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Abstract 
 
As the performance of Analog-to-Digital Converters 
continues to improve, it is becoming more challenging 
and costly to develop sufficiently fast and low-drift 
signal generators that are adequately more linear than 
the ADC for the purpose of linearity testing. This work 
relaxes the linearity requirements on the signal 
generators used for ADC testing by alternatively 
employing multiple non-linear inputs. Assuming 
minimal prior knowledge of the input non-linearity, a 
testing methodology is introduced that is based upon 
first identifying and computationally removing the 
source non-linearity and then accurately estimating the 
ADC linearity. Production test hardware is used for 
validating the performance of this testing methodology 
using a high performance 16-bit SAR ADC as a test 
vehicle. Integral linearity error readings are identified to 
well within the +/-2 LSB range of the device 
specification by using only 8-bit linear inputs. This 
approach provides an enabling technology for cost-
effective full-code testing of high performance ADCs in 
production test and for a cost-effective implementation 
of built-in self-test (BIST). 
 
1. Introduction 
 
DC linearity of analog-to-digital converters (ADCs) has 
been historically measured using output histograms 
obtained from an ‘ideal’ ramp or sine-wave input [1-3]. 
As long as certain best test practices are observed, 
modern mixed signal automated test equipment (ATE) 
has made DC linearity testing a fairly straightforward 
production task for ADCs with 14-bit or lower 
resolution [4]. Certain high-precision delta-sigma 
ADCs are inherently linear and do not require post-
production linearity testing. High-speed pipelined 
ADCs are usually used and correspondingly tested with 
high input frequencies, which reduces the importance of 
DC linearity testing of these devices [2], except during 
debug [5] or calibration [6].  
 
DC linearity testing remains a key test challenge for the 
production of certain class of high performance ADCs. 
Such an ADC typically combines 16-bit or higher 
resolution, 1 MSPS or higher conversion rate, little or 

no output latency, and input bandwidth exceeding its 
Nyquist rate. Recent examples of such high 
performance ADCs include the 16-bit 1.25 MSPS and 
18-bit 500 KSPS SAR ADCs and the 16-bit 5 MSPS 
multi-bit delta sigma ADC. These ADCs utilize 
techniques such as precision laser trimming or dynamic 
element matching to achieve good linearity at relatively 
high sampling speeds. Such expensive mixed signal 
building blocks are typically used in medical 
applications including ultrasound and computer aided 
tomography as well as precision industrial process 
control and ATEs.  
 
To better appreciate the challenges involved with DC 
linearity testing of high precision ADCs, the source 
requirements must be well understood. A signal source 
generating the input to the ADC is traditionally required 
to be more linear than the ADC under test. Acceptable 
test solutions usually requires the test accuracy to 
remain within 10% of the device specification, so +/-
0.2 LSB test accuracy is required to test an ADC with a 
+/-2 LSB maximum linearity error specification. One 
LSB of a 16-bit ADC with 5V supply corresponds to 
76uV. Achieving better than 15.2uV (0.2 LSB) source 
linearity becomes extremely challenging. Moreover, 
certain critical applications demand all codes of the 
ADC to be tested in production, creating long test times 
that often run in the order of a minute on an expensive 
mixed signal ATE. This extensive test time is usually 
required to average out the effects of input noise. 
Requiring the source to remain stationary during this 
long test time creates another challenge for linearity 
testing. The source architectures best known for good 
linearity, i.e. the delta-sigma structure, are not known 
for good drift performance, and vice versa. In addition, 
linear sources tend to be very slow and the slow settling 
characteristic of the source usually dominates the test 
time. A fast source becomes critical for dramatically 
reducing test costs. Therefore, to enable test solutions 
for future high precision ADCs, methods must be 
developed to relax some of the performance 
requirements on the input source. 
 
This work dramatically relaxes the requirement of 
source linearity for ADC testing. If the source is 
allowed to be non-linear with no stringent requirements, 



as well as no need for prior knowledge, on non-linearity 
characteristics, the design requirement for the source 
will be dramatically reduced. Such sources can be 
designed to have better drift characteristics and to work 
faster, properties which are key for improving testing 
accuracy and reducing testing time. Furthermore, such a 
non-linear source can be implemented on chip with a 
small die area to facilitate use in a built-in self-test 
(BIST) environment. The non-linear effects of the 
source will be effectively removed by identifying the 
non-linearities based upon outputs observed by the 
ADC under test. The nonlinearity identification 
problem becomes a digital signal processing task which 
can be performed during production by the tester 
computer.  
 
Recent research including non-linear excitations for 
ADC testing can be found in [7] and [8]. Two different 
algorithms using nonlinear ADC excitations are 
discussed in [7]. One of these algorithms is sensitive to 
device noise, making applications to precision ADCs 
difficult. The second algorithm requires a matrix 
inversion which is not time-effective for high resolution 
ADCs. Both algorithms are dependent upon an 
assumption of low spatial-frequency nonlinearities in 
the input. An application of one of these algorithms to a 
10-bit ADC is discussed in [8]. 10-bits resolution 
appears to be a practical performance limit on the 
specific algorithms used in this recent previous work.  
 
As in the previous work, the assumption is made that 
the nonlinearities at the input are of modestly low 
spatial frequency but in contrast to the previous work, 
the test strategy introduced here is highly insensitive to 
the magnitude of the nonlinear components.  The test 
time required for implementation of the proposed 
testing strategy is short, making it viable for use in a 
production test environment. The method and algorithm 
presented in this paper has been verified on a high 
performance 16-bit ADC, a real challenge in mixed 
signal testing. 
 
2. Mathematical Formulation of the Method 
 
In this section, mathematical details of the method are 
given. First, the modeling of the ADC and the non-
linear input signal are discussed. Second, the 
mathematical model of the Integral Non-Linearity 
(INL) test is discussed. Third, the details of the 
proposed algorithm that estimate and remove the input 
non-linearity are given. 
 
Modeling of an ADC and the input signal 
For an n-bit ADC with N=2n output codes, the static 
input-output characteristic can be modeled as 
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where D is the output code, x is the input voltage, and 
Tk, k=0, 1 …, N-2, are transition points of the ADC. 
Each transition point Tk is a threshold voltage. If the 
input voltage is less than Tk, the output code will be less 
than or equal to k. If the input voltage is larger then Tk, 
the output code will be bigger than k. Further, in 
equation (1), it is assumed that the ADC is monotonic 
and has no missing codes. This is a good assumption 
for high performance ADCs.  
 
Linearity test of an ADC corresponds to investigating 
how linearly transition points of an ADC, Tk, k=0, 1…, 
N-2, are distributed. An ideal linear ADC with the first 
and last transition points denoted by T0 and TN-2 has 
transition points uniformly spaced between T0 and TN-2 
with a constant voltage increment of (T0-TN-2)/(N-2). 
This increment is called 1 LSB. Transition points of the 
ideal linear ADC are usually called endpoint-fit line 
transition points and notated as Ik. They can be 
expressed as 
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Equation (2) is called an endpoint-fit line, since it is a 
straight line connecting the first and last transition 
points of the ADC. For linearity testing, actual 
transition points of an ADC will be compared to 
corresponding fit line transition points. The difference 
between the actual transition points and the fit line 
transition points is defined as transition point INL. 
Expressing INL in LSBs, we get  
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A larger INL indicates an ADC has higher non-
linearity.  
 
An ideal ramp signal as assumed in traditional linearity 
testing can be visualized as a signal that increases 
linearly with time t, whereas a more realistic ramp 
signal always has some non-linearity that makes it 
deviate from a straight line. A real ramp signal can be 
modeled as: 



)()( tFtxtx os ++= η  (4) 

where xos is a DC offset, η is the slope of the linear 
component and F(t) is the nonlinear component. Let us 
define transition time tk to be the time at which the 
value of the ramp signal is equal to the kth transition 
point of the ADC. 

2...,1,0),( −== NktxT kk   (5) 

Monotonicity of the source is assumed in this work, and 
hence the output codes before tk will be always less 
than or equal to k. To simplify derivation, we perform 
some linear operations on equation (4), which will not 
affect the final test results. First, we choose the first 
transition time to be the origin of time, i.e. t0=0. 
Second, we make the last transition time to be unit time, 
i.e., tN-2=1. Furthermore, we define the non-linearity in 
input signal to be 0 at t=0 and 1. In other words, 

0)1()0( == FF  (6) 

These operations are equivalent to choosing 

020 , TTTx Nos −== −η  (7) 

Substituting equation (7) into (4), we get 

10),()()( 02 ≤≤+−+= − ttFtTTTtx No   (8) 

Equation (8) represents a signal whose magnitude is 
equivalent to the first and last transition points of the 
ADC at normalized time 0 and 1, respectively. The 
non-linearity of the input signal is totally characterized 
by F(t). The above equation basically relates the time 
variable to the input waveform, with the ADC’s 
transition points being the parameters.  
 
Because we do not have prior knowledge about the 
general form of F(t), we will use a set of complete and 

orthonormal basis functions }...3,2,1),({ =jtF j  to 

express the input non-linearity. As an example, we first 
choose familiar and widely-used trigonometric 
functions on [-1, 1] to be the basis functions, though 
there are other alternative basis functions. We will 
show that using only a part of the basis functions we 
can obtain a simple parameterization for F(t). Let us 
apply odd extension to F(t) to cover the interval [-1, 1],  
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This function can be expanded as: 
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where aj, j=1, 2…, and bj, j=0, 1, 2…, are associated 
coefficients. Since the extended function is odd, 
coefficients of cosine functions are all 0 and only sine 
functions are necessary for expressing the non-linearity. 
On [0, 1], F(t) can then be parameterized by the 
sinusoidal functions as 
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In general, the parameterization of F(t) can be done 
with any set of basis functions }...3,2,1),({ =jtF j

which 

have the same property as F(t) such that they are equal 
to 0 when evaluated at t = 0 and 1. 
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An example of an alternative set of basis functions are 
polynomial functions  

)...}2/1)(1()(),1()({ 21 −−=−= ttttFtttF . 
 
Since we can only handle finite number of parameters, 
first M basis functions are used in (11), and e(t) 
represents the combined effect of the residual terms that 
cannot be expressed by the M basis functions. 
However, by the completeness of basis functions, M 
can be appropriately chosen such that this residue is 
arbitrarily small. We will not carry the term e(t) in the 
following derivation and analyze its effect later. F(t) is 
said to be identified if we can determine the value of aj, 
j=1, 2…, M. Figure 1 depicts the relationships between 
actual and  fit line transition points, the input and output 
of an ADC, and the ideal and real ramp signals. The 
horizontal axis corresponds to time with transition time 
labeled. The vertical axis corresponds to the input 
voltage with transition points labeled. The region 
corresponding to different output codes are marked as 
dotted areas.  
 
Modeling of the INL test of an ADC 
The goal of ADC linearity test is to identify transition 
points and INL of an ADC. Transition points of an 
ADC cannot be measured directly. However, we can 
calculate the value of transition points by using 
equation (5), if the shape of the input signal and 
transition time is known to us. Substituting equation (8) 
into (3) and parameterizing the nonlinearity as 
described earlier, we get 
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Figure 1. Basic relationships in ADC linearity testing 

 
Coefficients aj, j=1, 2…, M, are in LSB in the equation 
above.  
 
Let us assume the output of an ADC is sampled at a 
constant rate. The number of samples obtained for each 
code can be represented as Ck, k=0, 1, 2…, N-2. If the 
conversion time of the ADC is constant, the time when 
a sample is taken is linearly proportional to the number 
of samples that has been taken before. So, the number 
of samples can be viewed as a measure of time. For 
example, C0 samples are captured when the last sample 
of code 0 is taken; C0+C1 samples are captured when 
the last sample of code 1 is taken. In general, C0+ 
C1+…+Ck samples have been captured when the last 
sample of code k is taken, which can then be expressed 
as 
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where Tc is the sampling clock period. If a particular 
sampled output code is k+1 while the previous code is 
k, the input voltage must change from less than Tk to 
larger than Tk during the previous clock period, and it is 
equal to Tk at a time between the two concerned 
samples, which is by definition tk. That is 

ckkk Tttt +<≤ ˆˆ  (14) 

There is an uncertainty of one clock period between the 
two samples. But when enough samples are taken, it’s 
safe to assume the quantization error is insignificant 
and 
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To be in agreement with equation (8), we shift and 
normalize the estimated transition time as in (16) so 
that the estimate of the first transition time 0 and the 
last transition time is 1. 
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(16) is a key equation to be used while relating ADC 
transition time to histogram counts for each code. 
Substituting equation (16) in (12), we get an estimate 
for INL as: 
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Equation (17) carries some significance. If the input 
non-linearity were known, equation (17) would relate 
the histogram counts to INL of the ADC. However, 
typically input non-linearity is not known before hand. 
Also (17) comprises of a set of N-3 linear equations 
with (N-3) INL values and M non-linearity values, 
amounting to a total of N+M-3 unknowns. The set of 
equations are thus insufficient to solve for all the N+M-
3 unknowns. It can be observed that if assume the input 
signal is ideally linear such that all aj=0, we get the 
traditional histogram method 

3...,2,1,ˆ)2(ˆ −=−−= NkktNLNI kk  (18) 

This estimation is good when the input non-linearity is 
much smaller than 1 LSB. However, if the non-linearity 
is comparable to or larger than 1 LSB, it will give us 
significant error. The error in INL estimation can be 
obtained by subtracting equation (18) from (12) 
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The first term of INL estimation error is the input non-
linearity. We see that the input non-linearity gets 
included in the estimated values of INL. This will result 
in misinterpretation of the actual linearity performance 
of an ADC. For example, if we use an input source with 
10-bit linearity to test a 16 bit ADC with true 1 LSB 
INL, equation (18) will estimate the ADC to have an 

INL of about 64 LSB. In (19), )ˆ( kk ttd − is the 

quantization error in transition time. However, with a 
reasonable number of samples per code, it’s usually a 
fractional of 1 LSB and much less than the term coming 
from the input non-linearity. We will neglect it 
presently and the effect of the quantization error will be 
dealt with later. 
 
A new method for ADC linearity test 
In equation (17), nonlinearities from different sources 
are coupled to each other and cannot be identified at the 
same time. In the proposed algorithm, two analog input 
signals will be used, and the input non-linearity and 
INL of an ADC will be separated and identified 
independently. The first signal is of the general form 
given in (4) and the second is simply a shifted replica of 
the first input signal with a shift voltage α. Such a shift 
could easily be obtained in hardware by an analog 
summing circuit. 
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α−+−+= − )()()( 0202 tFtTTTtx N  (21) 

Transition time for the two signals is defined by 
following equations 

)( )1(
1 kk txT =  (22) 

)( )2(
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Equations (22) and (23) are key to understand the logic 
behind the proposed method. Any non-linear (or linear) 
input maps the transition points of the ADC onto the 
time axis represented by histogram counts. The same 
ADC transition points can be mapped onto the time axis 
with different histogram counts using different input 

signals. If )1(
kC  and 1...,1,0,)2( −= NkCk  are 

histogram data collected by using 1x  and 2x , estimates 
of transition time can be expressed in following 
equation by using the same argument for equation (16).  
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where transition time is shifted and scaled with respect 

to the first signal, with origin at )1(
0C  and unit time at 

)1(
2−NC . Similar to equation (17), we can have the 

estimate of INL formulated using each input signal and 
corresponding histogram counts. 
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Notice that the non-linearity is only parameterized on 
the interval [0, 1] by equation (11), but in (25) some 
transition time of the second input will be larger than 1. 
For that part of transition time, parameters are not well 
defined by (11), so those corresponding equations are 
excluded from (27). Roughly speaking the last α (in 
LSB) equations in (27) will have transition time larger 
than 1, so the total number of equations will be N-3-α. 
We will see for a reasonable shift value this reduction 
in number of equations will not affect the performance 
of the new method. 
 
Equations (26) and (27) constitute the body of the 
proposed algorithm. The left hand side of the equations 
(ADC’s trip points) will cancel when two equations are 
subtracted from each other and the input non-linearity 
will be left in a parameterized form. Moreover, there 



will be more equations than parameters, so the system 
can be solved using a standard parameter estimation 
method. Regardless of the difference between two 
estimates of a same INL, we still have N+M-3 
unknowns consisting of N-3 INL and M aj parameters. 
But with two input signals and nearly doubled number 
of 2(N-3)-α equations, the identification of the 
unknowns is possible. Equating the right hand side of 
(26) and (27), we get  
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It can be observed that the above equations contain only 
the parameters corresponding to the non-linearity in the 
input signal and have no INL parameters of the ADC. 
Moving the linear terms of transition time to one side of 
the equation and the nonlinear and shift terms to the 
other side, we get 
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There are roughly N-3-α linear equations for M 
unknown parameters aj. If the number of codes is much 
larger than the number of basis functions and the shift 
magnitude, the various unknowns are over constrained 
by (29) and can be estimated by using the Least Squares 
(LS) method. The LS method has an attractive property 
of partially or totally averaging out any noise or errors 
in equation (29). Denoting the estimated values of the 

parameters to be Mja j ...,2,1,ˆ = and substituting 

them into either equation (26) or (27) or their 
combination, we can estimate INL of the ADC. Using 
(26) for example, we get 
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3. A first attempt of error analysis 
 
There are several sources of errors that will affect the 
performance of the algorithm. Among them the additive 
noise in the signal, the non-parameterized error of the 
signal as given in equation (11), and the quantization 
error of transition time as shown in equation (19) may 
have the most significant effects on the INL test results 

obtained by our method. Using the first signal as an 
example, and adding the effects of noise and errors, the 
relationship between transition points and the estimated 
transition time can be written as 
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where )ˆ( )1(
kte  is the non-parameterized error, )ˆ( )1(

ktn  

is effect of the additive noise, and )ˆ( )1()1(
kk ttd −  is the 

quantization error. We further assume these noise and 
errors will not affect the LMS estimation of 

Mja j ...,2,1,ˆ = so that they can be assumed to be 

the same as Mja j ...,2,1, = . This is a fair 

assumption based on following reasons. First, the non-
parameterized error is orthogonal to the first M 
sinusoidal functions by definition. Second, the additive 
noise and quantization error are usually changing very 
fast as a function of time and hence have little 
components correlated to low frequency basis 
functions. Third, the LS method will also average out 
the effect of fast changing components in noise and 
errors. Therefore the difference between the INL 
calculated in equation (30) and the actual INL is 

)ˆ()ˆ()ˆ(ˆ )1()1()1()1(
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We will discuss these terms separately. 
 
Effects of the non-modeled error in input signals 

The magnitude of )ˆ( )1(
kte  is dependent on the number 

of basis functions used in parameterization, M, and the 
non-linearity of the input signal itself. As mentioned 

earlier, )ˆ( )1(
kte can be reduced to arbitrarily small by 

increasing M. In reality, we require the input signal to 
be changing slowly. The non-linearity in the input can 
be large, but it doesn’t change too fast so that we can 
parameterize it with reasonable number of basis 
functions to get a small residue error. Higher spatial-
frequency nonlinearities can be handled by increasing 
the number of basis functions. 
 
Effects of the additive noise in input signal 
Let us assume the additive noise at the input to an ADC 
to be stationary and Gaussian with variance σ2. The 
noise may make the output code different from its 
expected value, thereby changing the bin counts. Larger 
variance of the noise makes the code more likely to be 
different from its expected value. However, with a 
reasonably large number of samples per code, a change 
by one or two samples’ value will not have a significant 



effect on the total number of samples for a code. 

Intuitively, the variance of )ˆ( )1(
ktn may be positively 

correlated to the variance of the additive noise and 
negative correlated to the average number of samples 
per code. With more detailed statistical analysis, we can 
show that the following relationship is true. 
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where Ns is the average number of samples per code. A 
is a constant dependent on the distribution of the noise. 
For Gaussian noise, A=0.5642. This sensitivity to noise 
is also a fundamental problem in conventional 
histogram based ADC test algorithm. 
 
Effects of the quantization error in transition time 
The quantization error of transition time is bounded by 
equation (14). A smaller clock period Tc will produce 
more samples in total and a larger average number of 
samples per code Ns and the quantization error will 
become smaller. The standard deviation of the 
quantization error can be expressed in terms of Ns as  
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In equation (34) we assume the quantization error is 
uniformly distributed.  
 
Typically, in an all codes production testing 
environment, Ns is between 20 to 100 samples per code. 
The magnitude of the additive noise determines which 
term of (33) and (34) is more important to the test 
result. If the standard deviation of the additive noise is 
comparable to 1 LSB, the quantization error is much 
smaller than the effect of the noise. For high resolution 
ADCs, up to 1 LSB RMS noise is typical. This was the 
rationale behind neglecting the effect of quantization 
earlier. The same quantization error is also an issue in 
traditional histogram based testing. 
 
Effects of the shift between two signals and others 
The value of voltage shift �  between two input signals 
also affects the final INL estimation results. If the shift 
is too small, the difference between the non-linearity of 
the two input signals at the same code level will be very 
small and noise in equation (31) will have significant 
effects on the LS method. The assumption that 

estimated parameters Mja j ...,2,1,ˆ =  are close to 

the actual value doesn’t hold any more and the 
numerical behavior of the LS method is no longer 
reliable under that situation. The shift can not be too 
large as well. As mentioned before, the last α equations 
in (29) will not be used to estimate the parameters, so 

the LS result is only optimal for part of the input non-
linearity and not necessary to be optimal for the non-
linearity on the whole interval of [0, 1]. Analysis shows 
that 0.1 to 1 % shift is appropriate for the proposed 
method. Both simulation and experimental results 
support this conclusion. The method estimates the 
amount of shift, so, no prior knowledge on the amount 
of shift is assumed. 
 
We assume the two input signals are identical but with 
a constant shift. This is not true in reality. We always 
have time varying effects in the test, e.g. the drift of 
reference voltage. The signal source may change from 
the first to second run, which will introduce gain error 
and/or different non-linearity between two signals. 
These non-stationary effects can be eliminated by well 
designed time interleaving measurement. Two signals 
are interleaved in time to excite the ADC and collect 
histogram data. By using “common-centroid” sequence 
to interchange between the two signals, most of the 
non-stationary effects are cancelled in experiment. 
 
4. Simulation results 
 
Simulation were done in Matlab, using different 
combinations of ADC resolution, the average number 
of samples per code, the non-linearity of the input, the 
additive noise, and the voltage shift between two input 
signals. Simulation results show that the algorithm can 
accurately identify INL of an ADC of different 
resolution by using nonlinear excitations under various 
situations. Results from simulations of 14-bit simulated 
ADCs under different noise level and average number 
of samples are summarized as follows. The actual INL 
of the simulated ADC is shown in Figure 2. 

 
Figure 2. INL of a simulated 14-bit ADC 

 
The first nonlinear input signal is modeled as 

noisettttx +−+= )(*04.0)( 2
1  (35) 

The maximum non-linearity specified in (35) is 1% of 
the total input range. The input signal is 6-7 bit linear. 
The shift between the first and second signals is 128 



LSB. However this data is not used in the algorithm and 
is considered as an unknown and calculated 
independently. 11 sinusoidal basis functions are used in 
parameterization of the nonlinear term in the input. If 
the additive noise has a standard deviation of 1 LSB 
and 32 samples are taken for each code on average, INL 
estimated by the proposed algorithm is shown in Figure 
3. The difference between the actual and estimated INL 
is plotted in Figure 4, which shows that the error in INL 
estimation is less than .6 LSB. Using the proposed 
method the test results are nearly 14 bit accurate with 
just a 7 bit linear input signal. 

 
Figure 3. Estimated INL of the simulated ADC by using 

nonlinear inputs 

 
Figure 4. Difference between actual and estimated INL 

for the simulated ADC 
 
Other results for different combinations of the average 
number of samples per code and noise are summarized 
in Table 1.  
 
Table 1. Max INL estimation error of different Ns and �  
 
Shift = 128 LSB, 11 sinusoidal basis functions 

Ns 

�
 

(LSB) 
Error 
(LSB) Ns 

σ 
(LSB) 

Error 
(LSB) 

16 0.8 0.78 16 0.2 0.46 
32 0.8 0.54 16 0.4 0.60 
64 0.8 0.40 16 0.8 0.78 
128 0.8 0.32 16 1.6 1.22 

 

For each of the INL error data in Table 1, 4 tests are 
simulated for each set of the same Ns and σ, and an 
average value of the maximum errors are calculated and 
listed. This allows us to statistically analyze the 
performance of the proposed algorithm. From Table 1, 
we can see that if Ns is increased by 4 times, the error in 
INL estimation is reduced by about 50%; if the standard 
deviation of the additive noise is increased by 4 times, 
the error in INL estimation is increased by 2 times. This 
is in agreement with equation (33). 
 
5. Test Results from a 16-bit SAR ADC 
 
Commercially available 16-bit ADC was also tested to 
verify the performance of the new method. The sample 
that was used as device-under-test (DUT) were laser 
trimmed 16-bit ADC with excellent linearity 
performance (typically +-1.5LSBs) making it a real test 
challenge. The test hardware used for the verification of 
our method is the same hardware used in the production 
testing of the device.  
 
Test Setup 
Verification of the full performance of this ADC 
requires extreme attention to test hardware design. A 
12-layer handler interface board is used with extensive 
ground, supply and reference coverage. Extreme care is 
given to reduce ground loops and also to obtain proper 
bypassing. High performance contactors, high precision 
resistors, high performance capacitors and precision op-
amps are used throughout the board. Latching relays are 
used to reduce temperature gradients generating metal 
to metal contact noise effects. The digital outputs are 
damped and buffered properly to avoid current surges. 
The test platform is Teradyne A580 Advanced Mixed 
Signal tester. The source generating both the linear and 
the synthetic nonlinear excitations is a 20-bit multi-bit 
delta-sigma DAC with 2ppm typical linearity error, 
100uV/minute typical drift characteristics, and 2 KHz 
bandwidth (This source is a typical example 
demonstrating that an expensive signal generator is not 
always good enough to provide low drift, high speed 
and good linearity all at the same time). DC shift of the 
nonlinear excitation is given through an analog 
summing circuit. In the experiment, the testing of 
histogram data using nonlinear signals and 
identification of INL using the proposed method are 
done in different platforms. The tester setup, including 
the shape of the non-linearity in the input and shift 
between two signals are not known to the identification 
algorithm at all. Only two sets of histogram bin counts 
are fed into the analysis program. 
 
Test Data Collection and Analysis 
The INL of the ADC was first obtained by using the 
histogram from an ideal ramp excitation. This method 



is the traditional method used during the production 
testing of the ADC. The INL plot is given in Figure 5. 
32 samples per code are used to keep the test time 
reasonable. 

 
Figure 5. INL of a 16-bit ADC measured with a linear 

ramp 
 
Figure 5 will be used as the actual INL of the ADC to 
compare the results of the proposed algorithm. We 
would like to mention here that actual INL of an ADC 
is actually not known to us. The INL measured with a 
linear signal is only an estimate of the actual INL. It is 
only assumed that INL measured with the conventional 
method is a good estimate of the true INL of the device.  
 
The two nonlinear signals are synthetically generated 
by programming the source memory with a nonlinear 
digital waveform. The DC shift is generated by an 
analog summing circuit. The INL of the ADC measured 
with one of the two nonlinear signals and (incorrectly) 
calculated by the traditional histogram method using 
equation (18) are plotted in Figure 6.  

 
Figure 6. INL of the ADC measured with nonlinear 
input and calculated with the traditional histogram 
method. In the traditional method, any input non-

linearity appears as ADC non-linearity. 
 
The non-linearity is simply one period of a sine wave 
with some slight phase shift. These two nonlinear 
signals have only 8-bit linearity. They are fairly linear 
for the real world, but for our 16-bit, precision ADC, 

the amount of non-linearity at the input is simply 
excessive. Needless to say, these inputs are 
synthetically generated to be a representative of real 
world quasi-linear analog ramp generators such as 
simple integrators. When the method proposed in this 
paper is applied to the measured bin count data, we get 
an estimate of the INL as plotted in Figure 7.  

 
Figure 7. INL of the ADC measured with nonlinear 

input and calculated with the proposed method 
 
INL measured in Figure 7 follows Figure 5 really 
closely. The difference between them is shown in 
Figure 8. This difference is promising and can be 
acceptable as far as 16 bit converters are concerned. Up 
to 0.5 LSB variation is inherent in histogram testing 
with 32 samples per code. In a previous study on this 
device, the performance of all-codes histogram testing 
was compared to the performance of reduced code 
testing with a servo-loop. At each code, differences up 
to 0.7LSB was found during the comparison, giving 
further proof that at 16-bit level, discrepancies 
indicating poor test capability do occur.  

 
Figure 8. Difference between the INL estimation by 

using linear and nonlinear signals 
 
The results in figure 7 and 8 are calculated by using the 
first 14 polynomial basis functions. Sinusoidal basis 
functions are also used and they estimate the INL with 
the same performance. This means that the proposed 
method doesn’t rely on the selection of basis functions. 
Figure 8 shows that INL measured with linear and 



nonlinear signals are in agreement with each other with 
an absolute difference less than 1.2 LSB, across all 
65536 codes. This difference may be due to noise effect 
or due to the drift error in input signals. But by 
comparing figure 5 and 7, we can see that the proposed 
method accurately identifies the INL of an ADC using a 
low accuracy 8 bit linear input signal.  
 
The test time penalty of this algorithm is insignificant. 
The actual test time for this 16-bit ADC is about 50 
seconds, and the post-processing of the algorithm takes 
1.2 seconds in Matlab to calculate the INL from the 
collected bin counts. Once coded in the tester 
workstation, the algorithm is expected to complete well 
within 100 milliseconds. If a fast nonlinear source were 
used, the test time would actually improve. 
 
6. Conclusion 
 
This paper solves the mathematics behind linearity 
testing of ADCs using non-linear signals. A nonlinear 
stationary excitation and its shifted replica are needed 
for a complete mathematical solution. No assumptions 
on the shape or the frequency of the non-linearity are 
made. No prior knowledge about the shift or non-
linearity is required. Using actual production test 
hardware, the method was shown to test a high 
performance 16-bit ADC to well within its +- 2 LSB 
specifications, using only 8-bit linear inputs. The 
algorithm has insignificant negative impact to test time. 
With the introduction of this method and similar future 
methods, the test hardware development paradigm 
could easily shift from linear source development, to 
low drift and high-speed source development. The 
nonlinear low-drift input waveform and its shifted 
replica can even be generated on chip as a built-in self-
test feature. The algorithm directly applies to DAC 
testing as well, since it cancels the ADC non-linearity 
totally while estimating the source (DAC) non-linearity.   
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