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ABSTRACT 

This paper discusses systematic mismatch due to gradient 
in IC fabrication and presents a generic layout strategy to 
enhance matching characteristics for passive and active 
devices in VLSI. Circular symmetry pattern, a new type of 
layout structure, was proposed and its effect on high order 
gradient cancellation was discussed. Analytical deviations 
suggested circular symmetry pattern has the potential to 
cancel high order gradient mismatching between two 
devices. This paper also proposed two novel layout 
structures, the second circular symmetry pattern and a 
hexagonal tessellation, which can cancel linear  quadratic 
gradient in resistors, capacitors and threshold voltages of 
transistors. Simulation results of proposed second circular 
symmetry pattern and hexagonal tessellation have a better 
matching performance than existing layout structure. 

1. INTRODUCTION 

Matching characteristics of capacitors, resistors and 
current mirrors play a critical role in high performance 
analog and mixed-signal circuits. For example, match of 
two capacitors in a switched-capacitor amplifier 
determines its gain’s accuracy; match of capacitors in a 
pipeline stage dramatically affects a pipeline ADC’s 
performance such as INL, signal-to-distortion ratio. 
Previous studies have shown mismatch between devices 
could degrade a circuit’s performance [1, 2]. Thus, it is 
important to maintain good match in layout to minimize 
mismatch after fabrication. Mismatch includes systematic 
and random mismatch. Random mismatch is typically 
modeled as Gaussian distribution. It can be compensated 
by increasing area [3]. Systematic mismatch, however, is 
determined by layout and process. Previous studies by Felt 
et al. [4] suggested that the systematic mismatch could be 
large enough to swamp out random mismatch. Systematic 
mismatch is less desirable than random mismatch because 
systematic mismatch can show up degrading at low 
specifications while random mismatch shows up typically 
at high-end specifications. In IC fabrication, systematic 
mismatch refers to a spatial gradient in component values. 
Common centroid pattern can be used to compensate 
linear gradient [5], however, no reported layout strategy 

claimed to compensate nonlinear gradient completely. Lan 
[6] proposed a current mirror layout technique to 
compensate drain current mismatch due to linear gradient 
in threshold voltage completely at certain degrees. Our 
study extends these discoveries and gives a more generic 
form. After investing a concept of circular symmetry, we 
proposed a generic layout strategy to handle mismatch due 
to high order nonlinear gradient.  

2. GRADIENT MODELING  

The effect of gradient on a parameter Ω is typically 
modeled in a distributed way through the area of interest. 
Two dimension functions are widely used in the modeling 
while more accurate modeling even uses three-dimensional 
functions. These models give a better approximation of 
real gradient but it is difficult to find the useful 
information from complex equations.  
In our work, a two dimension polynomial function Ω(x,y) 
is used to represent the gradient. However, instead of 
using a distributed integral form, an ideal point is used to 
represent a device of interest. After obtaining the property 
of critical points, we extend the results to general cases. 
Equation (1) shows this gradient model. 
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3. A NTH-ORDER CIRCULAR SYMMETRY 
PATTERN AND A HEXAGONAL TESSELLATION 

Before we go to study different layouts’ effect on gradient 
cancellation, we first study some general graph patterns.  
3.1. Nth-order Circular Symmetry Pattern 
Figure 1 depicts a Nth-order circular symmetry pattern. As 
shown in Figure 1, 2N points locates around a circle 
(centered at (x0,y0) with radius ρ). Their coordinates are 
expressed in equation (2) 
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Figure 1 an Nth-order circular symmetry pattern 
Using the gradient model (1), the effect of gradient on a 
point Xi can be expressed as (3) and the total effect can be 
expressed by equation (4) 

))sin,cos(()( 00 iii yxXX θρθρ ++=Ω=Ω         (3) 

=

Ω=
N

i

iXTot
2

1

)(                                               (4) 

Using trigonometry theory, we can use equation (5) to 
represent (3) with appropriate coefficients. The 
coefficients are determined by the coefficients in equation 
(1).
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Thus we can extend equation (4) to (6). 
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We will show 0=jVarP  using the well known equality 

0sin)2sin( =+++ θππθ k .

Because }2,...,1,
2

2
)1(|{ 0

N
Ni ii =−+= πθθθ , for Nj ≤ ,

==

+−+=+
NN

i

jNji

i

ijjj
2

1

0

2

1

]
2

2
)1(sin[)sin( φπθφθ             (8) 

It is not apparent that equation (8) is identical to zero. 
However, if j is odd, it is easy to show 
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If j is even, we can express oddisAAj m ,2= . It is easy to 

show that πθθ AiimN =−+−− 12 .
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We call the pattern of N
i iX 2,,2,1, = an Nth-order 

circular symmetry pattern. One of the most important 
properties of this new pattern is rotation-invariance. This 
has been shown in our derivations since 0θ  can be any 

value. Figure 1 also displays another 2N points  {Y} 
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the Nth-order circular symmetry layout.  
Based on our discovery (9), )()( XTotYTot = . Thus, we 
demonstrated and proved a new layout pattern, which will 
cancel mismatch due to linear gradient and up to the Nth

order nonlinear gradient.  
Our discovery is consistent with previous studies [5]. 
Common centroid layout, which falls into 1st-order circular 
symmetry pattern, effectively cancels threshold voltage 
mismatch due to linear gradient.  
The layout pattern shown in figure 1 is sufficient to cancel 
linear and up to the Nth order nonlinear gradient. However, 
this layout pattern is not necessary to be optimal at any 
level. 

3.2. Hexagonal Tessellation 
Hexagon, the basic cell of bee nest, has wide applications 
in communication, architecture, chemical engineering and 
so on because of its high mechanical strength, high spatial 
efficiency. We will show hexagon also is the most concise 
layout pattern that can cancel linear and quadratic gradient 
completely. Furthermore, we can extend hexagon to 
construct Hexagonal Tessellation easily without space-
waste. 
Figure 2 shows a hexagon in a circle. The coordinates of 

}3,2,1{ , =iXi  can be annotated as 
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For a quadratic gradient (N=2 in equation 1), we can 
prove that the total gradient is not related to θ0.
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This suggests hexagon structure can cancel linear and 
quadratic gradient.  
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Figure 2 hexagonal tessellation 

3.3. Layout of Nth-order Circular Symmetry and 
Hexagonal Tessellation 
By rotating a unit cell around a center by N2/π  for N2
times, and connect alternations together, one can construct 
an Nth-order circular symmetry layout with good match. 
By rotating a unit cell around a center by 3/π  for 6 times 
and connect alternations together(as shown in Figure 2 
with label ‘A’ and ‘B’s), one can construct a hexagonal 
layout. Comparing to the second order circular symmetry 
layout with eight segments, hexagonal layout has only six 
segments. More importantly, hexagonal tessellation can be 
extended with arbitrary times wasting no area while no 
other structures can achieve the same area efficiency. 

4. EVALUATION OF DIFFERENT LAYOUT 
PATTERNS AND SIMULATION RESULTS 

In order to evaluate our proposed layouts’ performance, a 
comparison between existing layout patterns and the new 
proposed structures is presented. 
Figure 3 shows some existing layout patterns, including a 
mirror symmetric, a common centriod and a ‘four-
segment’ layout proposed by Lan [6]. Mirror symmetric 
pattern (3a) suffers seriously from gradient; Common 
centriod layout pattern (3b), categorized as the first order 
circular symmetric pattern, effectively cancels linear 
gradient effect. Our prediction is consistent with circuit 
designers’ experience.   
Figure 3c is a layout proposed by Lan [6] with a name of 
‘four segment’. Figure 4 is our proposed second order 
circular symmetric pattern. They are quite similar. 
However, they are different.  Proposed second order 
circular symmetry pattern will cancel parameter mismatch 
due to linear and quadratic gradient completely because of 
its rotation invariance, while Lan’s ‘four segment’ can 
cancel most quadratic mismatch.  

Figure 3 Existing Layout Patterns 
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Figure 4 Proposed 2nd order circular symmetry pattern 

Lan [6] proposed several current mirror layouts, which 
enhanced current match dramatically. He claimed to 
cancel current mismatch due to linear gradient in threshold 
voltage but simulation results suggested non-exact 
cancellation. This simulation result seems to contract to 
our prediction. However, after carefully studying his 
derivation and his proposed layout structures, we find the 
reason why the difference exists.  
Lan’s derivation is based on a special case of 2nd order 
circular symmetry with 00 =θ . However, though Lan’s 

layout patterns are quite close to our proposed 2nd order 
circular symmetric layout, they are not exactly the same. 
Figure 4 replicates one of these four segment structure. 
For a single device, both M1 and M2 are drawn in the 
form of circular symmetry. However, layouts of A and B 
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have no property of rotation invariance, as shown in 
Figure 3c. Thus, it is not a second order circular 
symmetric layout. This discovery also explained why his 
proposed pattern could not completely cancel current 
mismatch determined by linear threshold voltage gradient 
in his simulations.  

The second order circular symmetry pattern requires 
diagonal layout patterns, which is available in non deep-
sub-micro CMOS processes but may not be available in 
DSM processes. It is a drawback.  

Hexagonal tessellation is a better pattern to cancel linear 
and quadratic gradient for its high area efficiency and its 
ability to extension. Figure 2 is a possible capacitor layout 
using hexognal tessellation pattern. Figure 5 is a more 
realistic pattern with an abstract represent using stick 
graph. This layout pattern is most useful for match-critical 
resistor, capacitor and current mirror in high-end linear 
and mixed-signal circuits. This layout has a substantial 
application in critical match circuits such as switched-
capacitor amplifiers, pipeline ADC stages and so on.  
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Figure 5 Hexagonal Tessellation 

Based on equation (9), we can develop cubic or higher 
order circular symmetry patterns to compensate high order 
nonlinear gradient. However, high order nonlinear 
gradient is typically not serious in a die area. Furthermore, 
they need more flexible layout rules and tools.  
As an example, a current mirror was used to illustrate the 
performance of different layout structures. In this example, 
only threshold voltage has mismatch due to linear 
gradient.  

Table 1 summaries simulation results for different layout 
patterns. Gradient setup is the same as that in [6] and part 
of the results are cited from Lan’s work [6]. Simulation 
results confirmed the better performance of our proposed 
new layout patterns.  

Table 1 comparison between different layout patterns 

Layout structure Worst 
mismatch(%) 

Effective 
resolution 

Simple 4.8807 3-bit 

Common 
centriod 

1.6966e-2 12-bit 

Four segment [6] 1.4090e-4 18-bit 
2nd order circular 
symmetric 

0 ∞

hexagonal 
tessellation  

0 ∞

5. CONLUSIONS 

We studied systematic mismatch of two components due 
to linear and nonlinear gradient in the layout of integrated 
circuits, proposed a generic way called Nth-order circular 
symmetric pattern to cancel the linear to the nth order 
nonlinear gradient and proved our new method 
mathematically. We also proposed an area efficient 
hexagonal tessellation cell which can cancel mismatch due 
to linear and quadratic gradient. The new hexagonal 
tessellation can be extended easily without wasting die 
area. Numerical simulation results are consistent with our 
prediction well.  
Our studies extend existing discoveries and experiences to 
a generic way, which is consistent with previous studies 
but more powerful, more knowledge-based.  This work 
will help to enhance students, researchers and designers in 
VLSI  fields to understand the effects of gradient (one of 
process variations) more precisely and helps them use 
systematic methods to compensate them, both in circuit 
level and in mathematical level.   
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