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A new approach for testing mixed-signal circuits based upon using imprecise stimuli is introduced. Unlike most 
existing Built-In Self-Test (BIST) and production test approaches that require excitation signals that are at least 
3 bits or more linear than the Device-Under-Test (DUT), the proposed approach can work with stimuli that are 
several bits less linear than the DUT. This dramatically reduces the requirements on stimulus generation for 
BIST applications and offers potential for using inexpensive signal generators in production test, or for testing 
DUTs that have a linearity performance exceeding that of the available test equipment. As a proof of concept, a 
histogram-based algorithm for linearity testing for Analog-to-Digital Converters (ADCs) has been proposed. It 
can estimate the Integral Nonlinearity (INL) and Differential Nonlinearity (DNL) of an n-bit ADC by using a 
ramp signal of much less than n-bit linearity and a shifted version of the same nonlinear ramp as excitation. The 
performance of the algorithm is comparable to that of the traditional method which uses (n+3)-bits or a decade 
more linear input signals. Complete algorithm description, extensive simulation results and experimental results 
obtained from using a production tester on commercially available ICs are presented to validate the potential of 
this algorithm.  
 
Categories and Subject Descriptors: B.8 [Performance and Reliability]: Reliability, Testing, and Fault-
Tolerance 
General Terms: Analog and Mixed-Signal Testing, Imprecision Stimulus, Imprecision Measurement 
Additional Key Words and Phrases: Production test, built-in self-test, ADC linearity 
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1. INTRODUCTION  

The rapid growth in the application of increasingly complex mixed-signal circuits in the 

communication and signal processing arenas coupled with industry-wide improvements 

in semiconductor processing has created a large market for low-cost mixed-signal 

integrated circuits. Paralleling this downward cost pressure are increasing demands on the 

number, accuracy and complexity of parametric testing steps in the production test 

environment and increasing incentives to develop a viable approach for implementing 

parametric BIST [1]. The standard approach to production test of analog and mixed-

signal devices is depicted in Fig. 1.  
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Fig. 1. A standard approach to analog and mixed-signal production test 

As shown in the figure, in a typical production test environment a test controller controls 

the signal generator that is responsible for generating precise input stimuli for the DUT. 

The test controller also controls a measurement instrument that monitors and captures the 

DUT response. The measured results are then used by the test controller to evaluate the 

various performance parameters of the DUT. The device passes the test and becomes 

marketable only if the measured response is within a predetermined acceptable 

performance window. An implicit assumption that is often made is that both the stimulus 

generator and the measurement instrument are sufficiently more precise than the DUT 

and that most differences between the expected and measured output of the DUT are due 

to the device. However, this places stringent requirements on the design of the signal 

generator and the measurement instrument.  

The challenges associated with parametric production test can be attributed to 

primarily three factors. The first is the cost associated with the test and that is determined 

primarily by the direct testing cost in terms of the time the device spends on the tester and 

the indirect testing cost associated with the investment on the tester itself. The second is 

the availability of sufficiently precise stimulus generators and measurement systems. 

Invariably test engineers strive to use test equipment with performance that is a decade 

better, or even more, than the performance of the DUT. Although many mixed-signal 

parts are designed for performance that is well below the state of the art in tester 

technology, many high-end mixed-signal ICs have performance requirements that are 

approaching those of the best commercial test equipment or, in some cases, the 

performance requirements may actually lead that available from the test equipment 

manufacturers. The third is in the de-embedding of the DUT for testing. Often the tester 

will present a load to a mixed-signal circuit, particularly when the DUT is embedded in a 



System-on-a-Chip (SoC) -scale circuit that is much different from what the circuit will 

experience in normal operation. This change in loading conditions may result in varied 

performance of the device and wrong interpretation of the device performance. It is 

important that the tester loading does not mask or alter the actual performance metrics of 

the DUT.  

This has resulted in a slow movement towards Built-In Self-Test structures for mixed-

signal circuits. Many approaches to parametric BIST have been proposed in the literature 

[1, 5-8]. Most of these structures are based upon the basic flow depicted in Fig. 2.  

Precision Stimulus
Generator

Device Under 
Test  (DUT)

Precision Measurement
Instrument

Test Controller

CUSTOMERCUSTOMER

Marketable ?
Yes No

Chip Boundary 

 

Fig. 2. A standard approach to BIST for mixed-signal circuits 

The big distinction between the BIST approach and the production test approach is in the 

inclusion of the stimulus generator and the measurement system on the chip along with 

the DUT. This step is a natural extension of the parametric production test environment 

and is particularly attractive considering the fact that the same type of testing algorithms 

that are used on production testers can be adopted in the BIST flow. Invariably the major 

research challenge with this approach is on achieving an acceptable level of precision in 

the stimulus generators and in the measurement systems.  

The most widely used mixed-signal component is analog-to-digital converters 

(ADCs). In the arena of ADCs, a widely used input stimulus for linearity estimation of 

the device is a ramp signal. Considerable research has been done towards generation of 

precise ramp signals on-chip for linearity testing. In [5] the authors reported simulation 

results for linearity of a ramp-generator that is capable of producing 11-bit linear signal. 

(For a continuous ramp signal, “n-bit linearity” means the difference between the actual 

signal and an ideal signal is in the range of 1/2n+1 to 1/2n of the total signal swing.)  A 

Sigma-Delta modulator was used to generate a bit stream that feeds a low pass filter to 

produce the linear ramp signal used in [6]. With a bit stream of 214 bit in length, reported 



simulation results indicate that an 8-bit ADC can be tested to 5% LSB accuracy. A 

cascaded current-source ramp generator was used in [7] to obtain reported simulation 

results with sufficient linearity to test 14-bit ADCs. More recently the authors of [8] 

reported a current-source based ramp generator with experimentally verified linearity at 

the 15-bit level. However, with an increasing demand on the performance of the signal 

generator, it can be seen that the challenge of building these blocks on chip is often 

bigger than the challenge of building the DUT itself. Furthermore, the silicon area 

overhead for achieving this level of performance can be unacceptably large. For these 

reasons, there is minimal industrial adoption of BIST for most analog and mixed-signal 

functions, leaving BIST for ADCs however an open problem at essentially all resolution 

and speed levels.  

With little success in the research community at developing viable techniques for 

parametric BIST, production parametric testing costs have become a rapidly growing and 

increasingly significant portion of the overall manufacturing costs of mixed-signal 

circuits. Parametric ADC testing, in particular, has become very challenging and costly. 

Production testing of low to medium resolution ADCs, 12 bits and below, at low and 

medium frequencies, has become known art but major testing challenges remain for 16 

bits and above while 13 to 15 bit ADCs can be considered borderline in terms of test 

capability and test cost on today's production testers. Testing of ADCs at the 10-12 bit 

level that are used in communication circuits is still a challenge due to the high clock 

rates and the high-speed stimulus and low clock jitter requirements.  

Production test costs for high resolution ADCs, 16 bits or above, are determined 

primarily by the resolution of the ADC, and not by the sampling rate. In existing 

production test environments, as the number of codes increases, the linearity requirement 

of the source driving the ADC increases. This performance requirement necessitates the 

use of slow, high-precision signal generator architectures that require long settling times, 

thereby increasing the overall test time and the associated test cost. Even if the sampling 

rate of the ADC is of the order of tens of megahertz, the ADC has to wait for the source 

to settle before a sample can be taken. For example, testing a 16 bit ADC using a 20-bit 

delta-sigma DAC with a 1 mS settling time and 10 steps per code will require 

approximately 11 minutes of time on a tester to test all the codes of the ADC for a single 

temperature. For 3 temperature tests, the test time can exceed half an hour for a single 

ADC. The cost of performing an all-codes test on a high performance mixed-signal tester 

for a 16-bit part can exceed $30 per ADC based on a rate of $1/minute for the tester cost. 

These prohibitively high test costs are generally considered unacceptable to the industry. 



In addition to the high test costs, the testing itself becomes more challenging because of 

‘voltage drift’ in the tester. Although state of the art test equipment may have a stationary 

effective reference voltage over short time intervals, it will drift significantly over test 

times of a few minutes with a drift of several hundred microvolts over a 10 minute 

interval being common. This nonstationarity of the source must be managed with more 

complicated testing algorithms if long test times become necessary. 

Due to cost constraints, ADC manufacturers have chosen to do “reduced code testing” 

using servo-loop techniques to dramatically reduce test times at the expense of a 

corresponding dramatic reduction in the test coverage. Reduced code testing techniques 

are only useful for ADC architectures that can be fully characterized by reduced codes, 

such as the SAR architecture. However, even for the SAR architecture, the non-linearity 

of the Sample-and-Hold (S/H) circuit cannot be fully characterized by reduced code 

testing. And, unfortunately, servo-loop methods cannot guarantee nonexistence of 

missing code.  

From the discussions above, it is clear that the reliance on high-precision stimulus 

signals is critically hampering, or preventing, adequate testing of ADCs in both 

production test and BIST, because of a) the technical difficulties in generating the 

precision signals and the cost (design effort, manufacturing cost, or capital investment) 

associated with such signal generators, b) the long testing time imposed by the settling 

requirements of such signals and the associated testing cost,  and c) the difficulties in 

testing in terms of maintaining a sufficiently stationary testing environment over the long 

testing time. In this paper, we introduce a new approach to analog and mixed-signal 

testing based upon using imprecise excitations and imprecise measurements. Our goal is 

to eliminate the need of highly precise input signals or highly precise measurement 

devices, and hence eliminate all the technical difficulties and cost factors associated with 

such precision inputs and measurements, thus providing an enabling technology for cost-

effective analog and mixed signal (AMS) production test and BIST. As a proof of 

concept, the technique is applied to the testing of ADCs. With the proposed approach, the 

performance requirements of the stimulus generator can be dramatically reduced. In 

particular, a highly non-linear but short-time stationary source, such as what can be 

readily realized either on-chip or in a production test environment with a resistor string 

DAC, is used to test the linearity of an ADC. 

2. TESTING WITH IMPRECISE STIMULUS AND MEASUREMENT 

A standard test flow for parametric mixed-signal testing is shown in Fig. 3. XIN is a 

known input digital signal and XOUT is the observed output digital signal. These signals 



serve as test vectors for the mixed-signal test. The internal signals XF and XU can be 

either analog signals or digital signals depending on the DUT, but generally at least one 

of them is analog. If XF is a digital signal, the stimulus block is unnecessary and can be 

eliminated. If XU is a digital signal, the measurement block can be eliminated.  
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Fig. 3. A standard test flow to parametric mixed-signal test 

For example, when testing the low frequency spectral characteristics of an ADC, the 

measurement block can be eliminated and the digital output of the ADC, XU, is the final 

output. When testing the low frequency spectral characteristics of a DAC, the stimulus 

block is not required and the input to the DAC, XF, is the original input. In the above 

figure, functions F, U and M represents the transfer characteristics of the Stimulus, DUT 

and Measurement blocks, respectively. For most DUTs, the goal in parametric testing is 

to define a test so that the transfer characteristic U can be used to determine the 

performance parameters of interest. Mathematically, the relationship between the test 

vectors XOUT and XIN can be expressed as 

)()))((( ININOUT XNXFUMX +=    (1) 

where N is a noise function in the measurement. If M and F are known, for an effective 

test, sufficient information will exist in the vectors XIN and XOUT to determine U. The 

computational complexity, the size of the vectors XIN and XOUT, and ultimately the test 

time and test costs needed to determine U are strongly dependent upon the nature of F 

and M and on the noise N. If M and F are the identity functions, then the computational 

effort and the size of the vectors XIN and XOUT are often quite attractive. But even in this 

situation, the total time required on the tester may be unacceptably long for some useful 

functions. In most production tests, a precise stimulus is applied and precise 

measurements are made so that it can be assumed that F and M are known. The 

importance of using a precise stimulus and making precise measurements when 

developing a test flow depicted in Fig. 3 is apparent, whether in a production test or a 

BIST environment. 

An alternative test flow based upon using imprecise stimulus and imprecise 

measurements is depicted in Fig. 4. In contrast to the standard test flow of Fig. 3, the 

alternative test flow uses multiple imprecise excitations and correspondingly has multiple 

imprecise measurements. 
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Fig. 4. An alternative test flow based upon imprecise stimulus and imprecise measurement 

As shown in the figure, it is assumed that there are k imprecise stimuli presented to the 

DUT and there are h imprecise measurements. If all h imprecise measurements are made 

for each imprecise excitation, a set of input and output test vectors are obtained for each 

stimulus-measurement combination. Mathematically, the resultant family of test vectors 

can be expressed as 

kjhiforXNXFUMX jiINjiINjijiOUT ≤≤≤≤+= 1,1)()))((( ),(),(),( (2) 

The immediate question that needs to be addressed is whether sufficient information 

exists in the resultant family of test vectors to uniquely determine U. The answer to this 

question depends strongly on the nature of the sequences of stimulus and measurement 

functions. We will show by an example later in this paper that sufficient information does 

exist for testing ADCs with one class of imprecise stimuli. There are many other classes 

of stimulus and measurement functions that will provide sufficient information to 

uniquely determine U as well. At this point it may appear by comparing equation (2) to 

(1) in the case where F and M are assumed known that even if sufficient information is 

available for determining U with the alternative test flow, a large number of 

measurements must be made and a large amount of computation time will be required to 

determine U, both undesirable if attempts are made to practically use this approach in 

either a production test or BIST environment. However, since imprecise stimuli and 

imprecise measurements are allowed in equation (2), the settling time for each 

measurement point could be reduced by a factor of thousands or tens of thousands. For 

example, if a sigma-delta DAC signal generator with a settling time of 1 mS is replaced 

by a simple analog ramp generator using a current source charging a capacitor, the 

measurement time for each sample in a 10 MSPS ADC testing will be limited by the 

clock rate of 10 MSPS, representing a factor of 10,000 speedup. Therefore the total 

measurement time implied in equation (2) can still be thousands of times less than that in 

equation (1). Furthermore, the computational time is typically insignificant as compared 

to data acquisition time for high performance ADC testing and could be pipelined so that 

it does not add to the total testing time at all. 

In what follows, a proof of concept will be presented based upon using imprecise 

stimuli to test ADCs. The performance of this approach will be supported by computer 



simulations and measured results obtained from a production test environment. The ADC 

example shows that both the number of measurements and the number of arithmetic 

manipulations needed are manageable. Preliminary results of algorithms using this idea 

are presented in authors’ earlier works [9-11, 13, 14].  

3. TRADITIONAL ADC LINEARITY TESTING  

The test flow that is generally used for ADC testing is shown in Fig. 5. Since the output 

of an ADC is a digital signal, the measurement block depicted in Fig. 3 is not required. 
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Fig. 5. Experimental setup for ADC testing 

Ideally, an ADC transforms an analog input voltage (or current), VIN, to a digital code, D. 

The static performance of an ADC can be mathematically characterized by a set of 

distinct and monotonically increasing voltages T0, T1 …, TN-3, TN-2, called transition points 

together with the associated digital output codes D0, D1 …, DN-2, DN-1. N is the total 

number of decision levels of an ADC and is related to the resolution of the ADC, n, by 

the following expression. 

nN 2=        (3) 

The dc transfer characteristics of the ADC are given by the expression 
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In what follows it will be assumed that the ADC is monotonic and increasing so that  

1...,2,1,0,1 −=< + NiDD ii     (5) 

Several different definitions of linearity for ADCs are used in the industry. In this work, 

the linearity will be defined relative to an end-point fit line over the input voltage range 

between the first transition point T0 and the last transition point TN-2. The end-point fit 

line transition points Ik are defined by the linear equation 
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The ideal spacing between two adjacent end-point fit line transition points is called a 

Least Significant Bit (LSB) and is defined by the expression  

)2()(1 02 −−== − NTTILSB N      (7) 



The actual transfer characteristic given in (4), the end-point fit line defined by (6) and the 

end-point fit line transfer characteristic are plotted in Fig. 6. 

 

Fig. 6. Transfer Characteristics and the end-point fit line function of an ADC 

The relative deviation of the code width of code k, Tk-Tk-1, from 1 LSB, the ideal code 

width for every code, is called the differential nonlinearity of code k and is defined as 
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The difference between the actual transition point Tk and the end-point fit line transition 

point Ik in LSB is called the integral nonlinearity of code k and is given by 
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The INL and DNL of an ADC are defined respectively by 
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Since the end-point fit line goes through the first and last transition points, it follows that 

the first and last integral nonlinearities are 0. 

020 =Ψ=Ψ −N       (12) 

Also from (8) and (9) it can be seen that 
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The relationship between these quantities is also shown in Fig. 6. In a production test 

environment, the purpose of ADC linearity test is to ensure that the actual INL and DNL 

are within the range specified by the product performance specifications. This is 

generally approached by identifying all the values of kΨ  and then calculating INL and 

DNL from (10)-(13). 

The histogram method is a widely accepted industry standard for testing the INL and 

DNL performance of an ADC. In this method, a linear ramp signal with accuracy much 

higher than the target performance of the ADC is presented as the input to the ADC under 

test. As the input is ramped up, samples uniformly spaced in time are taken and the 

output codes of the ADC are tallied into a histogram {Ck, k= 0, 1, 2, …, N-1} where Ck is 

the number of occurrence of the output code Dk. If VIN is an ideal linear ramp stimulus 

with slope �  as assumed in standard ADC test, then the stimulus can be expressed as, 

tVIN η=        (14) 

With this excitation, the output code will be Dk if VIN∈(Tk-1, Tk]. Hence, Ck, which is the 

number of hits of Dk, will be equal to the number of sampling instants that VIN∈(Tk-1, Tk]. 

Since VIN is incremented by � TSAMP, we have 
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where TSAMP is the sampling period of the ADC. This is an approximation subject to time-

domain quantization errors since the right hand side of (15) need not always be an 

integer. The error is small if Ck is large. Furthermore, the quantization errors do not 

accumulate with k. The number of samples per 1 LSB will be ( )SAMPTIC η= . It can 

be easily verified that 
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Note that the number above is not necessarily an integer. It follows from equations (8) 

and (9) that the integral and differential nonlinearities of the ADC can be obtained from 

the histogram data as given by  

1, −=∆
C

Ck
estk       (17) 

( ) kCC
k

i
iestk −=Ψ �

=1
,      (18) 

The INL and DNL estimated using (17) and (18) are very close to the actual value if the 

stimulus is perfectly linear, except for the quantization error due to the integer number of 

hits. If there are many samples per code on average, this error is much less than 1 LSB 

and can be neglected. 

However, if VIN is not a perfect linear ramp, the standard histogram method may lead 

to a wrong estimation of INL and DNL for an ADC. Assume the actual VIN is a smooth, 

monotonically increasing but nonlinear function of time 

)()( tFttfVin +== η      (19) 

where η t is the linear fit line connecting the first and last transition points, and F(t) is the 

nonlinear component. The time points when VIN crosses transition points Tk-1 and Tk are 

tk-1=f -1(Tk-1) and tk=f -1(Tk), respectively. When tk-1< t< tk, it follows that Tk-1< VIN < Tk 

and thus the output code will be Dk. Hence the code tally for code Dk, denoted as kC′ , 

can be related to the crossing time defined above and the sampling clock period by the 

following equation 
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By definition, η t is the endpoint fit line, so T0=η t0, TN-2=η tN-2, and F(t0)=F(tN-2)=0. 

Still using the standard histogram method (16)-(18), we have 
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The estimated integral and differential nonlinearity above are also affected by the 

quantization error, so approximately equal signs are used. Comparing these estimations to 



the actual value as in (8) and (9), we can see that there are errors introduced by the 

nonlinearity in the input signal as follows. 

I

tFtF

TT

TT

TT

tt
N kk

k
N

kk

N

kk
kestk

)()()(
)2( 1

02

1

02

1
,

−
+∆=�

�

�
	



�

−
−

−
−

−
−+∆=∆′ −

−

−

−

−η
(23) 

 
I

tF

TT

TT

TT

tt
N k

k
N

k

N

k
kestk

)()(
)2(

02

0

02

0
, −Ψ=�

�

�
	



�

−
−

−
−
−

−+Ψ=Ψ′
−−

η
 (24) 

From equations (23) and (24) we can see that the nonlinearity in the input will be directly 

transformed into errors in the estimated integral and differential nonlinearities if the 

traditional method is used. Simulations are done to test a 12-bit ADC by using a 

nonlinear input signal. The actual integral nonlinearity of the ADC and the nonlinear 

component in the input signal are shown in Fig. 7 (a). The estimated integral nonlinearity 

by using the traditional method is plotted in Fig. 7 (b). It is exactly the summation of the 

actual integral nonlinearity and negative of the input nonlinearity in LSB, as predicted by 

(24). If the summation is plotted on Fig. 7 (b) as well, the two curves will overlap each 

other exactly. 

 

(a)     (b) 

 Fig. 7. The error of the traditional histogram method using a nonlinear input signal 

(a) The integral nonlinearity of a 12-bit ADC and the nonlinearity in the input signal  

(b) Estimated integral nonlinearity using the traditional histogram method 

This input-introduced error will have a significant effect on the estimation of INL and 

DNL for a high resolution ADC. Since existing production test or BIST solution does not 

explicitly handle this error component, the INL and DNL estimation results will be 

different from the actual values if the input-introduced error is not much less than 1 LSB. 

Therefore, the input signal is required to be much more linear than the ADC. However, 

the issue of generating sufficiently linear excitation to keep the error terms in (23) and 

(24) at an acceptably small level for a high resolution ADC is challenging. Usually it 

requires longer time to generate more linear signals, resulting in an increased test cost. 



Whether in a production test environment or a BIST environment, the cost of 

generating a sufficiently linear stimulus for INL and DNL testing of a high resolution 

ADC is very high. In the following section the issue of linearity testing with imprecise 

stimulus will be addressed. 

4. ADC TESTING WITH LOW ACCURACY STIMULI 

As explained in previous sections, generation of very precise ramp signal with little extra 

hardware is a daunting task beyond a certain limit. The concern then is whether an ADC 

can be accurately tested using low linearity signals. In section II the idea of 

characterizing an ADC with multiple imprecise inputs was introduced. In this section we 

propose a new ADC testing method using two input signals )1(
INV  and )2(

INV . The two 

signals can be highly nonlinear. The algorithm exploits the relationship between the two 

signals while estimating the INL and DNL of an ADC without being affected by input-

introduced errors. 

4.1 A new histogram based ADC testing method 

In the proposed algorithm, two nonlinear ramp signals are used, with the second being a 

constant-shifted version of the first. The input signal is assumed to be a strictly increasing 

function of time and the speed at which the signal increases does not change 

dramatically. Furthermore, we assume that the signal generator is short-time stationary, 

meaning that if the same signal is regenerated within a short time period, the regenerated 

signal should be very close to the original signal, with the maximum difference much 

smaller than 1 LSB. Except for these reasonable and easy-to-satisfy conditions, the 

stimulus signals are allowed to be imprecise. The signal could have a significant error 

from what it is supposed to be, an ideal ramp in this case. Furthermore, the error is 

unknown to the design engineers or test engineers. It is uncertain in the sense that it is 

process and environment dependent. This significantly relaxes the requirement on the 

signal generator so that it can be easily implemented with low cost or on chip. 

Fig. 8 is used to illustrate the basic idea of the proposed algorithm. The vertical axis is 

marked with the actual and the end-point fit-line transition points of the ADC, 

respectively. The two nonlinear curves represent the two ramp-like signals. 

Mathematically, the two nonlinear signals can be described by  

)()1( tfVIN =        (25) 

α−= )()2( tfVIN       (26) 

where α is the constant shift between the two signals. 



 
Fig. 8. Ramp testing for an ADC using two nonlinear inputs 

The tallies of codes obtained when )1(
INV  and )2(

INV  are presented as the ADC input 

signals are )1(
kC  and )2(

kC , respectively. The amount of shift α between the two signals is 

unknown and not measurable externally and needs to be estimated as an additional 

variable. Assuming the signals are sampled uniformly in time with a sampling period 

TSAMP, the time index when the value of the signal )1(
INV  (or )2(

INV ) crosses transition level 

Tk, measured in units of sampling period TSAMP, is � )1(
kC  (or � )2(

kC , respectively). 

And this relationship is subject to time quantization errors. That is 
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To simplify the analysis, we will consider the system to be noiseless. The effects of noise 

and errors will be discussed later. Subtracting the (k-1)th equation in (28) from the kth 

equation in (27) yields: 
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Expressions in the equation above are given in LSB. On the left hand side of (29) is the 

code width Tk-Tk-1 measured in LSB corresponding to code Dk. On the right hand side is 

the code width expressed as a function of the summation of tallies. The difference 

between the first two terms on the right hand side of (29) can be written as 
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where )( kf ξ′  is an unknown variable, because the exact function form of the input 

signal is  unknown. Though we use the notation of derivative in the expression, its 

physical meaning is simply the slope of a section of the nonlinear function )(tf  

between kTtf =)(  and α+= −1)( kTtf . Refer to Fig. 9.  

 

Fig. 9. Slope approximation for the nonlinear signal 

There are different ways to approximate the slope. In this work, we use a simple 

approximation for this slope by averaging the slopes of )1(
INV  and )2(

INV  over the interval 

between 1−kT  and kT  as shown in (31) 
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If the nonlinearity in the input has a form of a second order polynomial, the 

approximation in equation (31) is actually exact. The effects of the slope approximation 



will be further discussed later. Substituting (30) and (31) into equation (29) and 

rearranging leads to 
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γ . Equation (32) is a set of linear 

equations with respect to unknown variables α  and 3...,,2,1, −=Ψ Nkk . Many 

standard mathematical methods can solve this type of equation set. Some of them have a 

computational complexity proportional to (N-2)3. For high resolution ADCs, N is very 

large and these methods will take a prohibitively long time to get the results. We propose 

a method with a computational complexity only proportional to N-2. Notice that by 

adding all equations in (32), the kΨ−  term of one equation will cancel the kΨ  term of 

the next equation and we have 20
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Substituting the value of α  into equation (32), we can estimate the integral nonlinearity 

of the ADC as  
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Based on the estimated value of integral nonlinearity, we can calculate the differential 

nonlinearity of the ADC and further get the INL and DNL parameters as defined in (10) 

and (11). 

4.2 The ADC identification algorithm using low accuracy stimuli 

The method discussed above can be summarized as an algorithm with the following 

steps. 

1. Use a signal )1(
INV  to excite the ADC under test and collect the histogram 

{ 1...,,1,0,)1( −= NkCk }. 



2. Regenerate the signal )1(
INV  but shift it by a constant voltage α  to obtain )2(

INV . 

3. Use the signal )2(
INV  to excite the ADC under test and collect the histogram 

{ 1...,,1,0,)2( −= NkCk }. 

4. Calculate 2...,,2,1,
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The input signals can be generated very fast. It is not necessary to wait until the 

stimulus settles because they are not required to be linear. So test time of an ADC can be 

dramatically reduced. The histogram data collection in step 1 and 3 is the same as that for 

the traditional ADC linearity test. The voltage shift in step 2 is simply an analog addition 

and can be realized in hardware. Steps 4, 5 and 6 can be done by either a computer or on-

chip DSP functionality. Since the partial sums in steps 4 and 6 can be generated in one 

run and used for each k, the total computational complexity in steps 4-8 is actually 

proportional to (N-2), not the seemingly (N-2)2. This is the same order of computational 

complexity as the traditional method and therefore will not add significant processing 

time to the overall test time. Typically, the computational time for the traditional 

histogram method is less than the data acquisition time and can be pipelined in 

production test so that it does not contribute to the overall test time. We believe this will 

also be the case for the proposed algorithm.  

5. PERFORMANCE ANALYSIS 

The proposed algorithm has the capability to test an ADC using low accuracy input 

signals and estimate the integral and differential nonlinearities of the ADC to higher 

accuracies than that of the stimuli, which is inherently not doable for the traditional 

histogram method. So the proposed algorithm has wider applications for low cost 



production test and mixed signal BIST, where high accuracy input signals are too 

expensive to build or too challenging to design. 

5.1 Comparison of the proposed algorithm to the traditional histogram method 

The traditional histogram method will directly transform the nonlinear error in input 

signals into the error in estimation of integral and differential nonlinearities as given in 

(23) and (24).  To estimate the INL and DNL of an ADC to accuracy of 0.1 LSB, the 

input signal must be a decade more linear than the ADC so that the input nonlinearity is 

less than 0.1 LSB. This is the common knowledge that to test an n-bit ADC, the input 

signal should be more than (n+3)-bit linear. Furthermore, because of noise errors, even 

with an (n+3)-bit linear input, accuracy of 0.1 LSB is usually not achievable.  Including 

the noise effect, a reasonable error bound for ADC production test in the industry is half 

LSB. The proposed algorithm significantly relaxed the requirement on input stimuli. 

Input signals used in the proposed algorithm can be 6-7 bits less linear than the ADC, as 

shown in our experimental test results. Using the traditional histogram method, there 

would be hundreds of LSBs error in INL estimation. The proposed algorithm can 

eliminate the effect of the huge input nonlinearity and estimate the INL to an error less 

than 0.8 LSB as we will talk about in experimental results shortly. The proposed 

algorithm can do the INL and DNL test for an n-bit ADC by using only (n-7)-bit linear 

signals and has the performance comparable to that of the traditional histogram method 

which requires (n+3)-bit linear input signals.  

5.2 Effects of slope approximation 

Two major factors contribute to the error in the proposed algorithm. The first is the error 

associated with the slope approximation using the average in (31). The second is the error 

in )1(
kC  and )2(

kC  measurement. We will talk about each of them as follows. 

In the proposed algorithm, we were required to estimate the slope of the nonlinear 

input function over the interval between )1(
kCΣ  and )2(

1−Σ kC . (Refer to equation (30)). 

This slope strongly depends on the nature of the unknown nonlinear input signal function. 

There are many ways to do the estimation and without the knowledge of the input, no one 

method can be said to be more accurate than the other. Therefore we use the average of 

slopes at two end-points of the interval, )1(
kCΣ  and )2(

1−Σ kC , to approximate the required 

slope factor in equation (31). Although not very precise, this approximation gives us a 

simple calculation towards INL estimation. If the nonlinear function representing the 



input is a second order polynomial, then the above estimate gives the exact value of the 

slope. Let’s assume that the input is of the general form given by 

btattf += 2)(       (35) 

The slope of the input signal over the interval between t1 and t2 is given by 
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On the other hand, if we use derivatives at t1 and t2 and obtain their average, we will have  
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We can see that the slope and the average are exactly the same. This corroborates the fact 

that if the nonlinear input is mainly in the shape of a second order polynomial, our slope 

approximation will not introduce major errors in INL and DNL parameter estimation. 

More generally, if the nonlinear error in the input signal is dominantly of low order 

terms, the slope approximation of equation (31) will work well. In the unlikely case when 

the input signal nonlinearity has significant high frequency components, the proposed 

method will introduce additional error. Since low frequency smooth signals are easy to 

guarantee (by simple low pass filtering), such cases are of no interest to ADC testing.   

5.3 Error in histogram measurement 

The histogram data, )1(
kC  and )2(

kC , are mainly affected by the additive noise at the input 

of the ADC. Let us assume that the additive noise is stationary with mean 0 and variance 

σ2. The noise may result in a different output code from the expected value and larger 

variance makes the code more likely to be different from its expected value. For instance, 

if we consider the accumulated histogram, )1(
kCΣ , which is the number of codes less than 

or equal to code k. In the traditional histogram method, this number is the estimated value 

of the kth transition point except for a constant scaling factor and an offset. Similarly in 

the proposed algorithm, this number gives the first order approximation of the kth 

transition point. But any error in this number will translate into an error in the integral 

nonlinearity estimation and finally into an error in INL and DNL estimation. However, 

since there are many samples for each code, an addition or subtraction of one or two 

sample will not have a significant effect on the total number of samples for a code. 

Intuitively, the variance of )1(
kCΣ  may increase as the variance of the additive noise 

increases. With detailed analysis, we can show that the following relationship is true. 
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where NS is the averaged sample density. The subscript N signifies that the variance of 

)1(
kCΣ  is due to additive noise. Equation (38) states that the variance of the accumulated 

histogram is proportional to the standard deviation of the additive noise, where B1 is a 

coefficient dependent on the distribution of the noise. When the noise becomes large, the 

uncertainty in the accumulated histogram data will also increase, but at a speed slower 

than that of the noise. This implies that the error in INL and DNL estimation will not 

increase as fast as the noise.  

The time domain quantization errors have effects on the accumulated histogram and 

the final INL and DNL estimation. The quantization effect is closely related to the 

average number of samples per code. With more samples, the quantization error will be 

small and the accumulated histogram can accurately characterize the transition points. 

Since the quantization error is distributed between 0 and 1/ NS, we have 
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2)1(2 }{
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B
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The subscript Q signifies that this part is due to the time domain quantization effect. B2 is 

a coefficient dependent on the distribution of the quantization error. From the expression 

above we can see that increasing the number of samples can significantly reduce the 

quantization error in accumulated histogram and give better estimation for INL and DNL. 

The total estimation error will be due to the combined effect of the quantization errors 

and additive noise. 

6. SIMULATION AND EXPERIMENTAL RESULTS 

Simulations and experiments were done to verify the performance of the proposed 

algorithm. Simulation results show that the algorithm can estimate the integral and 

differential nonlinearities for a 12-bit ADC to 12-bit accuracy by using input signals of 

only 6-bit linearity and the performance of the algorithm is in agreement to theoretical 

analyses. In experiments, the integral and differential nonlinearities of 10-bit ADCs are 

estimated to more than 9-bit accuracy by using 2-bit linear signals. 

6.1 Simulation results 

Simulations were run under different combinations of parameters such as noise variance, 

the resolution of ADCs, the number of samples per code, etc. The nonlinear input signal 

used in the simulation is given by 



)5.05.1(02.0)(04.0)( 232 tttttttf +−×+−×+=   (40) 

It has second order and higher order polynomial nonlinear terms with linearity less than 7 

bits. Although in reality we can easily generate much better input signals, a highly 

nonlinear input was used in our simulations to confirm the robustness of the algorithm. 

Simulation results for a 12-bit ADC are plotted in Fig. 10.  

  
(a)     (b) 

 
(c)     (d) 

Fig. 10. Integral nonlinearity estimation for a 12-bit ADC 

(a) Actual integral nonlinearity of a 12-b ADC        

(b) Estimated integral nonlinearity using the proposed algorithm 

(c) Difference between (a) and (b) 

(d) Estimated integral nonlinearity using the traditional algorithm 

The average number of samples per bin was chosen to be 32 (NS=32) and additive noise 

at the ADC input has σ=0.8 LSB in simulation. Since the proposed algorithm is 

independent of the specific structure of the ADC, any type of ADCs can be used in the 

simulation. Because a flash ADC has the most number of independent error sources and 

therefore is believed to be more challenging to test, we choose to use a flash ADC in our 

simulation. The ADC has a string of 212 resistors randomly generated following a 

uniform distribution in the range of 50% to 150% of their nominal value [11]. Once the 

resister values are generated, the ADC’s transition points can be computed. The set of 

transition points are then used to represent the ADC in the simulation. As defined before, 



the variation of these transition points from their corresponding end-point fit line 

transition points are the integral nonlinearity of the ADC. Fig. 10 (a) shows the integral 

nonlinearity Ψk of a simulated ADC at each code. It can be observed from the figure that 

the actual integral nonlinearity of the ADC is between +10 and -2 LSB. Fig. 10 (b) shows 

the nonlinearity of the device as predicted using the proposed algorithm with a 6-bit 

linear input signal. The difference between the actual nonlinearity values and estimated 

nonlinearity values is between +0.8 and -0.6 LSB, as shown in Fig. 10 (c). It can be 

observed that using the newly proposed algorithm, a 12-bit device can be characterized to 

within +/- 1LSB with an input signal which is just 7-bit accurate. To gain further insight 

the nonlinearity prediction using the traditional histogram algorithm with the same 7-bit 

linear input signal is plotted in Fig. 10 (d). We can see that the traditional algorithm 

identifies the device to have a 50 LSB INL. This magnitude of error is observed because 

the conventional histogram approach assumes that the input is a highly linear ramp, and 

any nonlinearity in input is wrongly interpreted as errors in the ADC. The proposed 

algorithm is not affected by this nonlinearity in the input. 

The performance of the proposed algorithm under different noise and samples/bin 

were also simulated on a 10-bit ADC. The results are summarized in Table 1. The actual 

integral nonlinearity of the software modeled 10-bit ADC is between +3 and -2 LSB. The 

proposed algorithm was then used to identify the device and for each combination of 

noise and samples/bin, the algorithm was run 32 times to compute the variance. 

Table 1. Variance of the error in INL estimation vs. σ and NS 

 

 

From the result we can see that the error in INL estimation is affected by both the noise 

effects and quantization effects as discussed in section IV. By choosing appropriate 

sample density, we can estimate the INL of an ADC to a reasonable accuracy, e.g., less 

than 0.5 LSB, even under large noise variance. 

6.2 Experimental Results 

In experiment, 10-bit commercial pipelined ADCs were tested to prove the effectiveness 

of the algorithm. Though test for 10-bit ADCs is a known art, an input of 13 bit or higher 

               NS 

σ (LSB) 16 32 64 

0.2 0.2458 0.0773 0.0324 

0.4 0.7265 0.2036 0.0804 

0.8 1.5633 0.4806 0.1813 

1.6 2.4974 0.9912 0.3505 



linearity is always required. We are going to show the test result for a 10-bit ADC by 

using signals that are less than 3-bit linear.  If the traditional method was used, it would 

be very unlikely to accurately identify the INL and DNL of a 10-bit ADC by using a 3-bit 

linear signal. There might be errors of hundreds of LSBs. By using the proposed 

algorithm we will see that the INL and DNL of 10-bit ADCs can be estimated to accuracy 

of better than 0.8 LSB in experiment. This result is as good as the result for a traditional 

histogram method by using a 13-bit signal. 

A commercially available ADC was tested to estimate the effectiveness of the 

algorithm. Different ADCs and raw data were obtained. The entire testing was performed 

in a production test environment. As a first attempt, a commercial tester used in 

production test was used to generate the input signals and collect the output histograms. 

The tester was programmed to generate input signals with only 2-3 bit linearity (much 

more nonlinear than what was used in software simulations reported above). Although 

signals of much better linearity can be generated on-chip, to confirm the robustness of the 

algorithm and to consider the case of high resolution ADCs (14 bit and above) where 8-9 

bit linear input signals are limiting factor, the input signals used in the test runs were 

intentionally limited to a low linearity. The second signal was obtained by subtracting a 

DC shift value of about 10 LSB from the first signal. This amount of shift and the exact 

nature of the input signal were unknown to the algorithm. These values were 

independently computed as part of the algorithm. Results of INL estimation using the 

proposed algorithm with the above described highly nonlinear input signals were then 

compared to the results calculated from using the traditional histogram algorithm with a 

highly linear ramp signal. The signals were sampled at 32 samples per code on average.  

 
(a)     (b) 

Fig. 11. Integral nonlinearity estimation using the proposed methods 

(a) Estimated INL with linear and non-linear ramps 

(b) Difference between INL estimation results 



To start with, the results using the highly linear signal and the traditional histogram 

method were considered to be the true nonlinearity of the ADC. The difference between 

the results using the proposed algorithm and the traditional method is then considered the 

residual error of the new algorithm. The results of the experimental test are given in Fig. 

11. It can be seen that the algorithm is able to identify the nonlinearity of the device to 

within 0.7 LSB using an input signals that is just 2-3 bit linear. Fig.11 shows the result 

obtained using just 1 sample product. The experiments were then repeated on 20 different 

ADCs. The same input signal with nearly 2 bit linearity was used to test all the devices. 

The amount by which the second nonlinear signal was shifted with respect to the first was 

about 10 LSB for all devices. Fig. 12 shows the residue error in INL estimation using the 

proposed method, with the assumption that the linear ramp and traditional method gives 

the true characteristics of the ADCs. 

 
Fig. 12. Error in INL estimation – for 21 devices 

It can be seen that the parts were identified to accuracy of 1 LSB using the new 

algorithm. Further, to see the effect of noise, one part was randomly picked again and the 

traditional histogram test with a highly linear ramp excitation was performed on that 

device for the second time. The INL measurements from the two linear ramp tests were 

compared. In the ideal noise free case, we would expect the INL measurements to be 

same, since they represent the same device. However, due to the presence measurement 

noise, the measurements from the two runs for the same part will be different from each 

other, even if a perfect linear ramp is used with the standard testing approach. In our 

tests, a maximum error of 0.7 LSB was found between the two runs. This indicates that 

the measurement noise in the testing environment is at such a level that places a bound on 

the INL estimation accuracy. Given this effect of noise in measurement, due to factors 

like temperature and time related drift, the INL estimation errors given in Figure 12 using 

the proposed algorithm is very reasonable. 



7. CONCLUSIONS 

In this paper, we first analyzed the testing flow in existing approaches to analog and 

mixed-signal production test and built-in self-test. It was pointed out that the use of high-

precision excitation signals and high-precision measurement devices was posing daunting 

challenges critical to cost-effective AMS testing. We further proved mathematically (and 

supported by simulation) that the industry standard histogram method could not correctly 

test ADCs if the input excitations were not sufficiently precise, rigorously validating a 

common knowledge among most test engineers. These two observations together 

motivated us to introduce a radically new approach to AMS testing. Unlike existing 

approaches, the proposed approach uses multiple related imprecise excitation signals 

and/or multiple related imprecise measurements together with appropriate post digital 

signal processing to accurately characterize an AMS DUT.   

As a proof of concept, we presented a histogram based algorithm that uses two 

nonlinear ramp signals, instead of one perfectly linear ramp, to accurately test the DC 

linearity of ADCs. The algorithm was described in complete mathematical details. 

Extensive simulation results and experimental testing results obtained in an industry 

production test environment demonstrated that the new algorithm is capable of accurately 

testing ADCs using input signals that are 6-8 bits less linear than the ADC under test. The 

computational complexity of the new algorithm is a little more than that of the traditional 

histogram method but both algorithms share the same qualitative complexity proportional 

to the number of transition points in the ADC under test.  Even though twice the number 

of data points is used in the new algorithm, the overall testing time of the proposed 

approach could be dramatically shorter than what is needed when a high-precision signal 

generator is used. This is because the data acquisition time dominates the overall test time 

for high resolution parts and the data acquisition rate in the new approach, when no 

longer limited by the source settling time, can be at the ADC clock rate which could be 

up to thousands or tens of thousands faster than what is permitted by a slow source. 

Because of the elimination of the reliance on high-precision stimulus signals and 

high-precision measurement devices, the new approach offers great potential for accurate 

but cost-effective testing of analog and mixed-signal circuits in both production test and 

BIST.  In production test, replacing high-precision but slow signal generators with 

imprecise but fast excitation sources can significantly reduce the cost associated with the 

test of high performance AMS parts. More importantly, the new approach has the 

potential to offer adequate and cost-effective test solutions for certain parts whose 

performance requirements are comparable to or even exceed the performance of state-of-



the-art test equipment and for which there are no viable test solutions on the horizon. In 

the BIST environment, there are several scenarios in which the new test approach can 

play the key role of an enabler for cost-effective integration of BIST strategies on chip. 

For example, a simple signal generator can be implemented on chip to provide the 

excitation input for ADC testing while the converted digital data is sent off chip for 

digital signal processing. This scenario would be a cost-effective solution for AMS parts 

that do not have on chip DSP capability readily available. A catalog ADC would be an 

example of such a case. Merely moving the signal generator on chip can alleviate many 

technical problems and bring about significant benefit with minimal overhead. At the 

other end of the scenario, the testing of an SoC scale circuit could be mostly performed 

with minimal intervention of an external tester by using the already available memory 

and DSP capability on chip for the execution of the test algorithm. In many cases, an SoC 

circuit may already have multiple ADCs and DACs on chip. These un-calibrated data 

converters can serve as the imprecise signal generator or imprecise measurement device, 

further reducing the overhead associated with BIST testing circuitry. Practical issues such 

as sequencing of the test control, implementation of the constant shift, and so on still 

needs to be resolved and are topics of current research. 
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