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ABSTRACT 

An infinite DC gain CMOS positive feedback amplifier 
with 90° phase margin was designed and its nonlinear 
dynamics was studied using level 1 MOS models. 
Analytical derivations were utilized to investigate its 
equilibrium point, turning point, stability and branching 
properties. Analysis suggested this amplifier would show 
parameter-dependent supercritical pitchfork bifurcation. 
Bifurcation signals the instability of this amplifier when 
positive feedback factor is large. By decreasing the 
parameter until the bifurcation was eliminated, an 
amplifier with an infinite DC gain at operating-point was 
theoretically designed. Branching diagram was presented 
with numerical simulation. Gain nonlinearity was 
explained and methods to decrease this nonlinearity were 
proposed. Circuit simulations results verified our 
derivations.  

1. INTRODUCTION 

Amplifier design is as old as analog circuit design and 
MOS amplifier design may even be older than planar 
processes.  Although MOS fabrication technologies have 
advanced as Moore’s Law [1] predicted during the past 
four decades, analog circuit design did not evolve too 
much. Feature size shrinking [2] in advanced CMOS 
technology brought digital circuits great advantages, such 
as high integration, high speed, low power, and low cost. 
This progress helped to enhance some analog circuits’ 
performances; nevertheless, it posed a great challenge to 
analog circuit design. Fast supply voltage drop and slow 
threshold voltage drop greatly limited traditional high gain 
amplifier structures to achieve large output swings. A 
positive feedback amplifier has the potential to provide 
low-voltage compatibility, large output swings and good 
frequency response [3]. However, it behaves much more 
like a nonlinear circuit though it is supposed to be a 
‘linear’ device. A few works tried to limit its gain-
nonlinearity but few achieved good results [3, 4, 5].  
Traditional circuit designers typically used small signal 
equivalent linear models [6, 7] to study analog circuits or 
even call those circuits ‘linear circuits’. However, 

nonlinearity in circuits becomes more apparent with 
feature size shrinking [7]. Linear models are still valid in 
certain applications. However, these models cannot 
explain gain nonlinearity and some special dynamics (e.g., 
hysteresis) shown in some ‘not-well-designed’ positive 
feedback amplifiers. Thus, it is important to use nonlinear 
system dynamics to study the positive feedback amplifier. 
Nonlinearity may either benefit or hurt a circuit’s 
performance. After we understand the nonlinearity in 
analog circuits, we can choose to utilize the advantages 
while avoiding the disadvantages. 
In this paper, a positive feedback amplifier’s system 
dynamics were studied. Section 2 introduces bifurcation 
phenomenon in nonlinear dynamical systems [8]. Section 
3 provides analytical derivations of dynamical behavior in 
a traditional differential amplifier and in a positive 
feedback amplifier [5]. Parameter dependency of 
bifurcation [8] is used to study the positive feedback 
amplifier. Some interesting properties were discovered and 
used to maintain a high DC gain. Gain nonlinearity was 
explained in our derivations. Branching diagram was 
obtained by numerical simulations. Section 4 presented 
transistor-level circuit simulations results, which verified 
the analytical derivations.  Conclusions were given in 
section 5.  

2. BIFURCATION IN DYNAMICAL SYSTEMS 

Bifurcation [8] is one commonly encountered nonlinear 
phenomenon in dynamical systems. It is characterized by 
bifurcation points and branches, as shown in Fig. 1. A 
bifurcation point is easy to characterize geometrically: at a 
bifurcation point, two branches with distinct tangents 
intersect. Fig. 1 shows a branching diagram of pitchfork 
bifurcation. Pitchfork includes supercritical pitchfork and 
subcritical pitchfork but we will only focus on 
supercritical pitchfork in this paper. 
We will explain supercritical pitchfork concisely and 
define some terms that used in the paper. First, let us go 
through a differential equation (1) 
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Equation (1) is a model of supercritical pitchfork. 
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Fig. 1 pitchfork bifurcation

For 0µµ > , there are two stable equilibria, 0µµ −±=y

and an unstable equilibrium 00 =y . For 0µµ ≤ , there is 

only one stable equilibrium at 00 =y . We call point 

( 0y , 0µ ) a bifurcation point and µ branching parameter. 

Fig. 1 shows the branch diagram of this supercritical 
pitchfork bifurcation. 

3. SYSTEM DYNAMICS IN TWO AMPLFIERS 
3.1. A Fully Differential Amplifier 
The circuit shown in Fig. 2a is used as a fully differential 
amplifier in analog VLSI [6]. Assume it has perfect 
symmetry, we can use the equivalent linear model depicted 
in Fig. 3b to analyze frequency response. The model is 
obtained by locally linearizing the circuit at its operating 
point, i.e., ICMii VVV == 21  and oCMoo VVV == 21 .

a

b
Fig. 2 A fully differential amplifier and its equivalent linear 

model 
Analog circuit designers are more interested in the 
situation when all transistors are in saturation region. We 
will focus on this situation. Instead of using locally 
linearized model to analyze this circuit, however, we will 
use differential equations to study the dynamic of this 

circuit, which includes stability of operation point (an 
equilibrium point).  
Without loss of validity, MOS level 1 DSI  Schichman-

Hodges model [9] is used to derive the system dynamics. 

In this model )1(2
DSEB VVI λβ += .

After careful derivations, we found differential equation (2) 
denoting this amplifier’s system dynamics. 
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Rewrite the differential equation (2) as equation (3). 
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Under normal operating range, 0)( <xa . This suggests this 
system is always stable and 0=y  is the sole stable 
equilibrium point when there is no excitation. 
In circuit design field, DC gain (including magnitude and 
phase) at operating point is defined as the slope of 

),( yxf at the equilibrium point (0,0), which is 
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3.2 System dynamics of a Positive feedback amplifier 
Fig. 3 depicts a positive feedback amplifier [5]. Unlike 
traditional positive feedback amplifiers, its system 
dynamics is controlled by feedback factor.  

Fig. 3 A positive feedback amplifier 
Unlike the circuit in Fig. 2, the gates of PMOS transistors 
are connected to output through a feedback buffer with 
attenuation of µ. This circuit has the same operating point 
as the circuit shown in Fig. 2a. 
Using the same denotation, we get differential equation (5) 
representing the dynamics of this new circuit. 
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Let 
221
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ii
v

vv =−= , under the assumption of perfect 

symmetry, we can get 
221
o

oo
v

vv =−= .

Let oi vyvx == , , the partial differential equations (5) can 

be rewritten as (6) . 
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We first investigate the stability of deflection when x=0, as 
depicted in equation (12) 
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Fig. 4 shows this branching diagram assuming the 
branching parameter have sufficient large variability. Fig. 
4 depicts two possible branching diagrams, (a) without any 
constrains at output and (b) with saturation at outputs. The 
symmetry of the branching diagrams with respect to the µ-
axis reflects the basic assumption of perfect symmetry. 
This branching diagram has a branching point 
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Let’s rewrite the differential equation (6) as  
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Given µ  known, equation 0),,( =µxyf tells the 
relationship between input x and output y, which is called 
a DC transfer characteristic in circuit design. 
Based on the definition used in circuit design area, gain 
function (shown in equation 9) is the tangent of ),,( µxyf

in ),( xy  plane. 
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Fig. 4 Branching diagrams of PFA: (a) no constrain (b) 

saturation at output 

For a high gain positive feedback amplifier, feedback 

factor µ is ideally set to be 
mp

onop

g

gg +
=0µ . This amplifier 

achieves an infinite DC gain at bifurcation point 

),0,0(
mp

onop

g

gg +
 but gain drops in a speed proportional to 

2−y .  This explains high gain nonlinearity in most positive 
feedback amplifiers.  In order to limit this non-linearity, 
small λ is preferred which suggests wide length transistors.  

When 
mp

onop

g

gg +
<µ  there exists a one-one mapping 

between y and x solving the equation 0),,( =µxyf . The 
solution for 0),,( =µxyf becomes complex when 

mp

onop

g

gg +
≥µ . One-One mapping from x to y turns to be 

invalid. Given µ  fixed, there exists a boundary 00 >x  for 

bifurcation. When 0xx <  , we can find two stable 

equilibria and an unstable equilibrium. When 0xx > ,

there will be only one stable equilibrium point. 0x  is given 

by a solution of equation (8) and (10)  
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One will get equation (11) combining equation (8) and 
(10).
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One can get an analytical expression for 0x  with the 

knowledge of general method to cubic equations. Equation 
12 gives an estimation on the upper bound of 0x .
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In order to observe bifurcation, one has to limit excitation 
to be a small value especially when µ is close µ0. Fig. 5 
shows the branching diagram respect to excitation x for 
different branching parameters. Depending on µ, DC 
transfer characteristics may display hysteresis or not. An 
infinite DC gain exists at the bifurcation point. 

Fig. 5 DC transfer characteristics of different control 
factors 

4. CIRCUIT SIMULATION RESULTS 

Digital CMOS transistors were used to realize both 
amplifiers. Gain nonlinearity and bifurcation was observed 
in the positive feedback amplifier. After canceling 
bifurcation by adjusting the control factor, the amplifier 
achieved an infinite DC gain at operating point. Table 1 
summarized performances of these two amplifiers shown 
in Fig. 2 and 3. Without scarifying power, positive 

feedback amplifier achieves much higher gain. 
Simulations covering full corners over a wide temperature 
range were conducted and nearly all achieved above 80dB 
gain, which validated our derivations. This suggests this 
amplifier has the potential to achieve high yield. 

Table 1 Performance of circuits in Fig. 2 and Fig. 3 
 Fig. 2 Fig. 3 
Tail current I I 
DC Gain 
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5. CONCLUSIONS 
Dynamical systems and bifurcation theory are introduced 
to explain nonlinearity in analog circuits and a new design 
method was used in addition to classical analog circuit 
design, which enhances analog performance dramatically. 
We have successfully achieved an infinite DC gain 
amplifier using bifurcation theory, which is impossible to 
obtain using traditional circuit design knowledge. 
Beginning with traditional circuit design techniques, 
utilizing dynamical systems and bifurcation theory, we 
developed a robust design method for high gain low-
voltage compatible amplifiers with expected high yield in 
digital CMOS. 
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