BIST and Production Testing of ADCs Using
Imprecise Stimulus

KUMAR PARTHASARATHY AND TURKER KUYEL
Texas Instruments Inc.

DANA PRICE

Motorola Inc.

and

LE JIN, DEGANG CHEN, AND RANDALL GEIGER
lowa State University

A new approach for testing mixed-signal circuitsdg upon using imprecise stimuli is introduced.ikiniost

existing Built-In Self-Test (BIST) and productiosst approaches that require excitation signalsateat least
3 bits or more linear than the Device-Under-Test{Ip, the proposed approach can work with stimugi thre
several bits less linear than the DUT. This dracadiif reduces the requirements on stimulus geraratr

BIST applications and offers potential for usingxpensive signal generators in production tesfpotesting

DUTs that have a linearity performance exceedinad ¢ the available test equipment. As a proofafaept, a
histogram-based algorithm for linearity testing faralog-to-Digital Converters (ADCs) has been preguh It

can estimate the Integral Nonlinearity (INL) andfBiential Nonlinearity (DNL) of an n-bit ADC by usy a

ramp signal of much less than n-bit linearity arghéted version of the same nonlinear ramp asta&on. The
performance of the algorithm is comparable to tfghe traditional method which uses (n+3)-bitsaalecade
more linear input signals. Complete algorithm diggicm, extensive simulation results and experirakrgsults
obtained from using a production tester on comra#iycavailable ICs are presented to validate thtemtial of

this algorithm.

Categories and Subject Descriptors: BRerformance and Reliability]: Reliability, Testing, and Fault-
Tolerance

General Terms: Analog and Mixed-Signal Testing, fesfsion Stimulus, Imprecision Measurement
Additional Key Words and Phrases: Production tesili-in self-test, ADC linearity

1. INTRODUCTION

The rapid growth in the application of increasinglyngbex mixed-signal circuits in the
communication and signal processing arenas coupled with igehste improvements
in semiconductor processing has created a large markeiecost mixed-signal
integrated circuits. Paralleling this downward cost presstgéncreasing demands on the
number, accuracy and complexity of parametric testiegssin the production test
environment and increasing incentives to develop a viapfgoach for implementing
parametric BIST [1]. The standard approach to productish deanalog and mixed-

signal devices is depicted in Fig. 1.
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Fig. 1. A standard approach to analog and mixedasigroduction test

As shown in the figure, in a typical production testimnment a test controller controls

the signal generator that is responsible for generatiecjgar input stimuli for the DUT.
The test controller also controls a measuremeiruiment that monitors and captures the
DUT response. The measured results are then used bystlwonéroller to evaluate the
various performance parameters of the DUT. The devissegathe test and becomes
marketable only if the measured response is within edgbermined acceptable
performance window. An implicit assumption that is ofteade is that both the stimulus
generator and the measurement instrument are sufficierdie precise than the DUT
and that most differences between the expected and redasutput of the DUT are due
to the device. However, this places stringent requirementhemesign of the signal
generator and the measurement instrument.

The challenges associated with parametric production dmst be attributed to
primarily three factors. The first is the cost asated with the test and that is determined
primarily by the direct testing cost in terms of thneet the device spends on the tester and
the indirect testing cost associated with the investroa the tester itself. The second is
the availability of sufficiently precise stimulus gertera and measurement systems.
Invariably test engineers strive to use test equipmeiht pégtformance that is a decade
better, or even more, than the performance of the DAlfhough many mixed-signal
parts are designed for performance that is well belowstate of the art in tester
technology, many high-end mixed-signal ICs have performaequirements that are
approaching those of the best commercial test equipmentnosome cases, the
performance requirements may actually lead that availible the test equipment
manufacturers. The third is in the de-embedding of the fldTesting. Often the tester

will present a load to a mixed-signal circuit, particulavlyen the DUT is embedded in a



System-on-a-Chip (SoC) -scale circuit that is muckedht from what the circuit will
experience in normal operation. This change in loading dondimay result in varied
performance of the device and wrong interpretation ofdince performance. It is
important that the tester loading does not mask or thieeactual performance metrics of
the DUT.

This has resulted in a slow movement towards Built-In Bett structures for mixed-
signal circuits. Many approaches to parametric BIS#ehzseen proposed in the literature
[1, 5-8]. Most of these structures are based upon the fh@as depicted in Fig. 2.
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Fig. 2. A standard approach to BIST for mixed-slgnauits
The big distinction between the BIST approach and théygtion test approach is in the

inclusion of the stimulus generator and the measurenystdns on the chip along with
the DUT. This step is a natural extension of the matdc production test environment
and is particularly attractive considering the fact thatsame type of testing algorithms
that are used on production testers can be adopted in$fieflBWv. Invariably the major
research challenge with this approach is on achieviraregptable level of precision in
the stimulus generators and in the measurement systems

The most widely used mixed-signal component is analoggfitatli converters
(ADCs). In the arena of ADCs, a widely used input stiraubr linearity estimation of
the device is a ramp signal. Considerable researchdwas done towards generation of
precise ramp signals on-chip for linearity testing. Intf& authors reported simulation
results for linearity of a ramp-generator that is cégab producing 11-bit linear signal.
(For a continuous ramp signal, “n-bit linearity” medhs difference between the actual
signal and an ideal signal is in the range of*t/® 1/2' of the total signal swing.) A
Sigma-Delta modulator was used to generate a bit stieainfeeds a low pass filter to

produce the linear ramp signal used in [6]. With a bit sire&2™ bit in length, reported



simulation results indicate that an 8-bit ADC can bstetd to 5% LSB accuracy. A
cascaded current-source ramp generator was used in fftdn reported simulation
results with sufficient linearity to test 14-bit ADCBlore recently the authors of [8]
reported a current-source based ramp generator with expésliyeverified linearity at
the 15-bit level. However, with an increasing demand orptréormance of the signal
generator, it can be seen that the challenge of builitiese blocks on chip is often
bigger than the challenge of building the DUT itself. Furthaanthe silicon area
overhead for achieving this level of performance can beagptably large. For these
reasons, there is minimal industrial adoption of BfSiTmost analog and mixed-signal
functions, leaving BIST for ADCs however an open probkt essentially all resolution
and speed levels.

With little success in the research community at ibpieg viable techniques for
parametric BIST, production parametric testing coste lieecome a rapidly growing and
increasingly significant portion of the overall manufactgricosts of mixed-signal
circuits. Parametric ADC testing, in particular, hasdme very challenging and costly.
Production testing of low to medium resolution ADCs, 12 hitd below, at low and
medium frequencies, has become known art but major teshimlienges remain for 16
bits and above while 13 to 15 bit ADCs can be considered Hhioelén terms of test
capability and test cost on today's production testesstiniy of ADCs at the 10-12 bit
level that are used in communication circuits is stithallenge due to the high clock
rates and the high-speed stimulus and low clock jitter reapints.

Production test costs for high resolution ADCs, 16 bitsaaloove, are determined
primarily by the resolution of the ADC, and not by thampling rate. In existing
production test environments, as the number of codesases, the linearity requirement
of the source driving the ADC increases. This perfortearequirement necessitates the
use of slow, high-precision signal generator architectinsrequire long settling times,
thereby increasing the overall test time and the agedciast cost. Even if the sampling
rate of the ADC is of the order of tens of megahehte, ADC has to wait for the source
to settle before a sample can be taken. For exampt#ge 16 bit ADC using a 20-bit
delta-sigma DAC with a 1 mS settling time and 10 steps péde awmill require
approximately 11 minutes of time on a tester to teghalcodes of the ADC for a single
temperature. For 3 temperature tests, the test timexeeed half an hour for a single
ADC. The cost of performing an all-codes test on & lpigrformance mixed-signal tester
for a 16-hit part can exceed $30 per ADC based on a r&¥®winute for the tester cost.

These prohibitively high test costs are generally icaned unacceptable to the industry.



In addition to the high test costs, the testing iteefomes more challenging because of
‘voltage drift’ in the tester. Although state of thet st equipment may have a stationary
effective reference voltage over short time intervalsyili drift significantly over test
times of a few minutes with a drift of several humtraicrovolts over a 10 minute
interval being common. This nonstationarity of the seurust be managed with more
complicated testing algorithms if long test times beearacessary.

Due to cost constraints, ADC manufacturers have chtoséa “reduced code testing”
using servo-loop techniques to dramatically reduce teststiat the expense of a
corresponding dramatic reduction in the test coverage. Reédacke testing techniques
are only useful for ADC architectures that can be falwaracterized by reduced codes,
such as the SAR architecture. However, even for the &#&hitecture, the non-linearity
of the Sample-and-Hold (S/H) circuit cannot be fully rattéerized by reduced code
testing. And, unfortunately, servo-loop methods cannot gusganbnexistence of
missing code.

From the discussions above, it is clear that the mdian high-precision stimulus
signals is critically hampering, or preventing, adequatstitg of ADCs in both
production test and BIST, because of a) the technicfitulifes in generating the
precision signals and the cost (design effort, manufagticost, or capital investment)
associated with such signal generators, b) the loniggetitne imposed by the settling
requirements of such signals and the associated testing aodt c) the difficulties in
testing in terms of maintaining a sufficiently stationssting environment over the long
testing time. In this paper, we introduce a new approadnébog and mixed-signal
testing based upon using imprecise excitations and impnmegasurements. Our goal is
to eliminate the need of highly precise input signalshighly precise measurement
devices, and hence eliminate all the technical difficsilied cost factors associated with
such precision inputs and measurements, thus providiegatling technology for cost-
effective analog and mixed signal (AMS) production test BHET. As a proof of
concept, the technique is applied to the testing of ADG#h iWe proposed approach, the
performance requirements of the stimulus generator cadrdmatically reduced. In
particular, a highly non-linear but short-time stationapurce, such as what can be
readily realized either on-chip or in a production &stironment with a resistor string
DAC, is used to test the linearity of an ADC.

2. TESTING WITH IMPRECISE STIMULUS AND MEASUREMENT
A standard test flow for parametric mixed-signal tesi;ighown in Fig. 3. X is a

known input digital signal and g¢r is the observed output digital signal. These signals



serve as test vectors for the mixed-signal test. mteFnial signals Xand X, can be
either analog signals or digital signals depending oDti€, but generally at least one
of them is analog. If Xis a digital signal, the stimulus block is unnecessarycandbe

eliminated. If X, is a digital signal, the measurement block can ipereted.

Xin Precise | Xr DUT Xu Precise Xout
— Stimulus » Measurement f———
F ) M

Fig. 3. A standard test flow to parametric mixeghsil test

For example, when testing the low frequency spectral deaistics of an ADC, the
measurement block can be eliminated and the digital oaffgbe ADC, X, is the final
output. When testing the low frequency spectral charatitsrisf a DAC, the stimulus
block is not required and the input to the DAG; iX the original input. In the above
figure, functions F, U and M represents the transfaratteristics of the Stimulus, DUT
and Measurement blocks, respectively. For most DUTsgahEin parametric testing is
to define a test so that the transfer characterldtican be used to determine the
performance parameters of interest. Mathematicdllg, relationship between the test
vectors Yoyt and Xy can be expressed as

Xour =M U(F(X )+ N(X\y) (2)

where N is a noise function in the measurement. Hrid F are known, for an effective
test, sufficient information will exist in the vectoX,y and Xyt to determine U. The
computational complexity, the size of the vectogs ¥hd Xyt and ultimately the test
time and test costs needed to determine U are strongéndent upon the nature of F
and M and on the noise N. If M and F are the identitcfions, then the computational
effort and the size of the vectorgXand Xyt are often quite attractive. But even in this
situation, the total time required on the tester mayr@eceptably long for some useful
functions. In most production tests, a precise stimulsisapplied and precise
measurements are made so that it can be assumed that M are known. The
importance of using a precise stimulus and making pregisasurements when
developing a test flow depicted in Fig. 3 is apparent, whéthar production test or a
BIST environment.

An alternative test flow based upon using imprecise stimund imprecise
measurements is depicted in Fig. 4. In contrast to tdredard test flow of Fig. 3, the
alternative test flow uses multiple imprecise excitatiang correspondingly has multiple

imprecise measurements.
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Fig. 4. An alternative test flow based upon impsedtimulus and imprecise measurement

As shown in the figure, it is assumed that there arepkecise stimuli presented to the
DUT and there are h imprecise measurements. If iafignecise measurements are made
for each imprecise excitation, a set of input and outtitviectors are obtained for each
stimulus-measurement combination. Mathematically, gseltant family of test vectors

can be expressed as
Xouri.jy = Mi(U(F; (X)) + N(Xyy ) forlsishlsj<k()

The immediate question that needs to be addressed is wiseffieient information
exists in the resultant family of test vectors to uniqugltermine U. The answer to this
guestion depends strongly on the nature of the sequenstisnafus and measurement
functions. We will show by an example later in this papat sufficient information does
exist for testing ADCs with one class of imprecieali. There are many other classes
of stimulus and measurement functions that will provideficemt information to
uniquely determine U as well. At this point it may appeacdayparing equation (2) to
(1) in the case where F and M are assumed known thatifesefficient information is
available for determining U with the alternative tdktw, a large number of
measurements must be made and a large amount of comptitatowill be required to
determine U, both undesirable if attempts are madedctipally use this approach in
either a production test or BIST environment. Howeverces imprecise stimuli and
imprecise measurements are allowed in equation (2),s#iing time for each
measurement point could be reduced by a factor of thousandssoof thousands. For
example, if a sigma-delta DAC signal generator with irsgttime of 1 mS is replaced
by a simple analog ramp generator using a current source refpaagcapacitor, the
measurement time for each sample in a 10 MSPS ADC desifih be limited by the
clock rate of 10 MSPS, representing a factor of 10,000 speddhgoefore the total
measurement time implied in equation (2) can still loeishnds of times less than that in
equation (1). Furthermore, the computational time iscalpyi insignificant as compared
to data acquisition time for high performance ADC tegtind could be pipelined so that
it does not add to the total testing time at all.

In what follows, a proof of concept will be presented bageoh using imprecise

stimuli to test ADCs. The performance of this approaidhbe supported by computer



simulations and measured results obtained from a produesb environment. The ADC
example shows that both the number of measurementshandumber of arithmetic
manipulations needed are manageable. Preliminary resultgaoittams using this idea

are presented in authors’ earlier works [9-11, 13, 14].

3. TRADITIONAL ADC LINEARITY TESTING
The test flow that is generally used for ADC testinghiewn in Fig. 5. Since the output

of an ADC is a digital signal, the measurement blockalegiin Fig. 3 is not required.

Xin Stimulus | VinXe) | ADC | P (Xour)
— F  ouT)

Fig. 5. Experimental setup for ADC testing
Ideally, an ADC transforms an analog input voltage (mremt),V,y, to a digital codeD.

The static performance of an ADC can be mathembtichlaracterized by a set of
distinct and monotonically increasing voltaggsTs ..., Tv.a Tn-2 Called transition points
together with the associated digital output cofdgsD; ..., Dy, Dn1. N is the total
number of decision levels of an ADC and is relatethtoresolution of the ADQy, by

the following expression.

N=2" ()
The dc transfer characteristics of the ADC are givethbyexpression
D,, Vi <=sT,
D=1D,, T, <V, <T i=12..,.N-2 (4
DN—l’ TN—2 <VIN

In what follows it will be assumed that the ADC is mtanic and increasing so that

D, <D i=012.,N-1 5)

i+17
Several different definitions of linearity for ADCseaused in the industry. In this work,
the linearity will be defined relative to an end-poittlifie over the input voltage range
between the first transition poifiy and the last transition poifi.,. The end-point fit
line transition point$y are defined by the linear equation

Ty =T -
I, =T, +k-22 0 =T +kx[, k=0L2..N-2 (6)

The ideal spacing between two adjacent end-point fit liarsttion points is called a

Least Significant Bit (LSB) and is defined by the expi@s
1LSB=I_=(TN_2 —TO)/(N -2) (7



The actual transfer characteristic given in (4), the-goint fit line defined by (6) and the
end-point fit line transfer characteristic are pldtite Fig. 6.
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Fig. 6. Transfer Characteristics and the end-pfitine function of an ADC
The relative deviation of the code width of cod& kT,.;, from 1 LSB, the ideal code

width for every code, is called the differential nondirity of code k and is defined as
-T..)-1I T —-T
Ak=—(r" 5‘1) =(N-2)*—kL -1 k=12..N-2 (8
I Ty~ To
The difference between the actual transition p@ieind the end-point fit line transition
pointl, in LSB is called the integral nonlinearity of code k &ndiven by

Tkli'k ~ (N —2)LT°T—|<, k=012..N-2 ()

N-2 0

The INL and DNL of an ADC are defined respectively by

W, =

INL = mkax| W, | (10)

DNL = m;';1x|Ak | (11)



Since the end-point fit line goes through the first antdttassition points, it follows that

the first and last integral nonlinearities are 0.

WY, =¥, =0 (12)
Also from (8) and (9) it can be seen that
A=W -Y k=212.,N-2 (13a)
k
WY, =D A, k=12.,N-2 (13b)

The relationship between these quantities is also shiovifig. 6. In a production test
environment, the purpose of ADC linearity test ietsure that the actual INL and DNL

are within the range specified by the product performamezifications. This is
generally approached by identifying all the valuesdéf and then calculating INL and

DNL from (10)-(13).

The histogram method is a widely accepted industry stdrfdatesting the INL and
DNL performance of an ADC. In this method, a lineanpasignal with accuracy much
higher than the target performance of the ADC is presess the input to the ADC under
test. As the input is ramped up, samples uniformly spatdine are taken and the
output codes of the ADC are tallied into a histogr&y k=0, 1, 2, ..., N-1} wher€ is
the number of occurrence of the output c@jelf Vi is an ideal linear ramp stimulus

with sloper as assumed in standard ADC test, then the stimufubecaxpressed as,
Vi =1t (14)
With this excitation, the output code will g if V\yO(T«.1, T. Hence,Cy, which is the

number of hits oDy, will be equal to the number of sampling instants Yhefl(Ty.1, Ty.

SinceVyy is incremented byTsaws We have

Ck DTk _Tk—l
T sawp

whereTsavpis the sampling period of the ADC. This is an approxiomasubject to time-

k=12..N-2 (15)

domain quantization errors since the right hand sidelbj (eed not always be an

integer. The error is small i€ is large. Furthermore, the quantization errors do not
accumulate with k. The number of samples per 1 LSB wilCbe I_/(/7TSAMP). It can
be easily verified that

C= NZjCi /(N -2) (16)



Note that the number above is not necessarily an intégellows from equations (8)
and (9) that the integral and differential nonlinearitéshe ADC can be obtained from

the histogram data as given by

O

A

M~ o

-1 (17)

k,est

W (C / C) (18)

k,est

'u‘

The INL and DNL estimated using (17) and (18) are very dlmsbke actual value if the
stimulus is perfectly linear, except for the quantizatoror due to the integer number of
hits. If there are many samples per code on averagegrtiisis much less than 1 LSB
and can be neglected.

However, ifViy is not a perfect linear ramp, the standard histograthod may lead
to a wrong estimation of INL and DNL for an ADC. Assuthe actuaVy is a smooth,

monotonically increasing but nonlinear function of time

V, = f@®) =t +F() (19)
wheren tis the linear fit line connecting the first and laansition points, ané(t) is the
nonlinear component. The time points whgpcrosses transition poinis.; andTy are
t..=f (Ti.) andt=f (T)), respectively. Whem< t< t,, it follows thatTi< Viy < Tk
and thus the output code will . Hence the code tally for cod®, denoted asC,'( ,

can be related to the crossing time defined above ansiatingling clock period by the
following equation

(20)
TSAMP

By definition, 77 t is the endpoint fit line, s@o=17 to, Tn.=17 th2, @andF(tg)=F(tn2)=0.
Still using the standard histogram method (16)-(18)hanee

A =S agn-2) ) (21)
TN—2 TO
Y = Z(C{/C_:’)—k o -2)10h) 22)
i=1 TN—2 _To

The estimated integral and differential nonlinearity abave also affected by the

gquantization error, so approximately equal signs are usedp&ring these estimations to



the actual value as in (8) and (9), we can see that therergors introduced by the

nonlinearity in the input signal as follows.

A =0 +(N-2) nit, —te) _ T -T A, + F(tk—l)__ F(t,)
, Tuoo =Ty Ty — T, |

(23)

W =W, +(N _2)|:,7(tk —t) _ T, - T, } -y, - F(Ek) (24)
Tho =T Ty =T

From equations (23) and (24) we can see that the noritineathe input will be directly
transformed into errors in the estimated integral ancerdifitial nonlinearities if the
traditional method is used. Simulations are done tb de42-bit ADC by using a
nonlinear input signal. The actual integral nonlingadt the ADC and the nonlinear
component in the input signal are shown in Fig. 7 (a).€Btienated integral nonlinearity
by using the traditional method is plotted in Fig. 7 (b)s kxactly the summation of the
actual integral nonlinearity and negative of the input mesaliity in LSB, as predicted by
(24). If the summation is plotted on Fig. 7 (b) as wélk two curves will overlap each
other exactly.

The integral nonlinearity of a 12-bit ADC and the nonlinear component of a input signal The estimated integral nonlinearity by using the traditional histogram method
1 20

— The integral nonlinearity of a 12-bit ADC
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Fig. 7. The error of the traditional histogram hwet using a nonlinear input signal
(a) The integral nonlinearity of a 12-bit ADC ar tnonlinearity in the input signal

(b) Estimated integral nonlinearity using the ttefial histogram method

This input-introduced error will have a significant effen the estimation of INL and
DNL for a high resolution ADC. Since existing producttest or BIST solution does not
explicitly handle this error component, the INL and DM&timation results will be

different from the actual values if the input-introducedeis not much less than 1 LSB.
Therefore, the input signal is required to be much mioeat than the ADC. However,
the issue of generating sufficiently linear excitatiorkéep the error terms in (23) and
(24) at an acceptably small level for a high resolutd@C is challenging. Usually it

requires longer time to generate more linear signalsltieg in an increased test cost.



Whether in a production test environment or a BIS¥Virenment, the cost of
generating a sufficiently linear stimulus for INL and Disting of a high resolution
ADC is very high. In the following section the issueliokarity testing with imprecise
stimulus will be addressed.

4. ADC TESTING WITH LOW ACCURACY STIMULI

As explained in previous sections, generation of vergigegamp signal with little extra
hardware is a daunting task beyond a certain limit. ‘Bineern then is whether an ADC
can be accurately tested using low linearity signals.séction Il the idea of

characterizing an ADC with multiple imprecise inputgswntroduced. In this section we
propose a new ADC testing method using two input sigvﬁeﬂﬁ and V,,(f). The two

signals can be highly nonlinear. The algorithm explditsrelationship between the two
signals while estimating the INL and DNL of an ADC hatit being affected by input-
introduced errors.

4.1 A new histogram based ADC testing method

In the proposed algorithm, two nonlinear ramp signasuaed, with the second being a
constant-shifted version of the first. The input sigaassumed to be a strictly increasing
function of time and the speed at which the signal asme does not change
dramatically. Furthermore, we assume that the signalrgimds short-time stationary,
meaning that if the same signal is regenerated withiroe 8me period, the regenerated
signal should be very close to the original signal, whté maximum difference much
smaller than 1 LSB. Except for these reasonable andteastisfy conditions, the
stimulus signals are allowed to be imprecise. The bigmald have a significant error
from what it is supposed to be, an ideal ramp in this dagghermore, the error is
unknown to the design engineers or test engineersutidsrtain in the sense that it is
process and environment dependent. This significantly reldweesequirement on the
signal generator so that it can be easily implementtidloiv cost or on chip.

Fig. 8 is used to illustrate the basic idea of the prapatgorithm. The vertical axis is
marked with the actual and the end-point fit-line traositipoints of the ADC,
respectively. The two nonlinear curves represent th@® ramp-like signals.
Mathematically, the two nonlinear signals can be rilesd by

vV =f(t) (25)

VO =f(t)-a (26)

wherea is the constant shift between the two signals.
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Fig. 8. Ramp testing for an ADC using two nonlinggouts
The tallies of codes obtained whé/],(\ll) and V,,(\lz) are presented as the ADC input
signals aré.:k(l) and Ck(z) , respectively. The amount of shiftoetween the two signals is

unknown and not measurable externally and needs to bwatsi as an additional

variable. Assuming the signals are sampled uniformlyirire with a sampling period

Tsame the time index when the value of the sig\d@ﬂ) (or V,,(\lz)) crosses transition level

T, measured in units of sampling peribghwp is ZC,ED (or ZC,EZ) , respectively).

And this relationship is subject to time quantizatiomyr That is
k
T/ =1/1+¥ 0 f(Zci“)j, k=012.,N-2 (27)
i=0

k

i=0

T /=1, /1+¥, Df( Ci(z)j—a,k: 012..N-2 (28



To simplify the analysis, we will consider the systenbe noiseless. The effects of noise
and errors will be discussed later. Subtracting the (ketjuation in (28) from the"k

equation in (27) yields:

k k-1
=3 (S e ez e
i=0 i=0

Expressions in the equation above are given in LSBh@neft hand side of (29) is the
code widthT-Ty.; measured in LSB corresponding to c@e On the right hand side is
the code width expressed as a function of the summatidiallies. The difference

between the first two terms on the right hand side df 3@ be written as
k k-1 k k-1
f(ZC.‘Dj- f(ZC.‘Z)j - f'(fk)(ZC.‘” -2.C% j k=12...N-2(30)
i=0 i=0 i=0 i=0

where f'(&,) is an unknown variable, because the exact functiom fof the input
signal is unknown. Though we use the notation of dékig in the expression, its

physical meaning is simply the slope of a section of ribalinear function f (t)

betweenf (t) =T, and f (t) =T, + a . Refer to Fig. 9.
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Fig. 9. Slope approximation for the nonlinear signa

There are different ways to approximate the slope. In wusk, we use a simple

approximation for this slope by averaging the slopevlﬁf andV,,(\lz) over the interval

betweenT, ; andT, as shown in (31)

: 1(1+wk—%_1 1+ka_q)k‘1jk=l2---N‘2 D)

If the nonlinearity in the input has a form of a setoarder polynomial, the

approximation in equation (31) is actually exact. Thectffef the slope approximation



will be further discussed later. Substituting (30) and (31) iequation (29) and

rearranging leads to

1= +Y, -W, k=12 ,N-2 (32)

k-1
where J, = ;(C‘” C(Z) j(ZC(l) ZC(Z)j. Equation (32) is a set of linear

equations with respect to unknown variablgs and W, ,k =1,2,...,N = 3. Many

standard mathematical methods can solve this type ofieqguset. Some of them have a
computational complexity proportional to (N22For high resolution ADCs, N is very
large and these methods will take a prohibitively longetto get the results. We propose

a method with a computational complexity only proportioralNt2. Notice that by

adding all equations in (32), the ¥, term of one equation will cancel tH¥, term of

N-2 1
the next equation and we haWd —2 = az

iz 17V

+ W, -W,_,. Using the fact

W, =¥, ., =0 as described in equation (12), we get an estimation efstift

between the two stimuli
N-2/5 L
=(N-2 (33)
izl )

Substituting the value off into equation (32), we can estimate the integral nealiity
of the ADC as

ko1

‘Pk,ef{zl—]aest-k, k=12..,.N-3 (34)
R 4

Based on the estimated value of integral nonlineawty,can calculate the differential

nonlinearity of the ADC and further get the INL and Dpdrameters as defined in (10)
and (11).

4.2 The ADC identification algorithm using low accuracy stimuli
The method discussed above can be summarized as an algeitthrthe following

steps.

1. Use a signaIV,,(\‘l) to excite the ADC under test and collect the histogram

{C® k=02..,N-1}.



2. Regenerate the sign‘dl,,(\‘l) but shift it by a constant voltag@ to obtainV,,(\lz) :
3. Use the signaIV,,(\lz) to excite the ADC under test and collect the histogra

{(C? k=01..N-1}.

i=0

R T £ PN A
4, Calculateyk—E C_|£1)+Ck(2) i=0Ci _ZC‘ k=12,...N—-2.

2 N-2 1

5. Calculatea.. = (N — .

w=N-2) 3 T
S

6. CalculateW, . = Z— O —k, k=12,...,N-3.
=g
a

7. Calculated, . = ———1, k=12..N-2.
1-y

©

INL , = mkax{| W, . [}and DNL = mka><{| Ao 1}

The input signals can be generated very fast. It isneoessary to wait until the
stimulus settles because they are not required tméarliSo test time of an ADC can be
dramatically reduced. The histogram data collectiostép 1 and 3 is the same as that for
the traditional ADC linearity test. The voltage sliiftstep 2 is simply an analog addition
and can be realized in hardware. Steps 4, 5 and 6 can beyeiteer a computer or on-
chip DSP functionality. Since the partial sums in stepsd 6 can be generated in one
run and used for each k, the total computational compléxitsteps 4-8 is actually
proportional to (N-2), not the seemingly (N&2This is the same order of computational
complexity as the traditional method and therefore mdit add significant processing
time to the overall test time. Typically, the compwaéil time for the traditional
histogram method is less than the data acquisition timee Gan be pipelined in
production test so that it does not contribute to thexall/test time. We believe this will

also be the case for the proposed algorithm.

5. PERFORMANCE ANALYSIS

The proposed algorithm has the capability to test an ABI@g low accuracy input
signals and estimate the integral and differentiallinearities of the ADC to higher
accuracies than that of the stimuli, which is inherently doable for the traditional

histogram method. So the proposed algorithm has wider afiptis for low cost



production test and mixed signal BIST, where high accuiapuyt signals are too

expensive to build or too challenging to design.

5.1 Comparison of the proposed algorithm to the traditional histogram method

The traditional histogram method will directly tramsh the nonlinear error in input
signals into the error in estimation of integral aliffierential nonlinearities as given in
(23) and (24). To estimate the INL and DNL of an ADGatauracy of 0.1 LSB, the
input signal must be a decade more linear than the AD@asdhe input nonlinearity is
less than 0.1 LSB. This is the common knowledge thagdban n-bit ADC, the input
signal should be more than (n+3)-bit linear. Furthermbeeause of noise errors, even
with an (n+3)-bit linear input, accuracy of 0.1 LSB is uluabt achievable. Including
the noise effect, a reasonable error bound for AD@uariion test in the industry is half
LSB. The proposed algorithm significantly relaxed the regpént on input stimuli.
Input signals used in the proposed algorithm can be 6-Tebg#dinear than the ADC, as
shown in our experimental test results. Using the taditi histogram method, there
would be hundreds of LSBs error in INL estimation. Tp@posed algorithm can
eliminate the effect of the huge input nonlinearity antthede the INL to an error less
than 0.8 LSB as we will talk about in experimental resshsrtly. The proposed
algorithm can do the INL and DNL test for an n-bit ADCusing only (n-7)-bit linear
signals and has the performance comparable to thatdfatitional histogram method

which requires (n+3)-bit linear input signals.

5.2 Effects of slope approximation
Two major factors contribute to the error in the psmabalgorithm. The first is the error

associated with the slope approximation using the avémg@d). The second is the error
in Ck(l) and Ck(z) measurement. We will talk about each of them asvisllo
In the proposed algorithm, we were required to estimateslibpe of the nonlinear
2)

input function over the interval betweeEC,El) and ZCk(_l. (Refer to equation (30)).

This slope strongly depends on the nature of the unkmantinear input signal function.
There are many ways to do the estimation and wittheuknowledge of the input, no one

method can be said to be more accurate than the dthenefore we use the average of
slopes at two end-points of the intervEIC,El) and ZC,((E)l, to approximate the required

slope factor in equation (31). Although not very precikis approximation gives us a

simple calculation towards INL estimation. If the rinelr function representing the



input is a second order polynomial, then the above esigiges the exact value of the

slope. Let's assume that the input is of the general éiven by

f (t) =at® +bt (35)
The slope of the input signal over the interval betweandt; is given by
f(t,)— f(t
D20 o, ) 4b (36)
t, -t

On the other hand, if we use derivatives aintd $ and obtain their average, we will have
f'(t,)+ f'(t) _2at, +b+2at, +b _
2 2

We can see that the slope and the average are exacgme. This corroborates the fact

a(t, +t,)+b (37)

that if the nonlinear input is mainly in the shape of@sd order polynomial, our slope
approximation will not introduce major errors in INLA&IDNL parameter estimation.
More generally, if the nonlinear error in the inputnsijis dominantly of low order

terms, the slope approximation of equation (31) will wodllwin the unlikely case when

the input signal nonlinearity has significant high freqyenomponents, the proposed
method will introduce additional error. Since low frequesnyooth signals are easy to
guarantee (by simple low pass filtering), such cases are ioterest to ADC testing.

5.3 Error in histogram measurement
The histogram dataCk(l) and Ck(z) , are mainly affected by the additive noise at the input

of the ADC. Let us assume that the additive noise iBstaty with mean 0 and variance
o®. The noise may result in a different output code frbm éxpected value and larger
variance makes the code more likely to be different fiteraxpected value. For instance,

@
k

if we consider the accumulated histogran(;,~ , which is the number of codes less than

or equal to code k. In the traditional histogram method nihisber is the estimated value
of the K" transition point except for a constant scaling factat an offset. Similarly in
the proposed algorithm, this number gives the first romjgproximation of the %
transition point. But any error in this number willristate into an error in the integral
nonlinearity estimation and finally into an error inUMdnd DNL estimation. However,
since there are many samples for each code, an additisubtraction of one or two
sample will not have a significant effect on the taiamber of samples for a code.

@
k

Intuitively, the variance o2C;’ may increase as the variance of the additive noise

increases. With detailed analysis, we can show thdolloging relationship is true.



02 {3CY} = BlNi (38)
S

where N is the averaged sample density. The subscript N sigrttigt the variance of
ZC,El) is due to additive noise. Equation (38) states thatdhiance of the accumulated

histogram is proportional to the standard deviation ofaithditive noise, where Bs a
coefficient dependent on the distribution of the noiseeline noise becomes large, the
uncertainty in the accumulated histogram data will alsoease, but at a speed slower
than that of the noise. This implies that the errofNh and DNL estimation will not
increase as fast as the noise.

The time domain quantization errors have effects oratitamulated histogram and
the final INL and DNL estimation. The quantization effés closely related to the
average number of samples per code. With more sampéequéimtization error will be
small and the accumulated histogram can accurately chdzactee transition points.

Since the quantization error is distributed betweendd1d N;, we have

B
0—5{ ZCk(l)} = N_22 (39)

S
The subscript Q signifies that this part is due to time tilomain quantization effect, B
a coefficient dependent on the distribution of the quatimizaerror. From the expression
above we can see that increasing the number of sanmgoesignificantly reduce the
guantization error in accumulated histogram and give bettenation for INL and DNL.
The total estimation error will be due to the comtiréfect of the quantization errors

and additive noise.

6. SIMULATION AND EXPERIMENTAL RESULTS

Simulations and experiments were done to verify the pegoce of the proposed
algorithm. Simulation results show that the algorithm caimese the integral and

differential nonlinearities for a 12-bit ADC to 12-bitcacacy by using input signals of
only 6-bit linearity and the performance of the alduoritis in agreement to theoretical
analyses. In experiments, the integral and differentialimamarities of 10-bit ADCs are

estimated to more than 9-bit accuracy by using 2-biatisgnals.

6.1 Simulation results
Simulations were run under different combinations ofpeaters such as noise variance,
the resolution of ADCs, the number of samples per ceite, The nonlinear input signal

used in the simulation is given by



f(t) =t+ 004x(t* —t) + 002x (t* — 1L5t* + 05t) (40)
It has second order and higher order polynomial nonlireears with linearity less than 7
bits. Although in reality we can easily generate mubefiter input signals, a highly
nonlinear input was used in our simulations to confine robustness of the algorithm.
Simulation results for a 12-bit ADC are plotted in Fig. 10.

Actusl integral nonlineatity of an 12-bit ADC Estimated integral nonlinearity using the proposed algorithm

(LSB)
(LSB)
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QOutput code index QOutput code index
(@) (b)

Difference in estimation Estimated integral nonlinearity using the traditional histogram algarithm

1000 2000 3000 4000

1000 2000 3000 4000
QOutput code index QOutput code index
(©) (d)

Fig. 10. Integral nonlinearity estimation for a hi2-ADC
(a) Actual integral nonlinearity of a 12-b ADC
(b) Estimated integral nonlinearity using the pregaalgorithm
(c) Difference between (a) and (b)

(d) Estimated integral nonlinearity using the ttedial algorithm

The average number of samples per bin was chosen3® {¢=32) and additive noise
at the ADC input hass=0.8 LSB in simulation. Since the proposed algorithm is
independent of the specific structure of the ADC, apg tgf ADCs can be used in the
simulation. Because a flash ADC has the most numbigrdependent error sources and
therefore is believed to be more challenging to testchwose to use a flash ADC in our
simulation. The ADC has a string of?2resistors randomly generated following a
uniform distribution in the range of 50% to 150% of their nomirzilie [11]. Once the
resister values are generated, the ADC'’s transitiontpaan be computed. The set of

transition points are then used to represent the ADReisimulation. As defined before,



the variation of these transition points from thetrresponding end-point fit line
transition points are the integral nonlinearity of &2C. Fig. 10 (a) shows the integral
nonlinearity ¥ of a simulated ADC at each code. It can be observedtfierfigure that
the actual integral nonlinearity of the ADC is betwedf and -2 LSB. Fig. 10 (b) shows
the nonlinearity of the device as predicted using the gemp@lgorithm with a 6-bit
linear input signal. The difference between the actoalimearity values and estimated
nonlinearity values is between +0.8 and -0.6 LSB, asvshin Fig. 10 (c). It can be
observed that using the newly proposed algorithm, a 12-bitelegin be characterized to
within +/- 1LSB with an input signal which is just 7-bitcarate. To gain further insight
the nonlinearity prediction using the traditional histrgralgorithm with the same 7-bit
linear input signal is plotted in Fig. 10 (d). We can de the traditional algorithm
identifies the device to have a 50 LSB INL. This magnituderadr is observed because
the conventional histogram approach assumes thanphieis a highly linear ramp, and
any nonlinearity in input is wrongly interpreted asoes in the ADC. The proposed
algorithm is not affected by this nonlinearity in thpuh

The performance of the proposed algorithm under differergenand samples/bin
were also simulated on a 10-bit ADC. The results are suined in Table 1. The actual
integral nonlinearity of the software modeled 10-bit AB®etween +3 and -2 LSB. The
proposed algorithm was then used to identify the device andach combination of
noise and samples/bin, the algorithm was run 32 timesrgpute the variance.

Table 1. Variance of the error in INL estimation @sand N

N
o (LSB) 16 32 64
0.2 0.2458 0.0773 0.0324
0.4 0.7265 0.2036 0.0804
0.8 1.5633 0.4806 0.1813
1.6 2.4974 0.9912 0.3505

From the result we can see that the error in INLregton is affected by both the noise
effects and quantization effects as discussed in set¥oBy choosing appropriate
sample density, we can estimate the INL of an ADC teagonable accuracy, e.g., less

than 0.5 LSB, even under large noise variance.

6.2 Experimental Results
In experiment, 10-bit commercial pipelined ADCs wereeigdb prove the effectiveness
of the algorithm. Though test for 10-bit ADCs is a knawt) an input of 13 bit or higher



linearity is always required. We are going to show #st tesult for a 10-bit ADC by
using signals that are less than 3-bit linear. Iftthditional method was used, it would
be very unlikely to accurately identify the INL and Df.a 10-bit ADC by using a 3-bit
linear signal. There might be errors of hundredsL8Bs. By using the proposed
algorithm we will see that the INL and DNL of 10-bit AD€an be estimated to accuracy
of better than 0.8 LSB in experiment. This result is aslgmthe result for a traditional
histogram method by using a 13-bit signal.

A commercially available ADC was tested to estimtie effectiveness of the
algorithm. Different ADCs and raw data were obtained. difitire testing was performed
in a production test environment. As a first attengptcommercial tester used in
production test was used to generate the input signalsddiedt the output histograms.
The tester was programmed to generate input signals wligh2e® bit linearity (much
more nonlinear than what was used in software simaktieported above). Although
signals of much better linearity can be generatedhgm-to confirm the robustness of the
algorithm and to consider the case of high resolution &[1@ bit and above) where 8-9
bit linear input signals are limiting factor, the inmignals used in the test runs were
intentionally limited to a low linearity. The seconidrsal was obtained by subtracting a
DC shift value of about 10 LSB from the first signal. Tamount of shift and the exact
nature of the input signal were unknown to the algoritithese values were
independently computed as part of the algorithm. Resultbllofestimation using the
proposed algorithm with the above described highly nonliirgart signals were then
compared to the results calculated from using the traditioistogram algorithm with a

highly linear ramp signal. The signals were sample&@Raamples per code on average.

Estimated INL with linear and non-linear ramps Difference between INL estimation

= |NL est. w/ non-linear ramps
== |NL est. w/ a linear ramp

(LSB)

200 400 600 800 1000 - 200 400 600 800 1000
QOutput code index QOutput code index

(@) (b)
Fig. 11. Integral nonlinearity estimation using greposed methods
(a) Estimated INL with linear and non-linear ramps

(b) Difference between INL estimation results



To start with, the results using the highly linear sigaradl the traditional histogram
method were considered to be the true nonlinearity oAD€. The difference between
the results using the proposed algorithm and the traditiortalehés then considered the
residual error of the new algorithm. The results ofdkgerimental test are given in Fig.
11. It can be seen that the algorithm is able to idettigynonlinearity of the device to
within 0.7 LSB using an input signals that is just 2-3 ibiedr. Fig.11 shows the result
obtained using just 1 sample product. The experiments weme¢dpeated on 20 different
ADCs. The same input signal with nearly 2 bit linearitys used to test all the devices.
The amount by which the second nonlinear signal wdtedhiith respect to the first was
about 10 LSB for all devices. Fig. 12 shows the residwe arrlNL estimation using the
proposed method, with the assumption that the linear rawhpraditional method gives

the true characteristics of the ADCs.

Error in estimated INL
0.8

0.7

5 10 15 20
Index of ADCs
Fig. 12. Error in INL estimation — for 21 devices

It can be seen that the parts were identified to acyuof 1 LSB using the new
algorithm. Further, to see the effect of noise, onéwas randomly picked again and the
traditional histogram test with a highly linear raragcitation was performed on that
device for the second time. The INL measurements frammwo linear ramp tests were
compared. In the ideal noise free case, we would expectNh measurements to be
same, since they represent the same device. Howevetp tlue presence measurement
noise, the measurements from the two runs for dngespart will be different from each
other, even if a perfect linear ramp is used with taadard testing approach. In our
tests, a maximum error of 0.7 LSB was found betweenvwibeuns. This indicates that
the measurement noise in the testing environmentsiscata level that places a bound on
the INL estimation accuracy. Given this effect of Bois measurement, due to factors
like temperature and time related drift, the INL estioratrrors given in Figure 12 using

the proposed algorithm is very reasonable.



7. CONCLUSIONS

In this paper, we first analyzed the testing flow in taxgsapproaches to analog and
mixed-signal production test and built-in self-test. It wagted out that the use of high-
precision excitation signals and high-precision measent devices was posing daunting
challenges critical to cost-effective AMS testinge Wirther proved mathematically (and
supported by simulation) that the industry standard histograhmohebuld not correctly
test ADCs if the input excitations were not sufficlgrnirecise, rigorously validating a
common knowledge among most test engineers. These twervakions together
motivated us to introduce a radically new approach to AkEling. Unlike existing
approaches, the proposed approach uses multiple relapgdcise excitation signals
and/or multiple related imprecise measurements togethlrappropriate post digital
signal processing to accurately characterize an AM$.DU

As a proof of concept, we presented a histogram based thifgothat uses two
nonlinear ramp signals, instead of one perfectly limaamp, to accurately test the DC
linearity of ADCs. The algorithm was described in corlenathematical details.
Extensive simulation results and experimental testing resblidined in an industry
production test environment demonstrated that the newithlgois capable of accurately
testing ADCs using input signals that are 6-8 bits legatithan the ADC under test. The
computational complexity of the new algorithm is a litlere than that of the traditional
histogram method but both algorithms share the same givalitaimplexity proportional
to the number of transition points in the ADC undst.t Even though twice the number
of data points is used in the new algorithm, the overatintg time of the proposed
approach could be dramatically shorter than what is de&tien a high-precision signal
generator is used. This is because the data acquisitierddminates the overall test time
for high resolution parts and the data acquisition nat¢hé new approach, when no
longer limited by the source settling time, can be atADE clock rate which could be
up to thousands or tens of thousands faster than whatiitteerby a slow source.

Because of the elimination of the reliance on higteipien stimulus signals and
high-precision measurement devices, the new approacis gffeat potential for accurate
but cost-effective testing of analog and mixed-signaludis in both production test and
BIST. In production test, replacing high-precision buiwslsignal generators with
imprecise but fast excitation sources can significamttigice the cost associated with the
test of high performance AMS parts. More importantlye thew approach has the
potential to offer adequate and cost-effective test swigtifor certain parts whose

performance requirements are comparable to or evencegoe@erformance of state-of-



the-art test equipment and for which there are no &itddt solutions on the horizon. In
the BIST environment, there are several scenanosghich the new test approach can
play the key role of an enabler for cost-effective gnidion of BIST strategies on chip.
For example, a simple signal generator can be implemeantechip to provide the
excitation input for ADC testing while the converted digitlata is sent off chip for
digital signal processing. This scenario would be a dfstteve solution for AMS parts
that do not have on chip DSP capability readily avaélall catalog ADC would be an
example of such a case. Merely moving the signal gemesatohip can alleviate many
technical problems and bring about significant benefth wiinimal overhead. At the
other end of the scenario, the testing of an SoC steduit could be mostly performed
with minimal intervention of an external tester by usihg &lready available memory
and DSP capability on chip for the execution of thedkgirithm. In many cases, an SoC
circuit may already have multiple ADCs and DACs on chipese un-calibrated data
converters can serve as the imprecise signal generaitmiprecise measurement device,
further reducing the overhead associated with BISThigestrcuitry. Practical issues such
as sequencing of the test control, implementation ofctmstant shift, and so on still

needs to be resolved and are topics of current research.
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