
o INL2DNL/2 (1)

Now let’s prove by induction that our algorithm achieves
INL<DNL. To prove [NL<DNL, it suffices to prove

INL(k)<DNL forall k . The initial step is clearly satisfied since

&, is the mid-point of the vector of negative current source
errors, -, \INL(1)|=|€,|$DNL- For the induction step, fet’s

assume  |INL(k)<DNL. and prove |(NL{k+1)|<DNL by
contradiction. There are 3 cases in the algorithm. In case 3,
INL(E+1)=INL(K)+ €, =0+¢

i -neg miel—neg
INL(k+D|=¢ <DNL 2)

Casc 2 is exactly symmetric to case ! and its proof is the same as
case I. Let’s prove case | here. - — DNL<INL{k)<0,

". there exists at least one unused g, >0 since otherwise the

mid-neg

rest unused & 's will be all negative, leading to INKR) + Zg <0

wused

N
namely, ie <()» contradicting to Z £=0-
1 1

In the (k+1)th step, if INL(k+1)=INL(k)+¢,, 15 used, then
|INLGk+ 1) =|INL(E) + 2,4 € | £44 —|INL(K)|
<max {} £, ]| INL(K)[} < DNL 3
If INL(k+1)=INL(k)+¢,, is used, there are two possibilities:
a) INL(k}+&,, 2~ DNL/2 of
b) INL(k)+ &, <~ DNL/ 2, but |NL(k) + £, | SUNL(k) + £,,]
In case a, INL(k +1)=INL(k) +¢&, 2— DNL/2 but INL(k}+¢,, <0
0> INL(k+1)>—DNL/2
<. |INL(k +1)|< DNL /2 < DNL ()
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In case b, [INL(k+ DI=]INL()+ 5] SPNL(k)+,|

= | &, ~JINL(k)] <max{e, JINL(R)} < DAL %

- PNL(k+Dj<DNL  forcase ] (6)
From (2) and (6), we proved I INL(k +1)15 Dni for all cases.
By induction, | INL(k)|S DnI for all k. Hence,

INLSDNL O]

". From (1) and (7), YA DNL < INL < DNL
Note: in the algorithm, we push ’ [NL(k)| to be very close to
1ADNL, therefote most likely, the INL in the above algorithm is
very close to 2DNL.

1-D Simulation Results
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Figure 2. Simulation results for 1-D algorithm
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Figute 3. Normalized gradient error distribution
Figure 2 gives the simulation result for a 10-bit DAC having both

linear gradient error and quadratic gradient error, The gradient
error for a current source at location (x, y) can be represented by:

3(x,y)=£,(x,y)+£q(x,y)
where z,(x,y) = g,xcosf+g,ysin@ is the linear gradient
error, g, and & are the strength and angle of the linear gradient,
- 1 . . .
£, (_x, » =g, (x* +y*)—m, is the quadratic gradnen't ermor. g,
is determined dominantly by the die bonding techniques and m,

is the average quadratic error of the current sources. For an MxM
current source matrix, the errors are normalized so that the
maximum ettot magnitude will be equal to 1. g (x,y) can be

expressed as:

g,(x,y) = &(x,y)/ S
where S is the scaling factor
[(M ~1)/2)* (N2g, +2g, — m,)-
The normalized gradient error for 10-bit DAC is shown in Figure
3. The ratio of linear gradient error to quadratic error is 1. Figure
2 shows us that, by using the proposed I-D algerithm, the
normalized DNL is 1 and the normalized INL is 0.5032, which is
only slightly > ¥ DNL, which is the absolute theoretical limit.

and is equal to

4. A2-D switching strategy

The proposed switching strategy in section 3 can provide an
overall INL only slightly above the absolute lower bound of INL,
i.e. ¥ of the largest current source error. However, the algorithm
needs to know the angle of the linear gradient, and, if nonzero, the
quadratic gradient relative strength. Such information is typically
not available easily or it could change from die to die. Therefore,
we need an algorithm that can generate systematically switching
strategies for various size current source amrays and requires
information only on geometric location but not the actual gradient
errors. In this section, we introduce such an algorithm.
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Figure 4 Illustration of a 8-bit DAC switching sequence

Due to space limitation we will only give a very brief description
of the basic concept of the algorithm. Consider an 8-bit DAC.
The current sources will be a 16X16 array. We divide this array
into two parts: the central 8X8 array and the outside part. In
order to have INL close to 2 DNL, we start with current source 1



whose error is “%DNL. To keep INL close to ADNL, current
source 2 at the far opposite side is picked followed by its mirror
image source 3. The INL after this step would be Y2 DNL. So we
choose current source 4 so that the INL for this-step would be
about 0. Now we choose the current sources 5 through 8 in the
mirror image pattern of 1 through 4. At the end of this 8-source
pattern, INL(8) is exactly 0. Repeat this 8 sources pattern but
each time right shift the starting source one space, until the second
last current source 49 in the row. The sources along the diagonal
are then picked as indicated by 57 through 64, Then we repeat this
process until all rows in the up-down triangles are used, with the
first 8-pattern as indicated by 65 through 72. The left-right
triangles are dealt with in the exact fashion but with the roles of
column and row switched.

2-D Simulation Results
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Figure 5. 2-D switching strategy comparison

A 64x64 current source array for a 12-bit and a 32x32 current
source array for a 10-bit thermometer decoded DAC are used to
compare the new 2-D switching strategy against the conventional
sequences, The simulation results are shown in Figures 5 and 6.
In the simulation, the error distributions across the matrix are
normalized so that the DNL is always 1 and INL is measured in
terms of DNL. In Figure 5, the angle of the linear gradient is 45°.
The INL for both optimal column-row switching [9] and
symmetric column-row switching are about 8 DNL and 16 DNL
respectively, which is far beyond the absolute optimal INL. The
INL from the proposed switching strategy is about 0.8 DNL,
which is very close to the absolute optimal INL of 0.5 DNL.
Furthermore, we simulated the 12-bit DAC with the angle of the
linear gradient varying from 0° to 360°, The simulation results
are summarized ‘in Figure 6. Notice that the INL from the
proposed 2-D switching algorithm is always around 0.7-0.8 DNL,
regardless of the gradient angles. In contrast, the performance of
the other two switching strategies varies significantly with the
gradient angles.

5. Conclusion

In this paper, an algorithm is introduced for generating near
optimal switching sequences for one-dimensional DAC current
arrays. The switching sequence results in the DAC's INL about ¥2
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the maximum relative deviation of the current sources from their
average current value. The algorithm also provides near optimal
switching sequences for any types of gradient error conditions. A
2-D switching algorithm also presented which significantly
reduces the linearity error due to gradient mismatch, compared
with what is obtainable with the best published switching strategy.
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